
## **N.B.K.R. INSTITUTE OF SCIENCE & TECHNOLOGY**

(AUTONOMOUS)

COLLEGE WITH POTENTIAL FOR EXCELLENCE (CPE)
Affiliated to JNTUA, Anantapuramu
Re-Accredited by NAAC with 'A' Grade
B.Tech. Courses Accredited by NBA under TIER-I



# **SYLLABUS**B.TECH. DEGREE COURSE

I B.Tech.
I & II Semesters

## **ELECTRONICS AND COMMUNICATION ENGINEERING**

(With effect from the batch admitted in the academic year 2019-2020)

VIDYANAGAR - 524413 SPSR Nellore-Dist. Andhra Pradesh www.nbkrist.org

## **INSTITUTE:**

#### Vision:

To emerge as a comprehensive Institute that provides quality technical education and research thereby building up a precious human resource for the industry and society.

#### **Mission:**

- 1. To provide a learner-centered environment that challenges individuals to actively participate in the education process.
- 2. To empower the faculty to excel in teaching while engaging in research, creativity and public service.
- 3. To develop effective learning skills enabling students pick up critical thinking thus crafting them professionally fit and ethically strong.
- 4. To reach out industries, schools and public agencies to partner and share human and academic resources.

## VISION AND MISSION OF THE DEPARTMENT

#### Vision:

To develop high quality engineers with sound technical knowledge, skills, ethics and morals in order to meet the global technological and industrial requirements in the area of Electronics and Communication Engineering.

### Mission:

- 1. To produce high quality graduates and post-graduates of Electronics and Communication Engineering with modern technical knowledge, professional skills and good attitudes in order to meet industry and society demands.
- 2. To develop graduates with an ability to work productively in a team with professional ethics and social responsibility.
- 3. To develop highly employable graduates and post graduates who can meet industrial requirements and bring innovations.
- 4. Moulding the students with foundation knowledge and skills to enable them to take up postgraduate programmes and research programmes at the premier institutes.

## **Programme Educational Objectives (PEOs):**

- 1. To provide the students with strong fundamental and advanced knowledge in mathematics, Science and Engineering with respect to Electronics and Communication Engineering discipline with an emphasis to solve Engineering problems.
- 2. To prepare the students through well designed curriculum to excel in bachelor degree programme in Electronics and Communication Engineering in order to engage in teaching or industrial or any technical profession and to pursue higher studies.

- 3. To train students with intensive and extensive engineering knowledge and skill so as to understand, analyze, design and create novel products and solutions in the field of Electronics and Communication Engineering.
- 4. To inculcate in students the professional and ethical attitude, effective communication skills, team spirit, multidisciplinary approach and ability to relate engineering issues to broader social context.
- 5. To provide students with an excellent academic environment to promote leadership qualities, character molding and lifelong learning as required for a successful professional career.

## **Program Outcomes (POs):**

**PO1:** Ability to acquire and apply knowledge of science and engineering fundamentals in problem solving.

**PO2:** Acquire in-depth technical competence in a specific information technology discipline.

**PO3:** Ability to undertake problem identification, formulation and providing optimum solution.

**PO4:** Ability to utilize systems approach to design and evaluate operational performance.

**PO5:** Understanding of the principles of inter-disciplinary domains for sustainable development.

**PO6:** Understanding of professional & ethical responsibilities and commitment to them.

**PO7:** Ability to communicate effectively, not only with engineers but also with the community at large.

**PO8**: Ability to Communicate effectively on complex engineering activities with the engineering community and with society at large.

**PO9**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

**PO10**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

**PO11**: Understanding of the social, cultural, global and environmental responsibilities as a professional engineer.

**PO12**: Recognizing the need to undertake life-long learning, and possess/acquire the capacity to do so.

#### **NBKR INSTITUTE OF SCIENCE & TECHNOLOGY: VIDYANAGAR**

(AUTONOMOUS)

## (AFFILIATED TO JNTU ANANTAPUR: ANANTHAPURAMU) SPSR NELLORE DIST

## I YEAR OF FOUR YEAR B.TECH DEGREE COURSE – I SEMESTER ELECTRONICS AND COMMUNICATION ENGINEERING

SCHEME OF INSTRUCTION AND EVALUATION

(With effect from the academic year 2019-2020)

(For the batch admitted in the academic year 2019-2020)

|      |                |                                   |    | Evaluation                |     |             |                       |      |                       |                        |                              |                   |                              |                           |               |     |
|------|----------------|-----------------------------------|----|---------------------------|-----|-------------|-----------------------|------|-----------------------|------------------------|------------------------------|-------------------|------------------------------|---------------------------|---------------|-----|
| S.No | Course<br>Code | Course Title                      |    | Instruction<br>Hours/Week |     | Credit<br>s | Sessional-I<br>Marks  |      | Sessional-II<br>Marks |                        | Total Sessional<br>Marks(40) | End Sen<br>Examin |                              | Maximum<br>Total<br>Marks |               |     |
|      |                | THEORY                            | L  | Т                         | D/P |             | Test <sup>\$</sup> -I | A#-I | Max.<br>Marks         | Test <sup>\$</sup> -II | A#-II                        | Max.<br>Marks     |                              | Duration<br>In Hours      | Max.<br>Marks | 100 |
| 1    | 19SH1101       | Functional English*               | 2  | 0                         | -   | 2           | 34                    | 6    | 40                    | 34                     | 6                            | 40                |                              | 3                         | 60            | 100 |
| 2    | 19SH1102       | Applied Physics**                 | 2  | 1                         | -   | 3           | 34                    | 6    | 40                    | 34                     | 6                            | 40                | 0.8*Best of<br>two+0.2*      | 3                         | 60            | 100 |
| 3    | 19SH1104       | Engineering Mathematics-I*        | 3  | 1                         | -   | 4           | 34                    | 6    | 40                    | 34                     | 6                            | 40                | least of two                 | 3                         | 60            | 100 |
| 4    | 19CS1101       | Programming for Problem Solving** | 3  | 0                         | -   | 3           | 34                    | 6    | 40                    | 34                     | 6                            | 40                |                              | 3                         | 60            | 100 |
| 5    | 19EE1102       | Electrical Circuits               | 3  | 0                         | -   | 3           | 34                    | 6    | 40                    | 34                     | 6                            | 40                |                              | 3                         | 60            | 100 |
|      |                | PRACTICALS                        |    | PRACTICALS                |     |             |                       |      |                       |                        |                              |                   |                              |                           |               |     |
| 6    | 19SH11P1       | English Lab*                      | -  | -                         | 2   | 1           | -                     | -    | -                     | -                      | -                            | 40                | Day to Day<br>Evaluation and | 3                         | 60            | 100 |
| 7    | 19SH11P2       | Applied Physics Lab**             | -  | -                         | 3   | 1.5         | -                     | -    | -                     | -                      | -                            | 40                | a test<br>(40 Marks)         | 3                         | 60            | 100 |
| 8    | 19CS11P1       | PPS Lab**                         | -  | -                         | 3   | 1.5         | -                     | -    | -                     | -                      | -                            | 40                | ,                            | 3                         | 60            | 100 |
| 9    | 19ME11P2       | Engineering Workshop**            | -  | -                         | 2   | 1           | -                     | -    | -                     | -                      | -                            | 40                | -                            | 3                         | 60            | 100 |
|      |                | TOTAL                             | 13 | 2                         | 10  | 20          | -                     | -    | -                     | -                      | -                            | 360               | -                            | -                         | 540           | 900 |

<sup>\*</sup> Common to all Braches.

<sup>\*\*</sup>Common to ECE, EEE, CSE & IT.

<sup>#</sup> A for Assignment (continuous evaluation)

<sup>\$</sup> Test (Descriptive & Objective) duration = 2 Hours

## 19SH1101-FUNCTIONAL ENGLISH

(Common to all branches)

| Course Category: | Basic Sciences             | Credits:                    | 2     |
|------------------|----------------------------|-----------------------------|-------|
| Course Type:     | Theory                     | Lecture-Tutorial-Practical: | 2-0-0 |
| Prerequisite:    | Basic Level of LSRW Skills | Sessional Evaluation:       | 40    |
| _                |                            | External Exam Evaluation:   | 60    |
|                  |                            | Total Marks:                | 100   |

|                    | Students undergoing this course are expected to understand:                                                                                                                        |  |  |  |  |  |  |  |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|                    | To develop basic writing skills in English.                                                                                                                                        |  |  |  |  |  |  |  |  |
| Course             | 2. To learn writing paragraphs effectively with unity and coherence                                                                                                                |  |  |  |  |  |  |  |  |
| Objectives         | 3. To achieve specific linguistic and communicative competence.                                                                                                                    |  |  |  |  |  |  |  |  |
| o sjecer es        | 4. To acquire relevant skills and use them effectively in realistic working context.                                                                                               |  |  |  |  |  |  |  |  |
|                    | 5. To learn writing simple and analytical essays.                                                                                                                                  |  |  |  |  |  |  |  |  |
|                    | 6. To inculcate the habit of reading.                                                                                                                                              |  |  |  |  |  |  |  |  |
|                    | Upon successful completion of the course, the students will be able to:                                                                                                            |  |  |  |  |  |  |  |  |
|                    | CO1 Improve syntactical knowledge and use of phrases and clauses in sentences and                                                                                                  |  |  |  |  |  |  |  |  |
|                    | encourage their appropriate use in writing.                                                                                                                                        |  |  |  |  |  |  |  |  |
|                    | CO2 Obtain effective writing skills in practicing different types of formal letters.                                                                                               |  |  |  |  |  |  |  |  |
| Course<br>Outcomes | CO3 Attain both public speaking skills and writing skills by practicing drafting of speeches                                                                                       |  |  |  |  |  |  |  |  |
| Outcomes           | CO4 Acquire data interpretation and summarizing skills                                                                                                                             |  |  |  |  |  |  |  |  |
|                    | CO5 Acquire effective strategies for good writing and demonstrate the same in                                                                                                      |  |  |  |  |  |  |  |  |
|                    | summarizing, writing well-organized essays, record and report the useful information.                                                                                              |  |  |  |  |  |  |  |  |
|                    | Focus on appropriate reading strategies for comprehension of various academic                                                                                                      |  |  |  |  |  |  |  |  |
|                    | texts and authentic materials.                                                                                                                                                     |  |  |  |  |  |  |  |  |
|                    | UNIT-I                                                                                                                                                                             |  |  |  |  |  |  |  |  |
|                    | WRITING: Paragraph Writing: Sentence Structures: use of phrases and clauses in                                                                                                     |  |  |  |  |  |  |  |  |
|                    | sentences- importance of proper punctuation- The Five Parts: introducing the topic, logical                                                                                        |  |  |  |  |  |  |  |  |
|                    | order, creating coherence, unity and summarizing the main idea.                                                                                                                    |  |  |  |  |  |  |  |  |
|                    | <b>GRAMMAR:</b> Parts of Speech: Nouns, Pronouns, Verbs, Adjectives and Adverbs; Nouns                                                                                             |  |  |  |  |  |  |  |  |
| Course             | Countable and Uncountable, Singular and Plural; Pronoun-Agreement; Subject-Verb                                                                                                    |  |  |  |  |  |  |  |  |
| Content            | Agreement.                                                                                                                                                                         |  |  |  |  |  |  |  |  |
|                    | UNIT-II                                                                                                                                                                            |  |  |  |  |  |  |  |  |
|                    | <b>WRITING:</b> Letter Writing: Parts of a Letter - Formats of Letters- Types of Letters- Formal letter Writing (enquiry, complaints, seeking permission, seeking internship etc.) |  |  |  |  |  |  |  |  |
|                    | GRAMMAR: Use of Articles and Zero Article, Prepositions, basic sentence structures                                                                                                 |  |  |  |  |  |  |  |  |

simple question form - wh-questions; word order in sentences

## **UNIT-III**

WRITING: Drafting of Public Speech: Ideas / Content Generation, Structure

**GRAMMAR:** Tenses- Active Voice & Passive Voice; Conditional Sentences

## **UNIT-IV**

**WRITING:** Information transfer; comprehend, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables.

**GRAMMAR:** Degrees of Comparison; Question Tags, Non-finite Verbs (infinitives, gerunds & participles)

#### **UNIT-V**

## **Course Content**

**WRITING:** Essay Writing: Writing structured essays on specific topics- Introducing, analyzing and arguing an issue-creating coherence-Usage of proper punctuation-importance of conclusion

**GRAMMAR:** Direct and Indirect Speech, Modifiers

### **UNIT-VI**

**READING:** Comprehension: Different Reading Strategies- Skimming-Scanning-Inferring, Predicting and Responding to Content - Guessing from context and vocabulary extension.

**GRAMMAR:** Common Errors: Identifying and correcting common errors in grammar and usage (articles, prepositions, tenses, parallelism, subject verb agreement, pronoun agreement etc.)

## **REFERENCE BOOKS:**

## Text Books and Reference Books

- 1. Bailey, Stephen. Academic writing: A handbook for international students. Routledge, 2014.
- 2. Chase, Becky Tarver. Pathways: Listening, Speaking and Critical Thinking. Heinley ELT; 2nd Edition, 2018.
- 3. Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.
- 4. Hewings, Martin. Cambridge Academic English (B2). CUP, 2012.
- 5. Murphy, Raymond. English Grammar in Use, 4<sup>th</sup> ed, CUP

## 19SH1102- APPLIED PHYSICS

(Common to EEE, ECE, CSE & IT)

| Course category: | Basic Science                   | Credits:                    | 3     |
|------------------|---------------------------------|-----------------------------|-------|
| Course Type:     | Theory                          | Lecture-Tutorial-Practical: | 2-1-0 |
| Prerequisite:    | Fundamental concepts of Physics | Sessional Evaluation:       | 40    |
|                  |                                 | External Exam Evaluation:   | 60    |
|                  |                                 | Total Marks:                | 100   |

|                      | Students undergoing this course are expected to understand:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Course<br>Objectives | <ol> <li>To understand various phenomena exhibited by light and describe the characteristics, construction &amp; working of lasers along with applications in Science &amp; Technology.</li> <li>To acquire knowledge of crystal systems and their analysis using X-rays.</li> <li>Apply principles of Quantum Mechanics to various atomic phenomena and understand the electrical behaviour of solids.</li> <li>Explain and provide the knowledge about semiconductors and their use in electronic devices.</li> <li>Basic properties of dielectric &amp;magnetic materials and their uses in Science &amp; Technology.</li> <li>Understand the behaviour of superconductors, nano materials, quantum phenomena and the limitations of basic physical laws.</li> </ol>                                                              |  |  |  |  |  |  |  |
| Course<br>Outcomes   | Upon successful completion of the course, the students will be able to:  CO1 Understand the utilization of laser technology in various disciplines.  CO2 Understand the structure of Crystalline solids and their applications in x-ray diffraction.  CO3 Able to understand the basic concepts of quantum physics applicable to solids.  CO4 To know the properties of semiconductor materials by projecting the view of energy bands.  CO5 Understand the concept of polarization& magnetization and also applications of dielectric& magnetic materials in various disciplines.  CO6 Basic ideas about superconductors and nano materials with their uses in various fields of Science & Tachnology                                                                                                                               |  |  |  |  |  |  |  |
| Course<br>Content    | WAVE OPTICS: Introduction (Interference of light) - Interference of light by wave front splitting (Young's double slit experiment) and amplitude splitting (Newton rings) - Fraunhoffer diffraction from a single slit, double slit - Diffraction grating & its resolving power.  LASERS: Spontaneous & stimulated emission of radiation - Population inversion - Pumping methods - Properties of lasers (monochromacity, coherence, directionality, brightness) - Types of lasers: solid state (Ruby), gas (He-Ne) - Applications of lasers in science, engineering & medicine.  UNIT-II  CRYSTALLOGRAPHY: Introduction - Space lattice - Unit cell - Lattice parameters - Bravais lattice - Crystal systems - Packing fractions of S.C., B.C.C., F.C.C Planes in crystal: Miller indices - Inter planar spacing in cubic crystals. |  |  |  |  |  |  |  |

**X-RAY DIFFRACTION**: X – Ray diffraction in crystals – Bragg's law of diffraction – X- ray diffraction techniques: Laue method – Powder method (Debye – Scherrer method).

### **UNIT-III**

**INTRODUCTION TO QUANTUM MECHANICS**: Wave nature of particles (deBroglie hypothesis) – Uncertainty principle – Schrodinger time independent wave equation - Significance of wave function (Born interpretation) – Solution of stationary state Schrodinger equation for one dimensional problems (particle in a box)

**FREE ELECTRON THEORY:** Introduction (classical & quantum : postulates, success& drawbacks) — Fermi–Dirac distribution function and its temperature dependence — Fermi level — Density of states (qualitative ) — Statement of Bloch's theorem for a particle in a periodic potential — Kronig—Penny model (non mathematical treatment) - Origin of energy bands.

#### **UNIT-IV**

**SEMICONDUCTOR PHYSICS**: Intrinsic Semiconductors – Intrinsic conductivity – P&N type semiconductors - Variation of Fermi level with temperature –Law of mass action – Drift & diffusion –Einstein relation – Hall effect and its applications.

## Course Content

**SEMICONDUCTOR DEVICES:** Formation of P-N junction – V-I Characteristics of P-N junction diode (forward & reverse bias) - Diode equation – Direct & indirect bandgap semiconductors – Light emitting diodes (construction, working, materials & applications) – Photo detectors – Solar cells

## **UNIT-V**

**DIELECTRIC PROPERTIES**: Basic definitions – Electronic, ionic (quantitative) and orientation (qualitative) polarizations – Internal fields in solid dielectrics – Clausius – Mossotti equation.

**MAGNETIC PROPERTIES:** Introduction and basic definitions – Origin of magnetic moment – Classification of magnetic materials into dia, para, ferro ,anti ferro & ferri magnetics –Hysteresis – Soft & hard magnetic materials – Applications of magnetic materials .

### **UNIT VI**

**SUPERCONDUCTORS:**Introduction – Effect of temperature and magnetic field – Meissner effect – Types of superconductors – BCS theory - Josephson effect (DC & AC) – Applications of superconductors

**NANOMATERIALS:** Introduction — Significance of nanoscale — Types of nanomaterials — Properties of nanomaterials: physical, mechanical, magnetic and optical — Synthesis of nanomaterials: top-down-Ball milling, bottom up — Chemical vapour deposition — Applications of nanomaterials

## **TEXT BOOKS:**

## Text Books and Reference Books

- 1. Engineering Physics by Palanisamy, Scitech.
- 2. Engineering Physics by K.Thyagarajan, McGraw Hill.
- 3. Engineering Physics by Maninaidu, Pearson.

## **REFERENCE BOOKS:**

- 1. Solid State Physics, by Kittel, Wiley
- 2. Engineering Physics by Gaur and Gupta, Dhanpatrai Publications

## 19SH1104 – ENGINEERING MATHEMATICS – I

(Common to all branches)

| Course category: | Basic Sciences           | Credits:                    | 4     |
|------------------|--------------------------|-----------------------------|-------|
| Course Type:     | Theory                   | Lecture-Tutorial-Practical: | 3-1-0 |
| Prerequisite:    | Intermediate Mathematics | Sessional Evaluation:       | 40    |
|                  |                          | External Evaluation:        | 60    |
|                  |                          | Total Marks:                | 100   |

|                      | Stude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nts undergoing this course are expected to:                                                                                        |  |  |  |  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Course<br>Objectives | <ol> <li>The concepts of Newton's law of cooling, Law of natural growth and decay.</li> <li>Solutions of higher order linear differential equations with RHS of the different types.</li> <li>The concepts of first shifting theorem, change of scale property, Laplace transformation of multiplied by t and division by t and transformation of derivatives and integrals.</li> <li>The concepts of Inverse Laplace transform and their applications.</li> <li>The solution of system of linear equations by matrices.</li> <li>Taylor's and Maclaurin's series, Maxima and Minima of the functions of two and three variables.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |  |  |  |  |
|                      | Upon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | successful completion of the course, the students will be able to:                                                                 |  |  |  |  |
|                      | CO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Attains skills in solving first order differential equations and its applications.                                                 |  |  |  |  |
|                      | CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Solve the linear differential equations related to various engineering fields.                                                     |  |  |  |  |
| Course               | CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Acquire basic knowledge in Laplace transforms and their applications.                                                              |  |  |  |  |
| Outcomes             | CO4 Develop analytical skills in solving the ordinary differential equations to the Laplace transform technique.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                    |  |  |  |  |
|                      | CO5 Develop the use of matrix algebra techniques that is needed by engine practical applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                    |  |  |  |  |
|                      | CO6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Attains skills in analyzing the Taylor's and Maclaurin's series and maxima and minima of the functions of two and three variables. |  |  |  |  |
|                      | FIDC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UNIT – I T OPDED DIFFERENTIAL FOLIATIONS: Differential equations of first order                                                    |  |  |  |  |
|                      | <b>FIRST ORDER DIFFERENTIAL EQUATIONS</b> : Differential equations of first order and first degree - exact, linear and Bernoulli – Applications to Newton's law of cooling –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |  |  |  |  |
| Course               | Law of natural growth and decay.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                    |  |  |  |  |
| Content              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UNIT - II                                                                                                                          |  |  |  |  |
|                      | HIGHER ORDER DIFFERENTIAL EQUATIONS: Homogeneous linear differential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                    |  |  |  |  |
|                      | equations of second and higher order with constant coefficients with R.H.S. of the type $\int_{0}^{ax} \sin x v \cos x v = \int_{0}^{ax} \int_{0}^{ax} \sin x v \cos x v = \int_{0}^{ax} \int_{0}^{ax} \sin x v \cos x v = \int_{0}^{ax} \int_{0}^{ax} \sin x v \cos x v = \int_{0}^{ax} \int_{0}^{ax} \sin x v \cos x v = \int_{0}^{ax} \int_{0}^{ax} \sin x v \cos x v = \int_{0}^{ax} \int_{0}^{ax} \sin x v \cos x v = \int_{0}^{ax} \int_{0}^{ax} \int_{0}^{ax} \sin x v \cos x v = \int_{0}^{ax} \int_{0}^{ax} \int_{0}^{ax} \sin x v \cos x v = \int_{0}^{ax} \int_{0}^{ax} \int_{0}^{ax} \sin x v \cos x v = \int_{0}^{ax} \int_{0}^{ax} \int_{0}^{ax} \sin x v \cos x v = \int_{0}^{ax} \int_{0}^{ax} \int_{0}^{ax} \sin x v \cos x v = \int_{0}^{ax} \int_{0}^{ax} \int_{0}^{ax} \sin x v \cos x v = \int_{0}^{ax} \int_{0}^{ax} \int_{0}^{ax} \sin x v \cos x v = \int_{0}^{ax} \int_{0}^{ax} \int_{0}^{ax} \sin x v \cos x v = \int_{0}^{ax} \int_{0}^{ax} \int_{0}^{ax} \sin x v \cos x v = \int_{0}^{ax} \int_{0}^{ax} \int_{0}^{ax} \int_{0}^{ax} \sin x v \cos x v = \int_{0}^{ax} \int_$ |                                                                                                                                    |  |  |  |  |
|                      | $e^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\sin ax \operatorname{or} \cos ax$ , $x^n$ , $e^{ax} \operatorname{V}$ and $x^n \operatorname{v}(x)$ .                            |  |  |  |  |

#### **UNIT - III**

**LAPLACE TRANSFORMATION:** Laplace transformations of standard functions – Region of convergence – First shifting theorem – Change of scale property – Laplace transformation of multiple by t and division by t – Transformation of derivatives and integrals.

#### **UNIT - IV**

## Course Content

**INVERSE LAPLACE TRANSFORMATION:** Inverse Laplace transform – Method of partial fractions – Shifting property – Inverse Laplace transform of multiple by s and division by s – Inverse Laplace transform of derivatives and integrals – Convolution theorem – Application to solutions of ordinary differential equations.

#### UNIT - V

**MATRICES:** Rank of Matrix by Echelon form – System of homogenous and non-homogenous linear equations – Cayley-Hamilton theorem (without proof)-Eigen values and Eigen vectors and their properties.

## **UNIT - VI**

**DIFFERENTIAL CALCULUS:** Taylor's and Maclaurin's series of single variable – Maxima and minima of function of two variables – Lagrangian method of multipliers with three variables only.

## **TEXT BOOKS:**

- 1. Higher Engineering Mathematics B.S.Grewal, Khanna Publishers, New Delhi.
- 2. Engineering Mathematics B.V. Ramana, Tata McGraw-Hill Education Pvt. Ltd, New Delhi.

## Text Books and Reference Books

#### **REFERENCE BOOKS:**

- 1. Higher Engineering Mathematics H.K. Dass, Er. Rajnish Verma, S.Chand Publication, New Delhi.
- 2. Advanced Engineering Mathematics N.P. Bali & M. Goyal, Lakshmi Publishers, New Delhi.
- 3. Advanced Engineering Mathematics Erwin Kreyszig, Wiley, India

## 19CS1101 - PROGRAMMING FOR PROBLEM SOLVING

(Common to all branches)

| Course category: | Program Core |     |          | Credits:                        | 3     |
|------------------|--------------|-----|----------|---------------------------------|-------|
| Course Type:     | Theory       |     |          | Lecture – Tutorial – Practical: | 3-0-0 |
| Prerequisite:    | Knowledge    | on  | computer | Sessional Evaluation:           | 40    |
|                  | fundamentals | and | basic    | Univ. Exam Evaluation:          | 60    |
|                  | mathematics  |     |          | Total Marks:                    | 100   |

|                      | Students undergoing this course are expected to:                                                                                                                        |  |  |  |  |  |  |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                      | 1. To learn the procedure how to develop algorithms, representations and                                                                                                |  |  |  |  |  |  |  |
| C                    | programming development steps                                                                                                                                           |  |  |  |  |  |  |  |
| Course<br>Objectives | 2. To learn the basic building blocks of C language.                                                                                                                    |  |  |  |  |  |  |  |
| Objectives           | 3. Usage of C constructs (arrays, structures, pointers and file management) to                                                                                          |  |  |  |  |  |  |  |
|                      | develop various programs 4. To create better awareness how effectively utilize the concepts of C for                                                                    |  |  |  |  |  |  |  |
|                      | application development                                                                                                                                                 |  |  |  |  |  |  |  |
|                      | Upon successful completion of the course, the students will be able to:                                                                                                 |  |  |  |  |  |  |  |
|                      | CO1 Learn the fundamentals of programming development, structure of C and basic data types                                                                              |  |  |  |  |  |  |  |
| Course               | CO2 Find the usage of operators in expression evaluation and construction of I/O Statements.                                                                            |  |  |  |  |  |  |  |
| Outcomes             | CO3 Acquire knowledge on various control structures to develop simple programs                                                                                          |  |  |  |  |  |  |  |
|                      | CO4 Explore the concept of arrays, strings and its effective utilization                                                                                                |  |  |  |  |  |  |  |
|                      | CO5 Understand the concepts of Pointers and Functions for exploring the dynamic memory usage                                                                            |  |  |  |  |  |  |  |
|                      | CO6 Explore the basics of Structures, Unions, File operations and supporting implementations                                                                            |  |  |  |  |  |  |  |
|                      | UNIT – I                                                                                                                                                                |  |  |  |  |  |  |  |
|                      | INTRODUCTION: Algorithms, Flow charts, Program development steps.                                                                                                       |  |  |  |  |  |  |  |
|                      | <b>FUNDAMENTALS OF C:</b> History, Structure of a C program, Programming rules and execution. Character set, Delimiters, C keywords, Identifiers, Constants, Variables, |  |  |  |  |  |  |  |
|                      | Rules for defining Variables, Data types, Declaration and Initialization of Variables.                                                                                  |  |  |  |  |  |  |  |
|                      | UNIT – II                                                                                                                                                               |  |  |  |  |  |  |  |
| Course<br>Content    | OPERATORS AND EXPRESSIONS: Introduction, Operator Precedence and Associativity, Operator Types                                                                          |  |  |  |  |  |  |  |
|                      | INPUT AND OUTPUT IN C: Formatted and Unformatted functions, Commonly used                                                                                               |  |  |  |  |  |  |  |
|                      | library functions.  UNIT – III                                                                                                                                          |  |  |  |  |  |  |  |
|                      |                                                                                                                                                                         |  |  |  |  |  |  |  |
|                      | <b>DECISION STATEMENTS:</b> Introduction, Types of If statements, switch statement, break, continue, goto.                                                              |  |  |  |  |  |  |  |
|                      | oreak, continue, goto.                                                                                                                                                  |  |  |  |  |  |  |  |

|                | <b>ITERATIVE STATEMENTS</b> : while, do-while and for loops.                                                           |  |  |  |  |  |  |  |  |
|----------------|------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|                | UNIT – IV                                                                                                              |  |  |  |  |  |  |  |  |
|                | <b>ARRAYS</b> : Definitions, Initialization, Characteristics of an array, Array Categories.                            |  |  |  |  |  |  |  |  |
|                | STRINGS: Declaration and Initialization of strings, String handling functions.                                         |  |  |  |  |  |  |  |  |
|                | STORAGE CLASSES: Automatic, External, Static and Register Variables.                                                   |  |  |  |  |  |  |  |  |
| Course         | UNIT – V                                                                                                               |  |  |  |  |  |  |  |  |
| Content        | <b>POINTERS:</b> Fundamentals, Declaration and initialization of Pointers, Arithmetic Operations, Pointers and Arrays. |  |  |  |  |  |  |  |  |
|                | <b>FUNCTIONS:</b> Definition, Function Prototypes, Types of functions, Call by Value and Call by Reference, Recursion. |  |  |  |  |  |  |  |  |
|                | UNIT – VI                                                                                                              |  |  |  |  |  |  |  |  |
|                | STRUCTURES: Definition, Declaration and Initialization of Structures.                                                  |  |  |  |  |  |  |  |  |
|                | UNIONS: Definition, Declaration and Initialization of Union.                                                           |  |  |  |  |  |  |  |  |
|                | <b>FILES:</b> Introduction, File Types, Basic operations on Files, File I/O, Command Line Arguments.                   |  |  |  |  |  |  |  |  |
|                | TEXT BOOKS:                                                                                                            |  |  |  |  |  |  |  |  |
| Text Books and | 1. Programming with ANSI & TURBO C by Ashok N.Kamthane, Pearson Education 2007                                         |  |  |  |  |  |  |  |  |
| Reference      | REFERENCE BOOKS:                                                                                                       |  |  |  |  |  |  |  |  |
| Books          | 1. A Book on C by Al Kelley/Ira Pohl, Fourth Edition, Addison-Wesley.1999                                              |  |  |  |  |  |  |  |  |
|                | 2. Let Us C by <u>Yashavant Kanetkar</u> , BPB Publications.                                                           |  |  |  |  |  |  |  |  |
|                | 1. Programming in ANSI C by Balaguruswamy 6 <sup>th</sup> Edition, Tata McGraw Hill Education, 2012.                   |  |  |  |  |  |  |  |  |
| E-Resources    | 1. https://nptel.ac.in/courses                                                                                         |  |  |  |  |  |  |  |  |
| _ itosouices   | 1. https://freevideolectures.com/university/iitm                                                                       |  |  |  |  |  |  |  |  |

## 19EE1102 - ELECTRICAL CIRCUITS

(ECE)

| Course category: | Professional core           | Credits:                         | 3     |
|------------------|-----------------------------|----------------------------------|-------|
| Course Type:     | Theory                      | Lecture-Tutorial-Practical:      | 3-0-0 |
| Prerequisite:    | Fundamentals in engineering | Sessional Evaluation:            | 40    |
|                  | mathematics and concepts of | <b>External Exam Evaluation:</b> | 60    |
|                  | Electricity in physics      | Total Marks:                     | 100   |

|                      | Students undergoing this course are expected to understand:                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Course<br>Objectives | <ol> <li>The basic concepts of R, L, C elements and network reduction techniques.</li> <li>The concept of form factor, Crest factor and j notation.</li> <li>The concept of power triangle, series and parallel connection of R, L &amp; C elements with sinusoidal Excitation.</li> <li>About the network theorems and their applications.</li> <li>The two port network parameters for the given network.</li> <li>The transient response of RL, RC, RLC series circuit for DC excitation.</li> </ol> |  |  |  |  |  |
|                      | Upon successful completion of the course, the students will be able to:                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                      | Perform the equivalent resistance calculation of electrical circuits and also find the solution of DC circuits by Nodal and Mesh analysis.                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                      | CO2 Compute the average, RMS, form factor &crest factor of a periodic waveform.                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Course<br>Outcomes   | CO3 Enumerates real power, reactive power, apparent power and power factor for a given circuit and also evaluate the resonant frequency, Quality factor, band width.                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                      | CO4 Calculate the response for a given network using network theorems.                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|                      | CO5 Evaluate the two port network parameters for the given network.                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                      | CO6 Determine the time constant and transient response of a given circuit with and without D.C excitation.                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                      | UNIT- I CONCEPT OF ELECTRIC CIRCUITS: Introduction, Active and passive elements, V-I Characteristics of R, L and C elements, Ideal & Practical Sources, Source transformation, Network reduction techniques, Star-Delta transformation, Kirchhoff's laws - Mesh and Nodal analysis of DC circuits with independent sources.                                                                                                                                                                             |  |  |  |  |  |
| Course<br>Content    | <b>UNIT – II FUNDAMENTALS OF AC CIRCUITS:</b> R.M.S, Average values, Form factor and Crest factor for different periodic waveforms, Sinusoidal alternating quantities - Phase and Phase difference, Complex and Polar forms of representations, j-Notation. Concept of Reactance, Impedance, Susceptance and Admittance.                                                                                                                                                                                |  |  |  |  |  |
|                      | <b>UNIT – III SINGLE PHASE AC CIRCUITS:</b> Concept of Active and reactive power, power factor –power triangle -Examples -Steady state analysis of R, L and C elements (series, parallel and series-parallel combinations) with sinusoidal excitation - Phasor diagrams-Examples.                                                                                                                                                                                                                       |  |  |  |  |  |

|                                         | <b>RESONANCE:</b> Series and parallel resonance, Half power frequencies, Bandwidth and Q factor, Relation between half power frequencies, Bandwidth & Quality factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                         | UNIT- IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| Course                                  | <b>NETWORK THEOREMS:</b> Superposition, Reciprocity, Thevenin's and Norton's theorems, Maximum power transfer theorem. Application of these theorems to DC excitation with dependent and independent sources. <b>UNIT – V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Content                                 | TWO PORT NETWORK PARAMETERS - Open circuit parameters – Short circuit parameters – Transmission parameters - Hybrid parameters – Inter-relationships of different parameters - Condition for reciprocity and symmetry of networks with different two port parameters.  UNIT – VI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|                                         | <b>D.C TRANSIENT ANALYSIS:</b> Transient response of R-L, R-C & R-L-C circuits for DC excitations - initial conditions -Time constants -solution using Differential equation & Laplace transform methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Text Books<br>and<br>Reference<br>Books | <ol> <li>TEXT BOOKS:         <ol> <li>"Engineering Circuit Analysis", by Hayt &amp; Kemmerly, 2<sup>nd</sup> Edition,TMH publishers</li> <li>"Network Analysis", by M.E Van Valkenburg,Third Edition,PHI learning private                 Limited, 2006.</li> <li>"Fundamentals of Electric circuits", by Charles k Alexander,Mathew N O Sadiku,Tata McGraw Hill Education private Limited, 6<sup>th</sup> Edition,2017.</li> </ol> </li> <li>REFERENCE BOOKS:         <ol> <li>"Circuits &amp; Networks", by A.Sudhakar and Shyam Mohan , 5<sup>th</sup> Edition(2015),TMH</li> <li>"Circuit Theory", by A.Chakrabarti, Dhanpat Rai publishers 6<sup>th</sup> Edition (2014).</li> <li>"Circuits &amp; Systems", by Dr K.M.Soni, S.K.Kataria&amp; sons Publication(2014).</li> </ol> </li> </ol> |  |  |  |  |  |
| E-Resources                             | 1. http://nptel.ac.in/courses 2. http://iete-elan.ac.in 3. http://freevideolectures.com/university/iitm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |

## 19SH11P1-ENGLISH LANGUAGE LABORATORY

(Common to EEE, ECE, CSE & IT)

| <b>Course Category:</b> | Basic Sciences             | Credits:                    | 1     |
|-------------------------|----------------------------|-----------------------------|-------|
| Course Type:            | Practical                  | Lecture-Tutorial-Practical: | 0-0-2 |
|                         | Basic Level of LSRW skills | Sessional Evaluation:       | 40    |
| Prerequisite:           |                            | External Exam Evaluation:   | 60    |
| _                       |                            | Total Marks:                | 100   |

|                      | Students undergoing this course are expected to understand:                                                                                                                                        |  |  |  |  |  |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Course<br>Objectives | The students how to improve their communicative ability in English with emphasis on LSRW skills and enable them to communicate effectively in different socio- cultural and professional contexts. |  |  |  |  |  |  |
|                      | Upon successful completion of the course, the students will be able to:                                                                                                                            |  |  |  |  |  |  |
|                      | These activities practiced in the laboratory are helpful in comprehending the                                                                                                                      |  |  |  |  |  |  |
|                      | CO1 important language aspects which are useful for the real life situations.                                                                                                                      |  |  |  |  |  |  |
| Course<br>Outcomes   | These are also helpful in enhancing the language competency and communicative level of students.                                                                                                   |  |  |  |  |  |  |
|                      | <u>LIST OF ACTIVITIES</u>                                                                                                                                                                          |  |  |  |  |  |  |
|                      | 1. Listening Skills                                                                                                                                                                                |  |  |  |  |  |  |
|                      | <ul> <li>Listening for Identifying key terms, understanding concepts</li> </ul>                                                                                                                    |  |  |  |  |  |  |
|                      | Listening for specific information                                                                                                                                                                 |  |  |  |  |  |  |
|                      | <ul> <li>Listening for global comprehension and summarizing</li> </ul>                                                                                                                             |  |  |  |  |  |  |
|                      | <ul> <li>Listening to short audio texts and answering a series of questions.</li> </ul>                                                                                                            |  |  |  |  |  |  |
|                      | 2. Common Everyday Conversations:                                                                                                                                                                  |  |  |  |  |  |  |
|                      | (Asking and answering general questions on familiar topics such as home, family,                                                                                                                   |  |  |  |  |  |  |
| Course               | work, studies and interests)                                                                                                                                                                       |  |  |  |  |  |  |
| Content              | <ul> <li>Expressions in various situations</li> </ul>                                                                                                                                              |  |  |  |  |  |  |
|                      | <ul> <li>Making requests and seeking permissions</li> </ul>                                                                                                                                        |  |  |  |  |  |  |
|                      | Interrupting and apologizing                                                                                                                                                                       |  |  |  |  |  |  |
|                      | Role plays / Situational dialogues                                                                                                                                                                 |  |  |  |  |  |  |
|                      | 3. Communication at Work Place:                                                                                                                                                                    |  |  |  |  |  |  |
|                      | Introducing oneself and others                                                                                                                                                                     |  |  |  |  |  |  |
|                      | Ice breaking activity and JAM Session                                                                                                                                                              |  |  |  |  |  |  |
|                      | • Greetings                                                                                                                                                                                        |  |  |  |  |  |  |
|                      | Taking leave                                                                                                                                                                                       |  |  |  |  |  |  |
|                      | 4. Group Discussion                                                                                                                                                                                |  |  |  |  |  |  |
|                      | Discussion in pairs/ small groups on specific topics                                                                                                                                               |  |  |  |  |  |  |
|                      | Short structured talks                                                                                                                                                                             |  |  |  |  |  |  |
|                      | • Debates                                                                                                                                                                                          |  |  |  |  |  |  |
|                      | Reporting/ summarizing                                                                                                                                                                             |  |  |  |  |  |  |

| Course<br>Content                       | <ul> <li>5. Presentations:</li> <li>Pre-planning</li> <li>Non- verbal communication</li> <li>Formal oral presentations on topics from academic contexts</li> <li>6. Giving directions</li> <li>Giving directions</li> <li>Asking for directions</li> <li>Specific instructions</li> <li>Importance of Landmarks</li> </ul> |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Text Books<br>and<br>Reference<br>Books | <ol> <li>REFERENCES:</li> <li>A Manual for English Language Laboratories: Dr. D. Sudha Rani, Pearson Publications</li> <li>Techniques of Teaching English: A.L. Kohli, Dhanpat Rai Publishers, 2019</li> <li>https://www.talkenglish.com/</li> </ol>                                                                       |

## 19SH11P2-APPLIED PHYSICS LABORATORY

(Common to EEE, ECE, CSE & IT)

| Course Category: | Basic Science       | Credits:                         | 1.5   |
|------------------|---------------------|----------------------------------|-------|
| Course Type:     | Practical           | Lecture-Tutorial-Practical:      | 0-0-3 |
|                  | Engineering Physics | Sessional Evaluation:            | 40    |
| Prerequisite:    |                     | <b>External Exam Evaluation:</b> | 60    |
|                  |                     | Total Marks:                     | 100   |

|                      | Students undergoing this course are expected to understand:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Course<br>Objectives | 1. To provide student to learn about some important experimental techniques in physics with knowledge in theoretical aspects so that they can excel in that particular field.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
|                      | Upon successful completion of the course, the students will be able to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| Course<br>Outcomes   | These experiments in the laboratory are helpful in understanding important concepts of physics through involvement in the experiments by applying theoretical knowledge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|                      | CO2 It helps to recognize where the ideas of the students agree with those accepted by physics and where they do not.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| Course<br>Content    | LIST OF EXPERIMENTS  1. Determination of rigidity modulus of wire material – Torsional pendulum. 2. Melde's experiment – Transverse & longitudinal modes. 3. Resonance in LCR circuit. 4. Magnetic field along the axis of a coil (Stewart – Gee's Method). 5. Study of characteristics of LED 6. Newton rings 7. Wedge method 8. Diffraction grating - Wavelength of given source. 9. Dispersive power of prism material using spectrometer. 10. P-N- junction diode characteristics. 11. Evaluation of Numerical Aperture of given optical fiber. 12. Energy gap of a P-N junction diode material. 13. Transistor characteristics. 14. Solar cell characteristics. 15. Logic gates. |  |  |  |  |  |  |  |

## 19CS11P1 - PROGRAMMING FOR PROBLEM SOLVING LABORATORY

(Common to all Branches)

| Course Cate                             | gory:                                                                                                                                                                                                                                                                                                                                                                                                                 | Program Core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Credits:                                                       | 1.5             |  |  |  |  |  |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------|--|--|--|--|--|
| Course '                                | Type:                                                                                                                                                                                                                                                                                                                                                                                                                 | Practical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lecture-Tutorial- Practice:                                    | 0 - 0 - 3       |  |  |  |  |  |
| Prerequisite:                           |                                                                                                                                                                                                                                                                                                                                                                                                                       | Basic mathematical knowledge to solve problems and computer fundamentals                                                                                                                                                                                                                                                                                                                                                                                                                     | Sessional Evaluation:<br>External Evaluation :<br>Total Marks: | 40<br>60<br>100 |  |  |  |  |  |
|                                         | Stude                                                                                                                                                                                                                                                                                                                                                                                                                 | nts undergoing this course are expected:                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                |                 |  |  |  |  |  |
| Course<br>Objectives                    | To le                                                                                                                                                                                                                                                                                                                                                                                                                 | earn the C programming constructs and its                                                                                                                                                                                                                                                                                                                                                                                                                                                    | implementation                                                 |                 |  |  |  |  |  |
| Course<br>Outcomes                      | Upon<br>CO1                                                                                                                                                                                                                                                                                                                                                                                                           | successful completion of the course, the To Solve problems using C programmi                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                |                 |  |  |  |  |  |
| Course<br>Content                       | 2.<br>3.<br>4.<br>5.<br>6.<br>7.<br>8.<br>9.                                                                                                                                                                                                                                                                                                                                                                          | LIST OF EXPERIMENTS  1. To evaluate expressions. 2. To implement if constructs. 3. To implement Switch statement. 4. To implement all iterative statements. 5. To implement Arrays. 6. To implement operations on Strings without using Library functions. 7. To implement arithmetic operations using pointers. 8. Implement both recursive and non-recursive functions. 9. To implement parameter passing techniques. 10. To implement Structures. 11. To implement basic File operations. |                                                                |                 |  |  |  |  |  |
| Text Books<br>and<br>Reference<br>Books | <ul> <li>TEXT BOOK(S): <ol> <li>Programming with ANSI &amp; TURBO C by Ashok N.Kamthane, Pearson Education 2007</li> </ol> </li> <li>REFERENCE BOOKS: <ol> <li>A Book on C by Al Kelley/Ira Pohl, Fourth Edition, Addison-Wesley.1999</li> <li>Let Us C by Yashavant Kanetkar, BPB Publications.</li> <li>Programming in ANSI C by Balaguruswamy 6th Edition, Tata McGraw Hill Education, 2012</li> </ol> </li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                |                 |  |  |  |  |  |

## 19ME11P2- ENGINEERING WORKSHOP

(Common to CSE, EEE, ECE & IT)

| Course Category: | Engineering Science | Credits:                        | 1         |
|------------------|---------------------|---------------------------------|-----------|
| Course Type:     | Practical           | Lecture - Tutorial - Practical: | 0 - 0 - 2 |
| Prerequisite:    |                     | Sessional Evaluation:           | 40        |
|                  | No Prerequisite     | External Evaluation:            | 60        |
|                  |                     | Total Marks:                    | 100       |

| Students undergoing this course are expected to understand:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1. To understand the usage of work shop tools and prepare the models in the trades                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| <ul> <li>such as carpentry, fitting, sheet metal &amp; foundry.</li> <li>To understand and demonstrate the usage of tools of welding, black smithy and machine tools.</li> <li>To understand the usage of wiring tools and to execute house wiring connections.</li> </ul>                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| Upon the successful completion of the course, the students will be able to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| CO1 Identify, Distinguish and Choose the tools of various trades (carpentry, fitting, sheet metal, foundry, wiring, welding, black smithy and machine tools).                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| CO2 Demonstrate and Describe the usage of tools of various trades (carpentry, fitting, sheet metal, foundry, wiring, welding, black smithy and machine tools).                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| CO3 Documenting the procedure adopted while preparing the model.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| <ol> <li>Carpentry: Half Lap, Mortise and Tenon and Bridle joint.</li> <li>Fitting: Square, V, half round and dovetail fittings</li> <li>Tin-Smithy: Tray, cylinder, hopper, cone</li> <li>House-wiring: One lamp controlled by one switch, Two lamps (bulbs) controlled by two switches independently, Stair - case connection, Two lamps controlled by one switch in series, Two lamps controlled by on switch in parallel and Water pump connected with single phase starter.</li> <li>Foundry: single-piece pattern and Two- piece pattern</li> </ol> |  |  |  |  |  |  |
| TRADES FOR DEMONSTRATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| <ul><li>6. Machine Tools</li><li>7. Welding</li><li>8. Black Smithy</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| Text Books and Reference Books Books  1. Engineering Work shop practice for JNTU, V. Ramesh Babu, VRB Publishers Ltd,2009 2. Work shop Manual / P.Kannaiah/ K.L.Narayana/ SciTech Publishers,2004 3. Engineering Practices Lab Manual, Jeyapoovan, SaravanaPandian, V publishers,2007.Classical Data Structures by Samanta debasis, Prentice Hall of India edition                                                                                                                                                                                        |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |

#### **NBKR INSTITUTE OF SCIENCE & TECHNOLOGY: VIDYANAGAR**

## (AUTONOMOUS)

## (AFFILIATED TO JNTU ANANTAPUR: ANANTHAPURAMU)

#### SPSR NELLORE DIST

## I YEAR OF FOUR YEAR B.TECH DEGREE COURSE – II SEMESTER

## **ELECTRONICS AND COMMUNICATION ENGINEERING**

SCHEME OF INSTRUCTION AND EVALUATION

(With effect from the academic year 2019-2020)

(For the batch admitted in the academic year 2019-2020)

|      |                |                                         |    | ¥                         |     |         |                       |            |                       |                        |       | Evalua                       | tion                                    |                      |                        |     |     |     |
|------|----------------|-----------------------------------------|----|---------------------------|-----|---------|-----------------------|------------|-----------------------|------------------------|-------|------------------------------|-----------------------------------------|----------------------|------------------------|-----|-----|-----|
| S.No | Course<br>Code | Course Title                            |    | Instruction<br>Hours/Week |     | Credits | Sessional-I<br>Marks  |            | Sessional-II<br>Marks |                        |       | Total Sessional<br>Marks(40) | End Sen<br>Examin                       |                      | Maximum<br>Total Marks |     |     |     |
|      | Code           | THEORY                                  | L  | Т                         | D/P |         | Test <sup>\$</sup> -I | A#-I       | Max.<br>Marks         | Test <sup>\$</sup> -II | A#-II | Max.<br>Marks                |                                         | Duration<br>In Hours | Max.<br>Marks          | 100 |     |     |
| 1    | 19SH1201       | Professional English*                   | 2  | 0                         | -   | 2       | 34                    | 6          | 40                    | 34                     | 6     | 40                           | 0.8*Best of<br>two+0.2*<br>least of two | two+0.2*             | 3                      | 60  | 100 |     |
| 2    | 19SH1203       | Engineering Chemistry **                | 3  | 0                         | -   | 3       | 34                    | 6          | 40                    | 34                     | 6     | 40                           |                                         |                      | two+0.2*               | 3   | 60  | 100 |
| 3    | 19SH1204       | Engineering Mathematics-II*             | 3  | 1                         | -   | 4       | 34                    | 6          | 40                    | 34                     | 6     | 40                           |                                         |                      |                        | 3   | 60  | 100 |
| 4    | 19EC1201       | Electronic Devices                      | 3  | 0                         | -   | 3       | 34                    | 6          | 40                    | 34                     | 6     | 40                           |                                         | 3                    | 60                     | 100 |     |     |
| 5    | 19CS1202       | Data Structures**                       | 3  | 0                         | -   | 3       | 34                    | 6          | 40                    | 34                     | 6     | 40                           |                                         | 3                    | 60                     | 100 |     |     |
|      |                | PRACTICALS                              |    |                           |     |         |                       | PRACTICALS |                       |                        |       |                              |                                         |                      |                        |     |     |     |
| 6    | 19SH12P3       | Engineering Chemistry<br>Lab**          | -  | -                         | 3   | 1.5     | -                     | -          | -                     | -                      | -     | 40                           | Day to Day<br>Evaluation and a<br>test  | 3                    | 60                     | 100 |     |     |
| 7    | 19CS12P2       | Data Structures Lab**                   | -  | -                         | 3   | 1.5     | -                     | -          | -                     | -                      | -     | 40                           | (40 Marks)                              | 3                    | 60                     | 100 |     |     |
| 8    | 19ME12P1       | Computer Aided<br>Engineering Drawing** |    | -                         | 6   | 3       | -                     | -          | -                     | -                      | -     | 40                           |                                         | 3                    | 60                     | 100 |     |     |
|      |                | TOTAL                                   | 14 | 1                         | 12  | 21      | -                     | -          | -                     | -                      | -     | 320                          | -                                       | -                    | 480                    | 800 |     |     |

<sup>\*</sup> Common to all Braches.

<sup>\*\*</sup>Common to ECE, EEE, CSE & IT.

<sup>#</sup> A for Assignment (continuous evaluation)

<sup>\$</sup> Test (Descriptive & Objective) duration = 2 Hours

## 19SH1201-PROFESSIONAL ENGLISH

(Common to all Branches)

| <b>Course Category:</b> | Basic Sciences             | Credits:                    | 2     |
|-------------------------|----------------------------|-----------------------------|-------|
| Course Type:            | Theory                     | Lecture-Tutorial-Practical: | 2-0-0 |
| Prerequisite:           | Basic Level of LSRW skills | Sessional Evaluation:       | 40    |
| _                       |                            | External Exam Evaluation:   | 60    |
|                         |                            | Total Marks:                | 100   |

|                      | Students undergoing this course are expected to:                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Course<br>Objectives | <ol> <li>To develop their basic professional writing skills in English</li> <li>To achieve specific linguistic and verbal competence</li> <li>To acquire relevant skills and function efficiently in a realistic professional working environment</li> <li>To inculcate the habit of reading &amp; writing</li> <li>To learn writing analytical essays.</li> <li>To acquire verbal proficiency</li> </ol> |  |  |  |  |  |  |  |  |
|                      | After completing the course the student will be able to                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
|                      | CO1 Write effective descriptions on scientific/technical topics                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
|                      | CO2 Draft effective business e-mails.                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
| Course<br>Outcomes   | CO3 Present perspective of an issue and analyze an argument.                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| Outcomes             | CO4 Write proposals and project reports for professional contexts                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
|                      | CO5 Practice different techniques of note making and note taking.                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
|                      | CO6 Write effective book reviews on technical & non-technical books. Equip themselves with verbal proficiency.                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
|                      | UNIT –I                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
| Course               | <b>WRITING:</b> Descriptions: Descriptions on scientific/ technical in nature-writing introduction - defining – classifying - describing technical features – the structure of an automobile/gadget/product or the process - instruction or installation manuals. <b>VERBAL:</b> Verbal reasoning- Analogies, Homophones & Homonyms                                                                       |  |  |  |  |  |  |  |  |
| Content              | UNIT-II                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
|                      | <b>WRITING:</b> E-mail Communication- Etiquette – Format- Writing Effective Business Email                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                      | VERBAL: Idioms and Phrases, One-word substitutes                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|                      | UNIT-III                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
|                      | ANALYTICAL WRITING: Presenting perspective of an issue- Compare & Contrast,                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
|                      | Cause and Effect, Analyze an argument                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
|                      | <b>VERBAL:</b> Affixes-prefix and suffix, root words, derivatives                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |

|                                         | UNIT-IV                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | TECHNICAL WRITING: Writing Proposals: Significance, Structure, Style and Writing of Project Reports.  VERBAL: Synonyms and Antonyms                                                                                                                                                                                                                                                                     |
|                                         | UNIT-V                                                                                                                                                                                                                                                                                                                                                                                                  |
| Course<br>Content                       | WRITING: Introduction to different kinds of materials: Technical & Non-technical-Note Taking and Note Making- Identification of important points and precise the content VERBAL: Words often confused                                                                                                                                                                                                   |
|                                         | UNIT-VI                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         | BOOK REVIEWS: Review of a Technical and Non-Technical - A brief written analysis including summary and appreciation VERBAL: Sentence Completion                                                                                                                                                                                                                                                         |
|                                         | REFERENCES:                                                                                                                                                                                                                                                                                                                                                                                             |
| Text Books<br>and<br>Reference<br>Books | <ol> <li>A Textbook of English for Engineers and Technologists (combined ed Vol. 1&amp;2)         Orient Black Swan 2010.</li> <li>Word Power Made Easy, Norman Lewis, New Revised Edition, Goyal Publishers</li> <li>A Communicative Grammar of English by Geoffrey Leech, Longman, 3<sup>rd</sup> ed</li> <li>Effective Technical Communication, M. Ashraf Rizvi, Tata McGraw- Hill, 2011.</li> </ol> |

## 19SH1203- ENGINEERING CHEMISTRY

(Common to EEE, ECE, CSE & IT)

| Course category: | Basic science           | Credits                          | 3     |
|------------------|-------------------------|----------------------------------|-------|
| Course Type:     | Theory                  | Lecture-Tutorial-Practical:      | 2-1-0 |
| Prerequisite:    | Fundamental concepts of | Sessional Evaluation:            | 40    |
| _                | Chemistry               | <b>External Exam Evaluation:</b> | 60    |
|                  |                         | Total Marks:                     | 100   |

|                      | Studen                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nts undergoing this course are expected:                                                                                                                                                                                           |  |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Course<br>Objectives | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                      | To familiarize engineering chemistry and its applications To train the students on the principles and applications of electrochemistry and polymers To impart the concept of soft and hard waters, softening methods of hard water |  |
|                      | Upon                                                                                                                                                                                                                                                                                                                                                                                                                                                    | successful completion of the course, the students will be able to:                                                                                                                                                                 |  |
|                      | CO1                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Illustrate the molecular orbital energy level diagram of different molecular species                                                                                                                                               |  |
|                      | CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Apply Nernst equation for calculating electrode and cell potentials                                                                                                                                                                |  |
| Course               | CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Demonstrate the corrosion prevention methods and factors affecting corrosion                                                                                                                                                       |  |
| Outcomes             | CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Explain the different types of polymers and their applications                                                                                                                                                                     |  |
|                      | CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Explain the principles of reverse osmosis and electro dialysis                                                                                                                                                                     |  |
|                      | CO6                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Explain calorific values and refining of petroleum                                                                                                                                                                                 |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UNIT – I                                                                                                                                                                                                                           |  |
| Course<br>Content    | <b>STRUCTURE AND BONDING MODELS:</b> Planck's quantum theory, dual nature of matter, Schrodinger equation, significance of $\Psi$ and $\Psi^2$ , molecular orbital theory – bonding in homo and heteronuclear diatomic molecules – energy level diagrams of $O_2$ and $CO$ . $\pi$ -molecular orbitals of butadiene and benzene, calculation of bond order, crystal field theory – salient features – splitting in octahedral and tetrahedral geometry. |                                                                                                                                                                                                                                    |  |
|                      | geome                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UNIT – II                                                                                                                                                                                                                          |  |
|                      | WATER TREATMENT: Introduction –Hardness of water, Estimation of hardness of water by EDTA Method - Boiler troubles - scale and sludge, Priming and foaming, caustic embrittlement, Boiler corrosion, Industrial water treatment –Lime-soda, zeolite and ion-exchange processes - desalination of brackish water, reverse osmosis (RO) and electro dialysis.  UNIT-III                                                                                   |                                                                                                                                                                                                                                    |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |  |
|                      | electro                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CTROCHEMISTRY AND APPLICATIONS: Electrodes – concepts, reference odes (Calomel electrode and glass electrode) electrochemical cell, Nernst equation, otential calculations, numerical problems.                                    |  |

| Course<br>Content                       | Primary cells – Zinc-air battery, Fuel cells, hydrogen-oxygen—working of the cells. Secondary cells – lead acid and lithium ion batteries. Potentiometry – potentiometric titration (strong acid vs strong base). Conductometry – conductometric titrations (strong acid vs strong base & weak acid vs strong base)  **UNIT-IV**  CORROSION: Introduction to corrosion, electrochemical theory of corrosion, differential aeration cell corrosion, galvanic corrosion, metal oxide formation by dry electrochemical corrosion, Pilling Bedworth ratios and uses, Factors affecting the corrosion, prevention methods of corrosion- Metallic coatings(electroplating) and Cathodic protection.  UNIT - V  POLYMER CHEMISTRY: Introduction to polymers, Polymerisation and Types of polymerisation.  Plastomers - Thermoplastics and Thermo-setting plastics- Preparation, properties and applications of PVC, Bakelite, Urea-Formaldehyde and Nylons.  Elastomers – Preparation, properties and applications of Buna N, Thiokol and Silicone rubber  UNIT-VI  FUEL TECHNOLOGY: Chemical fuels – Introduction, classification, characteristics of a good fuel, calorific value, determination of calorific value (Bomb calorimeter and Boy's gas calorimeter), numerical problems based on calorific value.  Solid Fuels - Analysis of coal.  Liquid Fuels - Refining of petroleum, knocking and anti-knock agents, Octane and |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | Cetane values.  Gaseous Fuels- Flue gas analysis by Orsat's apparatus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Text Books<br>and<br>Reference<br>Books | <ol> <li>TEXT BOOKS:         <ol> <li>Jain and Jain, Engineering Chemistry, 16 Ed., Dhanpat Rai Publishers, 2013.</li> <li>Peter Atkins, Julio de Paula and James Keeler, Atkins' Physical Chemistry, 10 Ed., Oxford University Press, 2010.</li> </ol> </li> <li>REFERENCE BOOKS:         <ol> <li>K N Jayaveera, G V Subba Reddy and C Rama Chandraiah, Engineering Chemistry 1 Ed. Mc Graw Hill Education (India) Pvt Ltd, New Delhi 2016</li> <li>J. D. Lee, Concise Inorganic Chemistry, 5 Ed., Oxford University Press, 2008.</li> <li>Dr. S.S. Dara and Dr S.S Umare, A Text book of Engineering Chemistry, 1 Ed., Chand &amp; Company Ltd., 2000.</li> <li>K Sesha Maheswaramma and Mridula Chugh, Engineering Chemistry, 1 Ed., Pearson India Education Services Pvt. Ltd, 2016.</li> </ol> </li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

## 19SH1204-ENGINEERING MATHEMATICS – II

(Common to All Branches)

| Course category: | Basic Sciences           | Credits:                    | 4     |
|------------------|--------------------------|-----------------------------|-------|
| Course Type:     | Theory                   | Lecture-Tutorial-Practical: | 3-1-0 |
| Prerequisite:    | Intermediate Mathematics | Sessional Evaluation:       | 40    |
|                  |                          | External Evaluation:        | 60    |
|                  |                          | Total Marks:                | 100   |

|                      | Stude             | nts undergoing this course are expected to understand:                                                                                                                                                                                                                                                                                                      |
|----------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course<br>Objectives | 2. T fi 3. T 4. T | The concepts of double integrals and its applications.  The basic concepts of triple integrals and its applications, Beta and Gamma unctions.  The gradient, divergence and curl operators, Solenoidal and Irrotational vectors.  The basic concepts of vector integration and their applications.  To express a function in Fourier series in an interval. |
|                      | 6. T              | The concepts of Fourier transform.                                                                                                                                                                                                                                                                                                                          |
|                      | CO1               | successful completion of the course, the students will be able to:  Apply double integration techniques in evaluating areas bounded by region.  Understand effectively in analyzing the Triple integrals, Beta and Gamma                                                                                                                                    |
|                      | CO2               | functions                                                                                                                                                                                                                                                                                                                                                   |
| Course<br>Outcomes   | CO3               | Interpret the physical meaning of different operators such as Gradient, Divergence and Curl.                                                                                                                                                                                                                                                                |
|                      | CO4               | Apply Green's, Stokes and Divergence theorems in evaluation of double and triple integrals.                                                                                                                                                                                                                                                                 |
|                      | CO5               | Develop analytical skills in solving the problems involving Fourier Series.                                                                                                                                                                                                                                                                                 |
|                      | CO6               | Understand effectively Fourier Sine and Cosine integral, Fourier Sine and Cosine transforms.                                                                                                                                                                                                                                                                |
|                      |                   | UNIT - I                                                                                                                                                                                                                                                                                                                                                    |
| Course<br>Content    |                   | BLE INTEGRALS: Double integrals – Change of order of integration – Change ar coordinates – Area by double integration.                                                                                                                                                                                                                                      |

## **UNIT - II**

**TRIPPLE INTEGRALS AND SPECIAL FUNCTIONS:** Evaluation of triple integrals – Volume by triple integral – Beta and Gamma functions and their properties – Relation between Beta and Gamma functions.

## **UNIT - III**

## Course Content

**VECTOR DIFFERENTIATION:** Scalar and vector point functions – Vector differential operator – Gradient, Divergence and Curl – Solenoidal and Irrotational vectors.

#### **UNIT-IV**

**VECTOR INTEGRATION:** Line integral-circulation-workdone – Surface integrals - flux – Volume integral – Vector integral theorems - Green's theorem, Stoke's theorem and Gauss-divergence theorem (without proof).

#### **UNIT-V**

**FOURIER SERIES:** Determination of Fourier coefficients (without proof) – Fourier series – Even and odd functions – Change of intervals.

#### **UNIT-VI**

**FOURIER TRANSFORMS:** Fourier Integral Theorem (Without proof) – Fourier Sine and Cosine integrals — Fourier Transforms – Fourier Sine and Cosine transforms.

## **TEXT BOOKS:**

## Text Books and Reference

**Books** 

- 1. Higher Engineering Mathematics B.S.Grewal, Khanna Publishers, New Delhi.
- 2. Engineering Mathematics B.V. Ramana, Tata McGraw-Hill Education Pvt. Ltd New Delhi.

#### **REFERENCE BOOKS:**

- 1. Higher Engineering Mathematics H.K. Dass, Er. Rajnish Verma, S.Chand Publication, New Delhi.
- 2. Advanced Engineering Mathematics N.P. Bali & M. Goyal, Lakshmi Publishers, New Delhi.
- 3. Advanced Engineering Mathematics Erwin Kreyszig, Wiley, India

## 19EC1201 – ELECTRONIC DEVICES

(ECE)

| Course category: | Program core                 | Credits:                        | 3         |
|------------------|------------------------------|---------------------------------|-----------|
| Course Type:     | Theory                       | Lecture - Tutorial - Practical: | 3 - 0 - 0 |
| Prerequisite:    | To provide students with the | <b>Sessional Evaluation:</b>    | 40        |
| _                | fundamentals of Electronics. | Univ.Exam Evaluation:           | 60        |
|                  |                              | Total Marks:                    | 100       |

|                      | Students undergoing this course are expected to understand:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course<br>Objectives | <ol> <li>The concepts of Solid State Semi-Conductor Theory.</li> <li>The operation of a PN Junction and Zener Diodes.</li> <li>The Ideal, Practical and Electrical Characteristics of, Varactor, Tunnel diodes, LED, and LASER</li> <li>The need for biasing of Transistor.</li> <li>The working of FET and MOSFET.</li> <li>The working of MOSFET and CMOS circuits.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Course<br>Outcomes   | Upon successful completion of the course, the students will be able to:  CO1 Understand the Semiconductor Physics for Intrinsic and Extrinsic materials and theory of operation of Solid State devices.  CO2 Apply how the properties of semiconductor materials are used for the formation of PN and Zener diodes.  CO3 Explain the functioning of various solid-state devices, including several types of diodes including conventional, Varactor, Tunnel diodes, LED, and LASER.  CO4 Design the various Bi-polar Junction Transistor biasing circuits and its usage in applications of amplifiers.  CO5 Distinguish the constructional features and operation of FET and their applications.  CO6 Understand the operation of MOSFET and CMOS circuits.                                                        |
| Course<br>Content    | SEMICONDUCTOR DIODES: Introduction, Classification of Semiconductors, Conductivity of Semiconductor, Energy Distribution of Electrons, Carrier Concentration in Intrinsic Semiconductor, Mass-Action Law, Properties of Intrinsic Semiconductors, Variation in Semiconductor Parameters with Temperature, Drift and Diffusion currents, Carrier Life Time, Continuity Equation.  UNIT – II  PN JUNCTION DIODE: Introduction, Energy Band Structure of Open Circuited Diode, Quantitative Theory of Diode Currents, Diode Current Equation, Ideal vs Practical Resistance Levels, Transition Capacitance, Diffusion Capacitance, Temperature Dependence of V-I characteristics, Zener diode, break down mechanisms in semiconductor diodes, Diode as a Circuit Element, Piecewise Linear Diode Model, Applications. |

| Course<br>Content                       | UNIT –III  SPECIAL SEMICONDUCTOR DEVICES: Introduction, Varactor Diode, Tunnel Diode, LED, LASER, Photo diode, Photovoltaic Cell, Solar Cell, UJT.  UNIT – IV  BIPOLAR JUNCTION TRANSISTOR: Introduction, Construction, Transistor Biasing, Operation of NPN Transistor, Operation of PNP Transistor, Types of Configuration, Introduction to h-parameters.  UNIT – V  JUNCTION FIELD EFFECT TRANSISTOR: Introduction, Construction & Operation of N-Channel JFET, Characteristic Parameters, Saturation Drain Current, Slope of the Transfer Characteristic at IDSS, Comparison of JFET and BJT, Applications,  UNIT – VI  MOS FIELD EFFECT TRANSISTOR: Introduction, MOSFET, Enhancement MOSFET, Depletion MOSFET, Comparison of MOSFET and JFET.CMOS Circuits, Introduction to FINFET. |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Text Books<br>and<br>Reference<br>Books | <ol> <li>TEXT BOOKS:         <ol> <li>Electronic Devices &amp; Circuits by Jacob Millman &amp; Christos C. Halkias, McGraw Hill Co.</li> <li>Mottershed, "Electronic devices and circuits", PHI.</li> </ol> </li> <li>REFERENCES:         <ol> <li>Microelectronic Circuits - Sedra &amp; Smith - 5th edition, Oxford University Press</li> </ol> </li> <li>Boylestad, Louis Nashelsky "Electronic devices and circuits" 9ed, 2008 PE.</li> <li>Electronic Devices and Circuits-5th edition, Oxford University Press</li> </ol>                                                                                                                                                                                                                                                           |
| E-Resources                             | <ol> <li>https://nptel.ac.in/courses</li> <li>https://iete-elan.ac.in</li> <li>https://freevideolectures.com/university/iitm</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

## 19CS1202- DATA STRUCTURES

(Common to ECE & EEE)

| Course category: | Core                             | Credits:                        | 3     |
|------------------|----------------------------------|---------------------------------|-------|
| Course Type:     | Theory                           | Lecture – Tutorial – Practical: | 3-0-3 |
| Prerequisite:    | Desires of commuter fundamentals | Sessional Evaluation:           | 40    |
|                  | Basics of computer fundamentals, | Univ. Exam Evaluation:          | 60    |
|                  | knowledge on programming         | Total Marks:                    | 100   |

| Course Objectives  1. Understanding the basics of data structures, types and their representation 2. Creating awareness on operations of various data structures. 3. Gaining knowledge about various data structures and its practical applications 4. Study of different searching and sorting techniques.  Upon successful completion of the course, the students will be able to: CO1 Learn the fundamentals of Data Structures including the basics of Stack and applicability. CO2 Study various types of Queues to develop various applications. CO3 Acquire the basics of Linked List representation and effective utilization Linked lists in memory allocation. CO4 Learn the applications of Set data structure and Trees representations. CO5 Study various Graph representations and its applications. CO6 Learn various searching and sorting techniques.  UNIT - I  INTRODUCTION - Definition and concepts, Overview of Data Structures Implementation of Data Structures. STACKS: Introduction, Definition, Representation of a Stack using Arrays, Operatio of Stacks, Application of queues.  UNIT - II  Queues: Introduction, Definition, Representation of Queues using Arrays, Vario Queue Structures - Circular, Deque, Priority, Application - Round Robin Algorithm.  UNIT - III  Linked Lists: Definitions, Singly Linked List - representation and operations, Circular Linked List and double linked list, Operations on circular and double linked list.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course Objectives  2. Creating awareness on operations of various data structures. 3. Gaining knowledge about various data structures and its practical applications. 4. Study of different searching and sorting techniques.  Upon successful completion of the course, the students will be able to:  CO1 Learn the fundamentals of Data Structures including the basics of Stack and applicability.  CO2 Study various types of Queues to develop various applications.  CO3 Acquire the basics of Linked List representation and effective utilization Linked lists in memory allocation.  CO4 Learn the applications of Set data structure and Trees representations.  CO5 Study various Graph representations and its applications.  CO6 Learn various searching and sorting techniques.  UNIT - I  INTRODUCTION - Definition and concepts, Overview of Data Structure Implementation of Data Structures.  STACKS: Introduction, Definition, Representation of a Stack using Arrays, Operatio of Stacks, Application of queues.  UNIT - II  Queues: Introduction, Definition, Representation of Queues using Arrays, Vario Queue Structures - Circular, Deque, Priority, Application - Round Robin Algorithm.  Course Content  Linked Lists: Definitions, Singly Linked List - representation and operations, Circular Linked List and double linked list, Operations on circular and double linked list.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Students undergoing this course are expected to understand:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Objectives  2. Clearing knowledge about various data structures and its practical applications 4. Study of different searching and sorting techniques.  Upon successful completion of the course, the students will be able to:  CO1   Learn the fundamentals of Data Structures including the basics of Stack and applicability.  CO2   Study various types of Queues to develop various applications.  CO3   Acquire the basics of Linked List representation and effective utilization Linked lists in memory allocation.  CO4   Learn the applications of Set data structure and Trees representations.  CO5   Study various Graph representations and its applications.  CO6   Learn various searching and sorting techniques.  UNIT - I  INTRODUCTION - Definition and concepts, Overview of Data Structure Implementation of Data Structures.  STACKS: Introduction, Definition, Representation of a Stack using Arrays, Operation of Stacks, Application of queues.  UNIT - II  Queues: Introduction, Definition, Representation of Queues using Arrays, Vario Queue Structures - Circular, Deque, Priority, Application - Round Robin Algorithm.  Course Content  Linked Lists: Definitions, Singly Linked List - representation and operations, Circular Linked List and double linked list, Operations on circular and double linked list.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Course     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Course Outcomes  Course Outcomes  Outcomes  Outcomes  Outcomes  Coal Learn the fundamentals of Data Structures including the basics of Stack and applicability.  Coal Learn the fundamentals of Data Structures including the basics of Stack and applicability.  Coal Learn the fundamentals of Data Structures including the basics of Stack and applicability.  Coal Learn the basics of Linked List representation and effective utilization Linked lists in memory allocation.  Coal Learn the applications of Set data structure and Trees representations.  Coal Learn various Graph representations and its applications.  Coal Learn various searching and sorting techniques.  UNIT – I  INTRODUCTION – Definition and concepts, Overview of Data Structures.  STACKS: Introduction, Definition, Representation of a Stack using Arrays, Operation of Stacks, Application of queues.  UNIT – II  Queues: Introduction, Definition, Representation of Queues using Arrays, Vario Queue Structures – Circular, Deque, Priority, Application – Round Robin Algorithm.  UNIT – III  Linked Lists: Definitions, Singly Linked List – representation and operations, Circular Linked List and double linked list, Operations on circular and double linked list.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Course Outcomes Outco | Objectives |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Course Outcomes  Coa Study various types of Queues to develop various applications.  Coa Acquire the basics of Linked List representation and effective utilization Linked lists in memory allocation.  Coa Learn the applications of Set data structure and Trees representations.  Cob Study various Graph representations and its applications.  Cob Learn various searching and sorting techniques.  UNIT - I  INTRODUCTION - Definition and concepts, Overview of Data Structure Implementation of Data Structures.  STACKS: Introduction, Definition, Representation of a Stack using Arrays, Operatio of Stacks, Application of queues.  UNIT - II  Queues: Introduction, Definition, Representation of Queues using Arrays, Vario Queue Structures - Circular, Deque, Priority, Application - Round Robin Algorithm.  UNIT - III  Linked Lists: Definitions, Singly Linked List - representation and operations, Circular Linked List and double linked list, Operations on circular and double linked list.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 4. Study of different searching and sorting techniques.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Course Outcomes  Co3   Study various types of Queues to develop various applications.  Co4   Learn the applications of Set data structure and Trees representations.  Co5   Study various Graph representations and its applications.  Co6   Learn various searching and sorting techniques.  Co7   UNIT - I  INTRODUCTION - Definition and concepts, Overview of Data Structures.  STACKS: Introduction, Definition, Representation of a Stack using Arrays, Operation of Stacks, Application of queues.  UNIT - II  Queues: Introduction, Definition, Representation of Queues using Arrays, Vario Queue Structures - Circular, Deque, Priority, Application - Round Robin Algorithm.  Course Content  Linked Lists: Definitions, Singly Linked List - representation and operations, Circular Linked List and double linked list, Operations on circular and double linked list.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Course Outcomes  Co3  Acquire the basics of Linked List representation and effective utilization Linked lists in memory allocation.  CO4  Learn the applications of Set data structure and Trees representations.  CO5  Study various Graph representations and its applications.  CO6  Learn various searching and sorting techniques.  UNIT – I  INTRODUCTION – Definition and concepts, Overview of Data Structures Implementation of Data Structures.  STACKS: Introduction, Definition, Representation of a Stack using Arrays, Operatio of Stacks, Application of queues.  UNIT – II  Queues: Introduction, Definition, Representation of Queues using Arrays, Vario Queue Structures – Circular, Deque, Priority, Application – Round Robin Algorithm.  Course Content  Linked Lists: Definitions, Singly Linked List – representation and operations, Circular Linked List and double linked list, Operations on circular and double linked list.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | 1 (3)1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Linked lists in memory allocation.  CO4 Learn the applications of Set data structure and Trees representations.  CO5 Study various Graph representations and its applications.  CO6 Learn various searching and sorting techniques.  UNIT – I  INTRODUCTION – Definition and concepts, Overview of Data Structure Implementation of Data Structures.  STACKS: Introduction, Definition, Representation of a Stack using Arrays, Operatio of Stacks, Application of queues.  UNIT – II  Queues: Introduction, Definition, Representation of Queues using Arrays, Vario Queue Structures – Circular, Deque, Priority, Application – Round Robin Algorithm.  Course Content  Linked Lists: Definitions, Singly Linked List – representation and operations, Circular Linked List and double linked list, Operations on circular and double linked list.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Course     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CO4 Learn the applications of Set data structure and Trees representations.  CO5 Study various Graph representations and its applications.  CO6 Learn various searching and sorting techniques.  UNIT – I  INTRODUCTION – Definition and concepts, Overview of Data Structures.  STACKS: Introduction, Definition, Representation of a Stack using Arrays, Operatio of Stacks, Application of queues.  UNIT – II  Queues: Introduction, Definition, Representation of Queues using Arrays, Vario Queue Structures – Circular, Deque, Priority, Application – Round Robin Algorithm.  Course Content  Linked Lists: Definitions, Singly Linked List – representation and operations, Circular Linked List and double linked list, Operations on circular and double linked list.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Outcomes   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CO5 Study various Graph representations and its applications.  CO6 Learn various searching and sorting techniques.  UNIT – I INTRODUCTION – Definition and concepts, Overview of Data Structures Implementation of Data Structures. STACKS: Introduction, Definition, Representation of a Stack using Arrays, Operatio of Stacks, Application of queues.  UNIT – II  Queues: Introduction, Definition, Representation of Queues using Arrays, Vario Queue Structures – Circular, Deque, Priority, Application – Round Robin Algorithm.  Course Content  Linked Lists: Definitions, Singly Linked List – representation and operations, Circular Linked List and double linked list, Operations on circular and double linked list.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | Lography applications of Sat data structure and Trees representations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| UNIT – I INTRODUCTION – Definition and concepts, Overview of Data Structure Implementation of Data Structures. STACKS: Introduction, Definition, Representation of a Stack using Arrays, Operatio of Stacks, Application of queues. UNIT – II  Queues: Introduction, Definition, Representation of Queues using Arrays, Vario Queue Structures – Circular, Deque, Priority, Application – Round Robin Algorithm. Course Content UNIT – III  Linked Lists: Definitions, Singly Linked List – representation and operations, Circular Linked List and double linked list, Operations on circular and double linked list.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | Study various Graph representations and its applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| INTRODUCTION – Definition and concepts, Overview of Data Structures Implementation of Data Structures.  STACKS: Introduction, Definition, Representation of a Stack using Arrays, Operatio of Stacks, Application of queues.  UNIT – II  Queues: Introduction, Definition, Representation of Queues using Arrays, Vario Queue Structures – Circular, Deque, Priority, Application – Round Robin Algorithm.  Course Content  UNIT – III  Linked Lists: Definitions, Singly Linked List – representation and operations, Circular Linked List and double linked list, Operations on circular and double linked list.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | Learn various searching and sorting techniques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SETS: Definitions and Terminologies, Representation and Operations of Set.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | INTRODUCTION – Definition and concepts, Overview of Data Structures, Implementation of Data Structures.  STACKS: Introduction, Definition, Representation of a Stack using Arrays, Operations of Stacks, Application of queues.  UNIT – II  Queues: Introduction, Definition, Representation of Queues using Arrays, Various Queue Structures – Circular, Deque, Priority, Application – Round Robin Algorithm.  UNIT – III  Linked Lists: Definitions, Singly Linked List – representation and operations, Circular Linked List and double linked list, Operations on circular and double linked list.  UNIT – IV |

| Course<br>Content                       | UNIT – V  GRAPHS: Introduction, Graph Terminologies, Representation of Graphs, Operations – Linked List Representation, Illustration of Warshal, Dijikstra, Kruskal's Algorithms.  UNIT – VI  SORTING: Basic Terminologies, Sorting Techniques – Bubble sort, Insertion sort, Simple Merge Sort.  SEARCHING: Basic Terminologies, Searching Techniques – Linear Search with array, Binary Search, Non – linear Search Techniques - Binary Search Tree Searching. |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Text Books<br>and<br>Reference<br>Books | <ul> <li>TEXT BOOK: <ol> <li>D. Samanta, "Classic Data Structures", Prentice Hall of India, 2<sup>nd</sup> Edition 2009.</li> </ol> </li> <li>REFERENCE BOOKS: <ol> <li>S. Lipschutz, "Data Structures using C", Tata McGraw Hill, Special Indian Edition 2012.</li> </ol> </li> </ul>                                                                                                                                                                           |
| E-Resources                             | <ol> <li>https://nptel.ac.in/courses</li> <li>https://freevideolectures.com/university/iitm</li> </ol>                                                                                                                                                                                                                                                                                                                                                           |

## 19SH12P3- ENGINEERING CHEMISTRY LABORATORY

(Common to EEE, ECE, CSE & IT)

| Course Category: | Basic science                        | Credits:                                                           | 1.5             |
|------------------|--------------------------------------|--------------------------------------------------------------------|-----------------|
| Course Type:     | Practical                            | Lecture-Tutorial-Practical:                                        | 0-0-3           |
| Prerequisite:    | Fundamental concepts of<br>Chemistry | Sessional Evaluation:<br>External Exam Evaluation:<br>Total Marks: | 40<br>60<br>100 |

|                      | Stude                                                                                                                                                                                | nts undergoing this course are expected to understand:                    |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|
| Course<br>Objectives | The main objective is to provide students to learn about experimental techniques in chemistry with knowledge in theoretical aspects so that they can excel in that particular field. |                                                                           |  |
| Course               | Upon                                                                                                                                                                                 | successful completion of the course, the students will be able to:        |  |
| Outcomes             | CO1                                                                                                                                                                                  | Determine the cell constant and conductance of solutions                  |  |
|                      | CO2                                                                                                                                                                                  | Prepare advanced polymer materials                                        |  |
|                      | Minin                                                                                                                                                                                | num of 8 experiments to be completed out of the following:                |  |
|                      |                                                                                                                                                                                      | <u>LIST OF EXPERIMENTS</u>                                                |  |
|                      | 1.                                                                                                                                                                                   | Determination of total hardness of water by EDTA method                   |  |
|                      | 2. Determination of total alkalinity of water                                                                                                                                        |                                                                           |  |
|                      | 3. Estimation of chlorides using potassium chromate indicator                                                                                                                        |                                                                           |  |
| Course               | 4. Determination of cell constant and conductance of solutions                                                                                                                       |                                                                           |  |
| Content              | 5. Conductometric titration of strong acid Vs strong base                                                                                                                            |                                                                           |  |
|                      | 6. Conductometric titration of weak acid Vs strong base                                                                                                                              |                                                                           |  |
|                      | 7. Determination of pH of unknown solution                                                                                                                                           |                                                                           |  |
|                      | 8. Potentiometry - determination of redox potentials and emfs                                                                                                                        |                                                                           |  |
|                      | 9. Determination of Strength of an acid in Pb-Acid battery                                                                                                                           |                                                                           |  |
|                      | 10. Preparation of a polymer                                                                                                                                                         |                                                                           |  |
|                      |                                                                                                                                                                                      | . Determination of viscosity of oils with Redwood viscometer              |  |
|                      | 12                                                                                                                                                                                   | 2. Adsorption of acetic acid by charcoal                                  |  |
|                      | TEXT                                                                                                                                                                                 | T BOOKS:                                                                  |  |
| Text Books           |                                                                                                                                                                                      | 1. Mendham J et al, Vogel's text books of quantitative chemical analysis, |  |
| and                  | 5Ed., Pearson publications, 2012.                                                                                                                                                    |                                                                           |  |
| Reference<br>Books   | 2. KN Jayaveera, Subba reddy & Chandra sekhar, Chemistry lab manual,                                                                                                                 |                                                                           |  |
|                      | 1Ed., SM Enterprises, Hyderabad, 2014                                                                                                                                                |                                                                           |  |
|                      |                                                                                                                                                                                      | 3. Chatwal & Anand, Instrumental methods of chemical analysis, 2 Ed.,     |  |
|                      |                                                                                                                                                                                      | Himalaya publications, 2006.                                              |  |

## 19CS12P2 - DATA STRUCTURES LABORATORY

(Common to ECE & EEE)

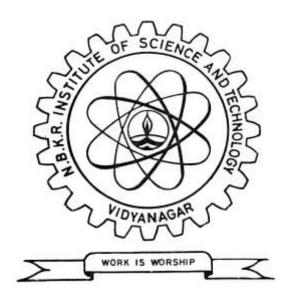
| Course Category: | Program Core                                            | Credits:                                                       | 1.5             |
|------------------|---------------------------------------------------------|----------------------------------------------------------------|-----------------|
| Course Type:     | Practical                                               | Lecture – Tutorial – Practical:                                | 0-0-3           |
| Prerequisite:    | Basic programming knowledge and C language fundamentals | Sessional Evaluation:<br>Univ.Exam Evaluation:<br>Total Marks: | 40<br>60<br>100 |

|                                         | Students undergoing this course are expected to understand:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course<br>Objectives                    | 1. To learn the various data structures and their implementation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Course                                  | Upon successful completion of the course, the students will be able to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Outcomes                                | CO1 Acquire knowledge on types of data structures and the operations that could be performed on them.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Course<br>Content                       | <ol> <li>Write a C program to implement Stack operations using arrays.</li> <li>Write a C program to implement Queue operations using arrays.</li> <li>Write a C program to implement various operations on a Singly Linked list.</li> <li>Write a C program to implement the creation of following:         <ul> <li>a. Doubly Linked list</li> <li>b. Circular Linked list</li> </ul> </li> <li>Write a C program for         <ul> <li>a. Bubble Sort.</li> <li>b. Insertion Sort</li> </ul> </li> <li>Write a C program for         <ul> <li>a. Linear Search</li> <li>b. Binary Search</li> </ul> </li> </ol> |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Text Books<br>and<br>Reference<br>Books | <ol> <li>D. Samanta, "Classic Data Structures", Prentice Hall of India, 2<sup>nd</sup> Edition 2009.</li> <li>S. Lipschutz, "Data Structures using C", Tata McGraw Hill, Special Indian Edition 2012.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                  |
| E-Resources                             | <ol> <li>https://nptel.ac.in/courses</li> <li>https://freevideolectures.com/university/iitm</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

## 19ME12P1-COMPUTER AIDED ENGINEERING DRAWING LABORATORY

(Common to EEE, ECE, CSE and IT)

| Course Category: | Engineering Science      | Credits:                    | 3         |
|------------------|--------------------------|-----------------------------|-----------|
| Course Type:     | Practical                | Lecture-Tutorial- Practice: | 0 - 0 - 6 |
|                  | Geometrical Construction | Sessional Evaluation:       | 40        |
| Prerequisite:    |                          | External Evaluation:        | 60        |
| _                |                          | Total Marks:                | 100       |


|                      | Students undergoing this course are expected to understand                                                                                                                                                                                                                                                                                                                                                        |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Course<br>Objectives | To enable the students with various concepts like dimensioning, construction of conic sections, polygons, cycloids and involutes.  To impart and inculcate proper understanding of AutoCAD fundamentals.  To apply the knowledge of AutoCAD for the projections of points, lines and solids.  To know about sections and developments of solids.  To improve the visualization skills with isometric projections. |  |
|                      | Upon successful completion of the course, the students will be able to:  Understand the conventions and methods of engineering drawings                                                                                                                                                                                                                                                                           |  |
| Course<br>Outcomes   | CO1 Onderstand the conventions and methods of engineering drawings  CO2 Sketch the solutions to the problems on projection of points, lines, planes and solids                                                                                                                                                                                                                                                    |  |
|                      | CO3 Demonstrate orthographic and Isometric principles                                                                                                                                                                                                                                                                                                                                                             |  |
|                      | CO4 Understand and apply the knowledge of engineering drawing in modern CAD tools.                                                                                                                                                                                                                                                                                                                                |  |
| Course<br>Content    | CO4 Understand and apply the knowledge of engineering drawing in modern CAD                                                                                                                                                                                                                                                                                                                                       |  |

| Course<br>Content                       | Projections of Planes: Plane (triangle, square, rectangle, pentagon, hexagon and circular) inclined to both the principal planes.  PROJECTIONS OF SOLIDS:  Projections of Solids: Solids such as Prisms, Pyramids, Cylinders and Cones inclined to both the principal plane.  SECTIONS OF SOLIDS.  Sections of Solids: Solids such as Prisms, Pyramids, Cylinders and Cones resting on their bases on HP.  DEVELOPMENT OF SURFACES.  Development of Surfaces: Lateral surfaces of solids such as Prisms, Pyramids, Cylinders and Cones (cut by a plane inclined to HP).  ISOMETRIC VIEWS AND PROJECTIONS:  Isometric views of planes and solids.  Isometric scale, Isometric Projections of simple objects.  ORTHOGRAPHIC PROJECTIONS:  Conversion of Pictorial views into Orthographic Views. |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Text Books<br>and<br>Reference<br>Books | <ol> <li>Engineering Drawing, N.D. Bhat / Charotar Publishing House,. Gujarat, 53<sup>rd</sup> edition, 2014.</li> <li>AutoCAD 2013 For Engineers and Designers, Sham Tickoo, Dream tech Press, 2013</li> <li>REFERENCE BOOKS:</li> <li>Engineering Drawing And Graphics + Autocad, Venugopal K, New Age International Pvt. Ltd.New Delhi, 2007.</li> <li>Engineering Graphics with Auto CAD, D.M. Kulkarni, A.P. Rastogi and A.K. Sarkar, PHI Learning Private Limited, Revised Edition, August 2010.</li> <li>Engineering Drawing and Graphics Using Autocad, T Jeyapoovan, Vikas Publishing House, 3<sup>rd</sup> Edition, 2010.</li> <li>A Textbook on Engineering Drawing, P. Kannaiah, K. L. Narayana, K. Venkata Reddy, Radiant Publishing House, 2012.</li> </ol>                      |

## **N.B.K.R. INSTITUTE OF SCIENCE & TECHNOLOGY**

(AUTONOMOUS)

COLLEGE WITH POTENTIAL FOR EXCELLENCE (CPE)
Affiliated to JNTUA, Anantapuramu
Re-Accredited by NAAC with 'A' Grade
B.Tech. Courses Accredited by NBA under TIER-I



# **SYLLABUS**B.TECH. DEGREE COURSE

# II B.TECH I & II Semesters

## **ELECTRONICS AND COMMUNICATION ENGINEERING**

(With effect from the batch admitted in the academic year 2019-2020)

VIDYANAGAR - 524413 SPSR Nellore-Dist. Andhra Pradesh www.nbkrist.org

## **INSTITUTE:**

#### Vision:

To emerge as a comprehensive Institute that provides quality technical education and research thereby building up a precious human resource for the industry and society.

#### Mission:

- 1. To provide a learner-centered environment that challenges individuals to actively participate in the education process.
- 2. To empower the faculty to excel in teaching while engaging in research, creativity and public service.
- 3. To develop effective learning skills enabling students pick up critical thinking thus crafting them professionally fit and ethically strong.
- 4. To reach out industries, schools and public agencies to partner and share human and academic resources.

## VISION AND MISSION OF THE DEPARTMENT

### Vision:

To develop high quality engineers with sound technical knowledge, skills, ethics and morals in order to meet the global technological and industrial requirements in the area of Electronics and Communication Engineering.

### **Mission:**

- 1. To produce high quality graduates and post-graduates of Electronics and Communication Engineering with modern technical knowledge, professional skills and good attitudes in order to meet industry and society demands.
- 2. To develop graduates with an ability to work productively in a team with professional ethics and social responsibility.
- 3. To develop highly employable graduates and post graduates who can meet industrial requirements and bring innovations.
- 4. Moulding the students with foundation knowledge and skills to enable them to take up postgraduate programmes and research programmes at the premier institutes.

## **Programme Educational Objectives (PEOs):**

- 1. To provide the students with strong fundamental and advanced knowledge in mathematics, Science and Engineering with respect to Electronics and Communication Engineering discipline with an emphasis to solve Engineering problems.
- 2. To prepare the students through well designed curriculum to excel in bachelor degree programme in Electronics and Communication Engineering in order to engage in teaching or industrial or any technical profession and to pursue higher studies.

- 3. To train students with intensive and extensive engineering knowledge and skill so as to understand, analyze, design and create novel products and solutions in the field of Electronics and Communication Engineering.
- 4. To inculcate in students the professional and ethical attitude, effective communication skills, team spirit, multidisciplinary approach and ability to relate engineering issues to broader social context.
- 5. To provide students with an excellent academic environment to promote leadership qualities, character molding and lifelong learning as required for a successful professional career.

#### **Program Outcomes (POs):**

**PO1:** Ability to acquire and apply knowledge of science and engineering fundamentals in problem solving.

**PO2:** Acquire in-depth technical competence in a specific information technology discipline.

**PO3:** Ability to undertake problem identification, formulation and providing optimum solution.

**PO4:** Ability to utilize systems approach to design and evaluate operational performance.

**PO5:** Understanding of the principles of inter-disciplinary domains for sustainable development.

**PO6:** Understanding of professional & ethical responsibilities and commitment to them.

**PO7:** Ability to communicate effectively, not only with engineers but also with the community at large.

**PO8**: Ability to Communicate effectively on complex engineering activities with the engineering community and with society at large.

**PO9**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

**PO10**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

**PO11**: Understanding of the social, cultural, global and environmental responsibilities as a professional engineer.

**PO12**: Recognizing the need to undertake life-long learning, and possess/acquire the capacity to do so.

#### NBKR INSTITUTE OF SCIENCE & TECHNOLOGY: VIDYANAGAR

(AUTONOMOUS)

#### (AFFILIATED TO JNTU ANANTAPUR: ANANTHAPURAMU)

#### **SPSR NELLORE DIST**

#### II YEAR OF FOUR YEAR B.TECH DEGREE COURSE – I SEMESTER

#### **ELECTRONICS AND COMMUNICATION ENGINEERING**

SCHEME OF INSTRUCTION AND EVALUATION

(With effect from the academic year 2019-2020)

(For the batch admitted in the academic year 2019-2020)

|      |                |                                               |    |                           |     | Evaluation                   |                       |      |                       | 1                      |                                          |               |                              |                           |               |     |
|------|----------------|-----------------------------------------------|----|---------------------------|-----|------------------------------|-----------------------|------|-----------------------|------------------------|------------------------------------------|---------------|------------------------------|---------------------------|---------------|-----|
|      | Course<br>Code | Course Title                                  |    | Instruction<br>Hours/Week |     | Credits Sessional-I<br>Marks |                       |      | Sessional-II<br>Marks |                        | Total Sessional End Semester Examination |               |                              | Maximum<br>Total<br>Marks |               |     |
| S.No |                | THEORY                                        | L  | Т                         | D/P |                              | Test <sup>\$</sup> -I | A#-I | Max.<br>Marks         | Test <sup>\$</sup> -II | A#-II                                    | Max.<br>Marks |                              | Duration<br>In Hours      | Max.<br>Marks | 100 |
| 1    | 19SH2101       | Engineering Mathematics-III**                 | 2  | 1                         | 1   | 3                            | 34                    | 6    | 40                    | 34                     | 6                                        | 40            |                              | 3                         | 60            | 100 |
| 2    | 19EC2101       | Electronic Circuits                           | 3  | 0                         | -   | 3                            | 34                    | 6    | 40                    | 34                     | 6                                        | 40            | 0.8*Best of<br>two+0.2*      | 3                         | 60            | 100 |
| 3    | 19EC2102       | Fundamentals of Digital<br>Circuits           | 3  | 0                         | 1   | 3                            | 34                    | 6    | 40                    | 34                     | 6                                        | 40            | least of two                 | 3                         | 60            | 100 |
| 4    | 19EC2103       | Signals and Systems*                          | 3  | 0                         | -   | 3                            | 34                    | 6    | 40                    | 34                     | 6                                        | 40            |                              | 3                         | 60            | 100 |
| 5    | 19EC2104       | Pulse and Analog Circuits                     | 3  | 0                         | 1   | 3                            | 34                    | 6    | 40                    | 34                     | 6                                        | 40            |                              | 3                         | 60            | 100 |
|      |                | PRACTICALS                                    |    |                           |     |                              |                       |      |                       |                        |                                          |               |                              |                           |               |     |
| 6    | 19EC21P1       | Electronic Devices Lab                        | -  | -                         | 3   | 1.5                          | -                     | -    | -                     | -                      | -                                        | 40            | Day to Day<br>Evaluation and | 3                         | 60            | 100 |
| 7    | 19EC21P2       | Analog Circuits Lab                           | -  | -                         | 3   | 1.5                          | -                     | -    | -                     | -                      | -                                        | 40            | a test (40 Marks)            | 3                         | 60            | 100 |
| 8    | 19EC21P3       | Electronic Circuit Design &<br>Simulation Lab | -  | -                         | 2   | 1                            | -                     | -    | -                     |                        | -                                        | 40            | (40 Marks)                   | 3                         | 60            | 100 |
|      |                | MANDATORY                                     |    |                           |     |                              |                       |      |                       |                        |                                          |               | 0.8*Best of                  |                           |               |     |
| 9    | 19MC2101       | Environmental Studies*#                       | 2  | -                         | -   | -                            | 34                    | 6    | 40                    | 34                     | 6                                        | 40            | two+0.2*<br>least of two     | 3                         | 60            | 100 |
|      |                | TOTAL                                         | 16 | 1                         | 8   | 19                           | -                     | -    | -                     | -                      | -                                        | 360           | -                            | -                         | 540           | 900 |

<sup>\*</sup> Common to ECE & EEE.

<sup>\*\*</sup>Common to ECE, CE, EEE & ME.

<sup>\*#</sup> Common to ECE, CE, EEE, CSE & IT.

<sup>#</sup> A for Assignment (continuous evaluation),

<sup>\$</sup> Test (Descriptive & Objective) duration = 2 Hours

## 19SH2101 – ENGINEERING MATHEMATICS-III

(Common to ECE, MECH, EEE & CE)

| Course category: | Basic Sciences           | Credits:                        | 3         |
|------------------|--------------------------|---------------------------------|-----------|
| Course Type:     | Theory                   | Lecture - Tutorial - Practical: | 2 - 1 - 0 |
| Prerequisite:    | Intermediate Mathematics | <b>Sessional Evaluation:</b>    | 40        |
| _                |                          | <b>External Evaluation:</b>     | 60        |
|                  |                          | Total Marks:                    | 100       |

|                      | Stude                | nts undergoing this course are expected to understand:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course<br>Objectives | 2.<br>3.<br>4.<br>5. | The basic concepts of numerical solutions of simultaneous linear and non-linear algebraic equations.  The numerical methods to solve Ordinary Differential Equations by using Taylor's series method, Picard's method, Euler's and Modified Euler's Methods and Runge-Kutta methods of 2 <sup>nd</sup> and 4 <sup>th</sup> order.  The concepts of Cauchy - Riemann equations, Construction of Analytic function, Line integral, Cauchy's theorem and Cauchy's integral formula.  The concepts of Residues.  The Properties of Z- Transforms, shifting properties, initial value and final value theorems and the applications of difference equations.  Foundation of the probability and statistical methods. |
|                      | Upon<br>CO1          | successful completion of the course, the students will be able to:  Have a sound knowledge in analyzing the simultaneous linear and non-linear algebraic equations by various numerical methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Course               | CO2                  | Understand effectively the significance numerical methods to solve Ordinary Differential Equations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Course<br>Outcomes   | CO3                  | Understand effectively the significance of differentiability for complex functions and be familiar with the Cauchy-Riemann equations and also Cauchy's integral formula.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                      | CO4                  | Compute the Taylor and Laurent expansions of simple functions, determining the nature of the singularities and calculating residues.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                      | CO5                  | Attains skills in analyzing the Z-Transforms and their applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                      | CO6                  | Have a well-founded knowledge of standard distributions (Binomial, Poisson and Normal distributions) which can describe real life phenomena.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      |                      | UNIT - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                      | <b>EQU</b> conde     | UTION OF SIMULTANEOUS LINEAR AND NON-LINEAR ALGEBRAIC ATIONS: Iteration method, Gauss Jordon method, Gauss Elimination with Pivotal ensation method, Triangular Factorization method, Gauss-Seidal method and on-Raphson method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

|                    | UNIT - II                                                                                                                                                                                                                                                                       |  |  |  |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                    | NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS: Solution by Taylor's Series, Picard's Method of Successive Approximations, Euler's Methods and Runge-Kutta Method of 2 <sup>nd</sup> order and 4 <sup>th</sup> order.                                                    |  |  |  |  |
|                    | UNIT-III                                                                                                                                                                                                                                                                        |  |  |  |  |
| Course<br>Content  | <b>COMPLEX ANALYSIS:</b> Analytical functions, Cauchy - Riemann equations, Construction of Analytic function, Complex integration - Line integral, Cauchy's theorem, Cauchy's integral formula and Generalized Cauchy's integral formula.                                       |  |  |  |  |
| Content            | UNIT-IV                                                                                                                                                                                                                                                                         |  |  |  |  |
|                    | <b>RESIDUES</b> : Taylor's theorem and Laurent's theorem (without proof), Singularities, Poles, Residues, Residue theorem and Evaluation of real definite integrals.                                                                                                            |  |  |  |  |
|                    | UNIT-V                                                                                                                                                                                                                                                                          |  |  |  |  |
|                    | <b>Z-Transforms:</b> Z-Transform of some standard functions, Properties of Z-Transforms, Shifting Properties, Initial value theorem and final value theorem, Inverse Z-Transform, Convolution theorem, Inversion by partial fractions and Applications to difference equations. |  |  |  |  |
|                    | UNIT-VI                                                                                                                                                                                                                                                                         |  |  |  |  |
|                    | <b>PROBABILITY AND STATISTICS</b> : Introduction, Random variables, Discrete and Continuous distributions, Binomial distribution, Poisson distribution and Normal distribution.                                                                                                 |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                    | TEXT BOOKS:                                                                                                                                                                                                                                                                     |  |  |  |  |
|                    | <ol> <li>Higher Engineering Mathematics - B.S. Grewal, Khanna Publishers, New Delhi.</li> <li>Engineering Mathematics - B.V. Ramana, Tata McGraw-Hill Education Pvt.<br/>Ltd, New Delhi</li> </ol>                                                                              |  |  |  |  |
|                    | 3. Advanced Engineering Mathematics - Erwin Kreyszig, Wiley, India                                                                                                                                                                                                              |  |  |  |  |
| Text Books<br>and  | REFERENCES:                                                                                                                                                                                                                                                                     |  |  |  |  |
| Reference<br>Books | 1. Higher Engineering Mathematics - H.K. Dass, Er. Rajnish Verma, S. Chand Publication, New Delhi.                                                                                                                                                                              |  |  |  |  |
|                    | 2. Engineering Mathematics -III - Dr.T.K.V. Iyengar, Dr.B. Krishna Gandhi, S.                                                                                                                                                                                                   |  |  |  |  |
|                    | Ranganatham, Dr.M.V.S.S.N. Prasad, S. Chand Publication, New Delhi  3. Special functions and complex variables (Engineering Mathematics-III) –                                                                                                                                  |  |  |  |  |
|                    | Shahnaz Bathul, PHI, New Delhi.                                                                                                                                                                                                                                                 |  |  |  |  |
|                    | 1. https://nptel.ac.in/courses                                                                                                                                                                                                                                                  |  |  |  |  |
| E-Resources        | 2. https://iete-elan.ac.in                                                                                                                                                                                                                                                      |  |  |  |  |

# 19EC2101 – ELECTRONIC CIRCUITS

| Course Category: | Program core                    | Credits:                        | 3         |
|------------------|---------------------------------|---------------------------------|-----------|
| Course Type:     | Theory                          | Lecture - Tutorial - Practical: | 3 - 0 - 0 |
| Prerequisite:    | Knowledge in electronic devices | <b>Sessional Evaluation:</b>    | 40        |
|                  | and its operations with various | <b>External Evaluation:</b>     | 60        |
|                  | applications.                   | Total Marks:                    | 100       |

|                   | Ct. 1t 1                                                                                                                                                                                                          |  |  |  |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                   | Students undergoing this course are expected to understand:                                                                                                                                                       |  |  |  |  |  |
|                   | 1. The concept of rectifiers and other Diode applications                                                                                                                                                         |  |  |  |  |  |
| Course            | 2. The Hybrid model, Small signal analysis of single stage BJT amplifiers                                                                                                                                         |  |  |  |  |  |
| Objectives        | 3. The FET biasing schemes, high frequency response.                                                                                                                                                              |  |  |  |  |  |
| Objectives        | 4. The types of coupling, Darlington and Bootstrap circuits.                                                                                                                                                      |  |  |  |  |  |
|                   | 5. The hybrid $\pi$ model at high frequency.                                                                                                                                                                      |  |  |  |  |  |
|                   | 6. Different types of feedback circuits as well as Sinusoidal oscillators                                                                                                                                         |  |  |  |  |  |
|                   | Upon successful completion of the course, the students will be able to:                                                                                                                                           |  |  |  |  |  |
|                   | CO1 Understand the concept of rectifiers and other applications of diodes.                                                                                                                                        |  |  |  |  |  |
| Course            | CO2 Analyze the stability and biasing concepts of BJT and to design Single Stage amplifiers.                                                                                                                      |  |  |  |  |  |
| Outcomes          | CO3 Design a FET amplifier and compare with BJT                                                                                                                                                                   |  |  |  |  |  |
|                   | CO4 Know different methods of coupling and able to design multistage amplifiers                                                                                                                                   |  |  |  |  |  |
|                   | CO5 Represent the Hybrid $\pi$ model at high frequency.                                                                                                                                                           |  |  |  |  |  |
|                   | CO6 Design feedback amplifiers and able to understand oscillators.                                                                                                                                                |  |  |  |  |  |
|                   |                                                                                                                                                                                                                   |  |  |  |  |  |
|                   | UNIT I                                                                                                                                                                                                            |  |  |  |  |  |
|                   | <b>RECTIFIERS:</b> Half Wave, Full Wave & Bridge Rectifiers, Analysis of FWR with filters (L, C, LC) & regulation.                                                                                                |  |  |  |  |  |
|                   | UNIT II                                                                                                                                                                                                           |  |  |  |  |  |
| Course<br>Content | <b>TRANSISTOR BIASING AND STABILITY:</b> Operating Point, Bias Stability against variation in $I_{CO}$ , $V_{BE}$ & $\beta$ , fixed bias, Collector to Base Bias, Self-Bias, Thermarunaway, Compensation Methods. |  |  |  |  |  |
| Content           | UNIT III                                                                                                                                                                                                          |  |  |  |  |  |
|                   | <b>SINGLE STAGE AMPLIFIERS:</b> BJT Amplifier, h-parameter model, analysis of common emitter, common collector and common base amplifier using exact model & Approximate model, Millers Theorem and its Dual.     |  |  |  |  |  |
|                   | <b>FET AMPLIFIERS:</b> FET Equivalent model, Analysis of Common Source, Common Drain Amplifiers.                                                                                                                  |  |  |  |  |  |
|                   |                                                                                                                                                                                                                   |  |  |  |  |  |

|                    | UNIT IV                                                                                                                                                                                                                                                                                                                    |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | MULTISTAGE AMPLIFIERS: Methods of Coupling, Analysis of Two Stage RC Coupled Amplifier, High Input Impedance Circuits: Boot strap & Darlington amplifier.                                                                                                                                                                  |
|                    | UNIT V                                                                                                                                                                                                                                                                                                                     |
| Course<br>Content  | <b>HIGH FREQUENCY ANALYSIS:</b> Transistor at High Frequency, Hybrid $\pi$ CE Model, Determination of High Frequency Parameters, CE Short circuit Current Gain, Current Gain with Resistive Loads, Cut-off Frequencies, Frequency Response, parameters $f_T$ and $f_{\beta}$ . Analysis of CS amplifier at High Frequency. |
|                    | UNIT VI                                                                                                                                                                                                                                                                                                                    |
|                    | <b>FEEDBACK AMPLIFIER:</b> Feedback Concept, Types of Feedback, Feedback Topology, Characteristics, Analysis of Feedback Amplifiers.                                                                                                                                                                                       |
|                    | TEXT BOOKS:                                                                                                                                                                                                                                                                                                                |
| Text Books<br>and  | 1. Allen Mottershead, "Electronic Devices and Circuits-An Introduction", PHI, 18 <sup>th</sup> Reprint, 2006.                                                                                                                                                                                                              |
| Reference<br>Books | 2. Millman and Halkias, "Integrated Electronics", McGraw- Hill Co 2 <sup>nd</sup> Ed, 2017.                                                                                                                                                                                                                                |
|                    | REFERENCES:                                                                                                                                                                                                                                                                                                                |
|                    | <ol> <li>Boylestad, Louis Nashelsky "Electronic devices and circuits" 11<sup>th</sup> ed., 2012 PH.</li> <li>David. A. Bell. "Electronic Devices and circuits", Oxford, 5<sup>th</sup> Ed., 2008.</li> </ol>                                                                                                               |
|                    | 1. https://nptel.ac.in/courses                                                                                                                                                                                                                                                                                             |
| E-Resources        | 2. https://iete-elan.ac.in                                                                                                                                                                                                                                                                                                 |
|                    | 3. https://freevideolectures.com/university/iit                                                                                                                                                                                                                                                                            |
|                    |                                                                                                                                                                                                                                                                                                                            |

# 19EC2102 – FUNDAMENTALS OF DIGITAL CIRCUITS

| Course category: | Program core                        | Credits:                               | 3       |
|------------------|-------------------------------------|----------------------------------------|---------|
| Course Type:     | Theory                              | <b>Lecture - Tutorial - Practical:</b> | 3 - 0-0 |
| Prerequisite:    | Number systems ,Semiconductor       | <b>Sessional Evaluation:</b>           | 40      |
|                  | device operations, basic Arithmetic | <b>External Evaluation:</b>            | 60      |
|                  | operations                          | Total Marks:                           | 100     |

|                      | Students undergoing this course are expected to understand:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Course<br>Objectives | <ol> <li>Introduce basic postulates of Boolean algebra and shows the correlation between Boolean expressions.</li> <li>Introduce the methods for simplifying Boolean expressions.</li> <li>Outline the formal procedures for the analysis and design of combinational circuits</li> <li>Illustrate the concept of synchronous and asynchronous sequential circuits</li> <li>Introduce the concept of various counters and Registers</li> <li>Introduce the concept of memories and Memory expansion</li> </ol>                                                                                                                                                                                                        |  |
|                      | Upon successful completion of the course, the students will be able to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                      | CO1 Understand the fundamental concepts and techniques used in digital electronics and examine the structure of various number systems and its application in digital design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Course<br>Outcomes   | CO2 Identify basic requirements for a design application and propose a cost effective solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Outcomes             | CO3 Understand, analyze and design various combinational circuits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                      | CO4 Understand, analyze and design various sequential circuits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                      | CO5 Identify and prevent various hazards and timing problems in a digital design.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                      | CO6 Understand the memories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Course<br>Content    | UNIT – I  NUMBER SYSTEMS AND CODES: Number systems, Signed binary numbers, Ba conversions, Binary arithmetic, Complements, Binary codes—(BCD, Excess-3, Gre ASCII).  BOOLEAN ALGEBRA AND LOGIC GATES: Theorems of Boolean algebra, D Morgan's theorem, Realization of logic gates using Universal gates.  UNIT – II  MINIMIZATION OF DIGITAL CIRCUITS: Standard forms of logical function Min-term and max-term specifications, Simplification by K-maps, incomplete specified functions, Realization of logic functions using gates.  UNIT -III  COMBINATIONAL LOGIC CIRCUITS: Design procedure, Binary adder, Su tractor, Decimal adder, Magnitude comparator, Decoders, Encoders, Multiplexers as De-multiplexers. |  |

|                   | <b>UNIT – IV SEQUENTIAL CIRCUITS:</b> Sequential circuits, Storage Elements: (Latches & Flipflops), Master-Slave Flip-flop, Race around condition, Flip-flop conversions, Timing and triggering considerations, State diagrams, state tables, reduction of state tables and state assignment, design procedures. |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course<br>Content | UNIT – V REGISTERS AND COUNTERS: Registers, Shift registers, Ripple counters, Synchronous counters, Ring and Johnson counters.                                                                                                                                                                                   |
|                   | UNIT-VI MEMORY AND PROGRAMMABLE DEVICES: Random-Access Memory, Memory Decoding, Read-only Memory, Programmable Logic Array, Programmable Array Logic, Sequential programmable devices.                                                                                                                           |
|                   | TEXT BOOKS:                                                                                                                                                                                                                                                                                                      |
| Text Books        | <ol> <li>Digital design by Morris Mano, Pearson Education Asia, 5<sup>th</sup> Ed., 2012</li> <li>Fundamentals of logic design by Roth &amp; Charles, 6<sup>th</sup> Edition, West Publishing Company, 2009.</li> </ol>                                                                                          |
| Reference         | REFERENCES:                                                                                                                                                                                                                                                                                                      |
| Books             | <ol> <li>Fundamentals of logic circuits by A. Anand Kumar, PHI Learing, 2016</li> <li>Jon M, Yarbrough, "Digital logic — applications and design", Thomson-Brooks India edition</li> <li>Fundamental of Digital Design By M. Senthil Sivakumar, S.Chand publications,</li> </ol>                                 |
|                   | 2014.  1. http://nptel.ac.in/cources                                                                                                                                                                                                                                                                             |
| E-Resources       | <ol> <li>https://iete-elan.ac.in</li> <li>https://freevideolectures.com/university/iitm</li> </ol>                                                                                                                                                                                                               |

## 19EC2103 – SIGNALS AND SYSTEMS

(Common to ECE and EEE)

| Course category:     | Program core                       | Credits:                               | 3     |
|----------------------|------------------------------------|----------------------------------------|-------|
| <b>Course Type:</b>  | Theory                             | <b>Lecture - Tutorial - Practical:</b> | 3-0-0 |
| <b>Prerequisite:</b> | Knowledge of vectors Trigonometry, | <b>Sessional Evaluation:</b>           | 40    |
| _                    | Differentiation & Integration      | <b>External Evaluation:</b>            | 60    |
|                      | _                                  | Total Marks:                           | 100   |

|                      | Students undergoing this course are expected to understand:                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Course<br>Objectives | <ol> <li>Various analysis and operations on signals.</li> <li>The Fourier series for periodic signals.</li> <li>The Fourier Transform of various signals.</li> <li>The different type of sampling technique.</li> <li>The response of systems.</li> </ol>                                                                                                                                                                                                    |  |  |  |
|                      | 6. The discrete time signals and systems.                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Course<br>Outcomes   | Upon successful completion of the course, the students will be able to:  CO1 Define a signal and perform various operation on signals.  CO2 Find the Fourier series of various Periodic signals.  CO3 Analyse a signal in frequency domain by applying FT and its properties  CO4 Establish the need for sampling and gaining various sampling technique.  CO5 Perform distortion less transmission through a system.  CO6 Apply signal analysis using DTFT. |  |  |  |
|                      | SIGNAL ANALYSIS: Analogy between Vectors and Signals, Orthogonal Signal Space, Signal approximation using Orthogonal functions, Mean Square Error, Closed or complete set of Orthogonal functions, Orthogonality in Complex functions, Classification of Signals, Concepts of Impulse function, Unit Step function, Signum function. Operations on signals.                                                                                                  |  |  |  |
| Course               | UNIT-II                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| Content              | FOURIER SERIES: Representation of Fourier series, Properties of Fourier Series, Dirichlet's conditions, Trigonometric Fourier Series and Exponential Fourier Series, Complex Fourier spectrum.  UNIT III                                                                                                                                                                                                                                                     |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                      | <b>FOURIER TRANSFORMS</b> : Deriving Fourier Transform from Fourier Series, Fourier Transform of arbitrary signal, Fourier Transform of standard signals, Fourier Transform of Periodic Signals, Properties of Fourier Transform, Fourier Transforms involvin Impulse function and Signum function, Introduction to Hilbert Transform.                                                                                                                       |  |  |  |

|                                         | UNIT-IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | <b>SAMPLING</b> : Sampling theorem – Graphical and analytical proof for Band Limited Signals, Types of Sampling – Impulse Sampling, Natural and Flat top Sampling, Reconstruction of signal from its samples, Effect of under sampling – Aliasing, Introduction to Band Pass sampling.                                                                                                                                                                                                                            |
|                                         | UNIT-V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Course<br>Content                       | SIGNAL TRANSMISSION THROUGH LINEAR SYSTEMS: Linear System, Convolution, Impulse response, Response of a Linear System, Linear Time Invariant (LTI) System, Linear Time Variant (LTV) System, Transfer function of a LTI system, Filter characteristics of Linear Systems, Distortion less transmission through a system, Signal bandwidth, System bandwidth, Ideal LPF, HPF and BPF characteristics, Causality and Paley-Wiener criterion for physical realization, Relationship between Bandwidth and Rise time. |
|                                         | UNIT-VI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                         | <b>DISCRETE TIME SIGNALS AND SYSTEMS</b> : Linear Shift Invariant(LSI) system – Stability – Causality – Convolution and Correlation –Linear constant coefficient difference equation – Impulse response -Definition of Discrete Time Fourier Transform – Properties – Transfer function – System analysis using DTFT.                                                                                                                                                                                             |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                         | TEXT BOOKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Text Books<br>and<br>Reference<br>Books | <ol> <li>Signals and Systems – A.V. Oppenheim, A.S. Willsky and S.H. Nawab, 2<sup>nd</sup> Ed., Pearson New international Edition-2014</li> <li>Principles of Linear Systems and Signals, 2nd Ed, B. P. Lathi, 2009, Oxford.</li> <li>Signals and Systems, 4<sup>th</sup> Edition, Ramesh Babu, Scitech Publications (India), 2010</li> </ol>                                                                                                                                                                     |
|                                         | REFERENCES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                         | <ol> <li>Signals &amp; Systems – Simon Haykin and Van Veen, Wiley, 2 Ed2018</li> <li>Signals and Systems – A.Rama Krishna Rao – 2008, TMH, 2014</li> <li>Fundamentals of Signals and Systems – Michel J. Robert, 2017, MGH International Edition.</li> </ol>                                                                                                                                                                                                                                                      |
| E-Resources                             | <ol> <li>https://nptel.ac.in/courses</li> <li>https://iete-elan.ac.in</li> <li>https://freevideolectures.com/university/iit</li> </ol>                                                                                                                                                                                                                                                                                                                                                                            |

# 19EC2104 – PULSE AND ANALOG CIRCUITS

(Common to ECE and EEE)

| Course category: | Program core                       | Credits:                        | 3         |
|------------------|------------------------------------|---------------------------------|-----------|
| Course Type:     | Theory                             | Lecture - Tutorial - Practical: | 3 - 0 - 0 |
| Prerequisite:    | Knowledge in active & passive      | <b>Sessional Evaluation:</b>    | 40        |
|                  | components and mathematical        | External Evaluation:            | 60        |
|                  | representation of different waves. | Total Marks:                    | 100       |

|                      | Students undergoing this course are expected to understand:                                                                                                                                                                                                                                                                                                        |  |  |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Course<br>Objectives | <ol> <li>Design of wave shaping circuits.</li> <li>Functioning of Switching Circuits.</li> <li>Concept of multi-vibrators.</li> <li>Principle and operation of time base generators.</li> <li>various Power Amplifiers and their operation</li> </ol>                                                                                                              |  |  |  |
|                      | 6. LC tuned amplifiers.                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Course<br>Outcomes   | Upon successful completion of the course, the students will be able to:  CO1 Design RC circuits for triggering  CO2 Understand Switching circuits (BJT Inverter, NMOS, PMOS and CMOS switching circuits)  CO3 Design a Multi-vibrator and Schmitt trigger  CO4 Analyse Voltage/ Current Sweep Circuits  CO5 Categorize Power Amplifiers and understand the essence |  |  |  |
|                      | CO6 Understand principle and operation of a Tuned amplifiers                                                                                                                                                                                                                                                                                                       |  |  |  |
| Course               | LINEAR WAVE SHAPING: Types of waveforms, RC low pass and high pass circuits, rise time, tilt.  UNIT-II  NON LINEAR WAVE SHAPING: Diode as a switch, BJT as a switch and switching times, Diode clippers and clampers.                                                                                                                                              |  |  |  |
| Content              | WIT-III  MULTIVIBRATORS: Analysis and Design of Bistable, Monostable, Astable Multivibrators and Schmitt trigger using transistors, triggering methods.                                                                                                                                                                                                            |  |  |  |
|                      | UNIT-IV                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|                      | <b>TIME BASE GENERATORS:</b> RC sweep circuits, constant current Miller and Bootstrap time base generators using BJT's and UJT relaxation oscillator.                                                                                                                                                                                                              |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |

|                   | UNIT-V                                                                                                                                                                                                                                |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | <b>TUNED AMPLIFIERS:</b> Introduction, Q-factor, small signal tuned amplifiers, effect of cascading single tuned amplifier on bandwidth and stagger-tuned amplifiers.                                                                 |
| Course<br>Content | <b>OSCILLATORS:</b> Oscillator Principles, Barkhausan Criteria, RC Phase shift and Wien Bridge Oscillator, Hartley and Colpitts Oscillators, Crystal Oscillator.                                                                      |
|                   | UNIT-VI                                                                                                                                                                                                                               |
|                   | <b>POWER AMPLIFIERS:</b> Classification of Power Amplifiers, Class-A, Transformer coupled Class-A, cross over distortion, Class-B push-pull amplifier, Distortions in amplifiers.                                                     |
|                   |                                                                                                                                                                                                                                       |
|                   | TEXT BOOKS:                                                                                                                                                                                                                           |
| Text Books        | <ol> <li>"Pulse &amp; Digital switching waveforms" by J. Milliman &amp; H. Taub Mc Graw-Hill, 2<sup>nd</sup> edition 2008.</li> <li>Millman and Halkias, "Integrated Electronics", McGraw-Hill Co 2<sup>nd</sup> Ed, 2017.</li> </ol> |
| Reference         | REFERENCE:                                                                                                                                                                                                                            |
| Books             | REFERENCE:                                                                                                                                                                                                                            |
|                   | <ol> <li>Solid State Pulse Circuits, by David A. Bell, PHI.4th edition 2008.</li> <li>Boylestad, Louis Nashelsky "Electronic devices and circuits" 11<sup>th</sup> ed., 2012 PH.</li> </ol>                                           |
|                   | 1. http://nptel.ac.in/cources                                                                                                                                                                                                         |
| E-Resources       | <ul><li>2. https:// iete-elan.ac.in</li><li>3. https://freevideolectures.com/university/iit</li></ul>                                                                                                                                 |

## 19MC2101 - ENVIRONMENTAL STUDIES

(Common to CE, EEE, ECE, CSE & IT)

| Course Category: | Mandato   | ry cours   | e         |                   | Credits:                           | 0     |
|------------------|-----------|------------|-----------|-------------------|------------------------------------|-------|
| Course Type:     | Theory    |            |           |                   | <b>Lecture-Tutorial-Practical:</b> | 2-0-0 |
| Pre-requisite:   | Basic     | idea       | on        | environment,      | Sessional Evaluation:              | 40    |
|                  | Environm  | nental pol | lution ca | uses, effects and | <b>External Evaluation:</b>        | 60    |
|                  | control m | easures.   |           |                   | Total Marks:                       | 100   |

| Course Objectives  Cobjectives  Cobjectives  Cobjectives  Cobjectives  Cobjectives  Cobjectives  Cobjectives  Components of environment.  Components of environments of biodiversity and it's conservation methods.  Components of environmental provide plans to minimize the problems.  Components of environmental acts in order to protect the environment.  Course Outcomes  Course Cour |            |                                                                                                                                                                        |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Course Objectives  Cobjectives  |            | Students undergoing this course are expected to:                                                                                                                       |  |  |  |  |
| 3. To know the value of biodiversity and it's conservation methods.   4. To describe advanced methods to solve problems related to environmental pollution.   5. To understand the social issues and provide plans to minimize the problems.   6. To articulate various environmental acts in order to protect the environment.   Upon successful completion of the course, the students will be able to:   CO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 1. To know the importance of Environmental Sciences and understand the various components of environment.                                                              |  |  |  |  |
| Objectives  4. To describe advanced methods to solve problems related to environmental pollution.  5. To understand the social issues and provide plans to minimize the problems.  6. To articulate various environmental acts in order to protect the environment.  Upon successful completion of the course, the students will be able to:  CO1 Know the importance of Environmental sciences and understand the various components of environment.  CO2 Understand the value of natural resources  CO3 Summarize the function of ecosystem, values of biodiversity and conservation.  CO4 Identify how the environment is polluted and suggest the mitigation measures.  CO5 Understand the environmental protection laws in our country and role of information technology in environment protection.  MULTIDISCIPLINARY NATURE OF ENVIRONMENTAL SCIENCES: Introduction, Definition, Scope and Importance of environmental sciences - Various components of environment – Atmosphere, lithosphere, hydrosphere and biosphere – Multidisciplinary nature of environmental sciences.  UNIT-II  NATURAL RESOURCES: UNIT-II  NATURAL RESOURCES: Use and over-exploitation-Mining and Dams-their effects on forest and tribal people.  WATER RESOURCES: Use and over-exploitation-Mining and Dams-their effects on droughts.  ENERGY RESOURCES: Renewable and non-renewable energy, need to use of alternate energy sources, Impact of energy use on environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Carrea     | 1                                                                                                                                                                      |  |  |  |  |
| To describe advanced methods to solve problems related to environmental pollution.  5. To understand the social issues and provide plans to minimize the problems.  6. To articulate various environmental acts in order to protect the environment.  Upon successful completion of the course, the students will be able to:  CO1 Know the importance of Environmental sciences and understand the various components of environment.  CO2 Understand the value of natural resources  CO3 Summarize the function of ecosystem, values of biodiversity and conservation.  CO4 Identify how the environment is polluted and suggest the mitigation measures.  CO5 Understand the environmental problems in India and way to minimize the effects.  CO6 Categorize the environmental protection laws in our country and role of information technology in environment protection.  UNIT-I  MULTIDISCIPLINARY NATURE OF ENVIRONMENTAL SCIENCES: Introduction, Definition, Scope and Importance of environmental sciences - Various components of environment – Atmosphere, lithosphere, hydrosphere and biosphere – Multidisciplinary nature of environmental sciences.  UNIT-II  NATURAL RESOURCES: Importance, Land degradation, Soil erosion and desertification, Effects of modern agriculture (fertilizer and pesticide problems).  FOREST RESOURCES: Use and over-exploitation-Mining and Dams-their effects on forest and tribal people.  WATER RESOURCES: Use and over-exploitation-Mining and Dams-their effects on forest and tribal people.  WATER RESOURCES: Renewable and non-renewable energy, need to use of alternate energy sources, Impact of energy use on environment.                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                                                                                                                                                                        |  |  |  |  |
| 5. To understand the social issues and provide plans to minimize the problems. 6. To articulate various environmental acts in order to protect the environment.  Upon successful completion of the course, the students will be able to:  CO1 Know the importance of Environmental sciences and understand the various components of environment.  CO2 Understand the value of natural resources  CO3 Summarize the function of ecosystem, values of biodiversity and conservation.  CO4 Identify how the environment is polluted and suggest the mitigation measures.  CO5 Understand the environmental protection laws in our country and role of information technology in environment protection.  UNIT-I  MULTIDISCIPLINARY NATURE OF ENVIRONMENTAL SCIENCES: Introduction, Definition, Scope and Importance of environmental sciences - Various components of environment - Atmosphere, lithosphere, hydrosphere and biosphere - Multidisciplinary nature of environmental sciences.  UNIT-II  NATURAL RESOURCES: Importance, Land degradation, Soil erosion and desertification, Effects of modern agriculture (fertilizer and pesticide problems).  FOREST RESOURCES: Use and over-exploitation-Mining and Dams-their effects on forest and tribal people.  WATER RESOURCES: Use and over-exploitation-Mining and Dams-their effects on forest and tribal people.  WATER RESOURCES: Use and over-exploitation of surface and ground water - Floods and droughts.  ENERGY RESOURCES: Renewable and non-renewable energy, need to use of alternate energy sources, Impact of energy use on environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Objectives | *                                                                                                                                                                      |  |  |  |  |
| Course Outcomes  Course Outcomes  Outcomes  Outcomes  Outcomes  Correct Outcomes  Outcomes  Correct Outcomes  Outcom |            | 1                                                                                                                                                                      |  |  |  |  |
| Course Outcomes  Course Outcomes  Ou |            |                                                                                                                                                                        |  |  |  |  |
| Course Outcomes  CO2 Understand the value of natural resources CO3 Summarize the function of ecosystem, values of biodiversity and conservation. CO4 Identify how the environment is polluted and suggest the mitigation measures. CO5 Understand the environmental problems in India and way to minimize the effects.  CO6 Categorize the environmental protection laws in our country and role of information technology in environment protection.  UNIT-I  MULTIDISCIPLINARY NATURE OF ENVIRONMENTAL SCIENCES: Introduction, Definition, Scope and Importance of environmental sciences - Various components of environment - Atmosphere, lithosphere, hydrosphere and biosphere - Multidisciplinary nature of environmental sciences.  UNIT-II  NATURAL RESOURCES: Importance, Land degradation, Soil erosion and desertification, Effects of modern agriculture (fertilizer and pesticide problems).  FOREST RESOURCES: Use and over-exploitation-Mining and Dams-their effects on forest and tribal people.  WATER RESOURCES: Use and over-exploitation of surface and ground water - Floods and droughts.  ENERGY RESOURCES: Renewable and non-renewable energy, need to use of alternate energy sources, Impact of energy use on environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 6. To articulate various environmental acts in order to protect the environment.                                                                                       |  |  |  |  |
| Course Outcomes  CO2 Understand the value of natural resources CO3 Summarize the function of ecosystem, values of biodiversity and conservation. CO4 Identify how the environment is polluted and suggest the mitigation measures. CO5 Understand the environmental problems in India and way to minimize the effects.  CO6 Categorize the environmental protection laws in our country and role of information technology in environment protection.  UNIT-I  MULTIDISCIPLINARY NATURE OF ENVIRONMENTAL SCIENCES: Introduction, Definition, Scope and Importance of environmental sciences - Various components of environment - Atmosphere, lithosphere, hydrosphere and biosphere - Multidisciplinary nature of environmental sciences.  UNIT-II  NATURAL RESOURCES: LAND RESOURCES: Importance, Land degradation, Soil erosion and desertification, Effects of modern agriculture (fertilizer and pesticide problems).  FOREST RESOURCES: Use and over-exploitation-Mining and Dams-their effects on forest and tribal people.  WATER RESOURCES: Use and over-utilization of surface and ground water - Floods and droughts.  ENERGY RESOURCES: Renewable and non-renewable energy, need to use of alternate energy sources, Impact of energy use on environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                                                                                                                                                                        |  |  |  |  |
| Course Outcomes  CO3 Summarize the function of ecosystem, values of biodiversity and conservation.  CO4 Identify how the environment is polluted and suggest the mitigation measures.  CO5 Understand the environmental problems in India and way to minimize the effects.  CO6 Categorize the environmental protection laws in our country and role of information technology in environment protection.  UNIT-I  MULTIDISCIPLINARY NATURE OF ENVIRONMENTAL SCIENCES: Introduction, Definition, Scope and Importance of environmental sciences - Various components of environment - Atmosphere, lithosphere, hydrosphere and biosphere - Multidisciplinary nature of environmental sciences.  UNIT-II  NATURAL RESOURCES: LAND RESOURCES: Importance, Land degradation, Soil erosion and desertification, Effects of modern agriculture (fertilizer and pesticide problems).  FOREST RESOURCES: Use and over-exploitation-Mining and Dams-their effects on forest and tribal people.  WATER RESOURCES: Use and over-utilization of surface and ground water - Floods and droughts.  ENERGY RESOURCES: Renewable and non-renewable energy, need to use of alternate energy sources, Impact of energy use on environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | components of environment.                                                                                                                                             |  |  |  |  |
| Outcomes  CO3   Summarize the function of ecosystem, values of biodiversity and conservation.  CO4   Identify how the environment is polluted and suggest the mitigation measures.  CO5   Understand the environmental problems in India and way to minimize the effects.  CO6   Categorize the environmental protection laws in our country and role of information technology in environment protection.  UNIT-I  MULTIDISCIPLINARY NATURE OF ENVIRONMENTAL SCIENCES: Introduction, Definition, Scope and Importance of environmental sciences - Various components of environment - Atmosphere, lithosphere, hydrosphere and biosphere - Multidisciplinary nature of environmental sciences.  UNIT-II  NATURAL RESOURCES: LAND RESOURCES: Importance, Land degradation, Soil erosion and desertification, Effects of modern agriculture (fertilizer and pesticide problems).  FOREST RESOURCES: Use and over-exploitation-Mining and Dams-their effects on forest and tribal people.  WATER RESOURCES: Use and over-utilization of surface and ground water - Floods and droughts.  ENERGY RESOURCES: Renewable and non-renewable energy, need to use of alternate energy sources, Impact of energy use on environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Course     | CO2 Understand the value of natural resources                                                                                                                          |  |  |  |  |
| CO4 Identify how the environment is polluted and suggest the mitigation measures.  CO5 Understand the environmental problems in India and way to minimize the effects.  CO6 Categorize the environmental protection laws in our country and role of information technology in environment protection.  UNIT-I  MULTIDISCIPLINARY NATURE OF ENVIRONMENTAL SCIENCES: Introduction, Definition, Scope and Importance of environmental sciences - Various components of environment - Atmosphere, lithosphere, hydrosphere and biosphere - Multidisciplinary nature of environmental sciences.  UNIT-II  NATURAL RESOURCES: LAND RESOURCES: Importance, Land degradation, Soil erosion and desertification, Effects of modern agriculture (fertilizer and pesticide problems).  FOREST RESOURCES: Use and over-exploitation-Mining and Dams-their effects on forest and tribal people.  WATER RESOURCES: Use and over-utilization of surface and ground water - Floods and droughts.  ENERGY RESOURCES: Renewable and non-renewable energy, need to use of alternate energy sources, Impact of energy use on environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | CO3 Summarize the function of ecosystem, values of biodiversity and conservation.                                                                                      |  |  |  |  |
| CO6 Categorize the environmental protection laws in our country and role of information technology in environment protection.  UNIT-I  MULTIDISCIPLINARY NATURE OF ENVIRONMENTAL SCIENCES: Introduction, Definition, Scope and Importance of environmental sciences - Various components of environment – Atmosphere, lithosphere, hydrosphere and biosphere – Multidisciplinary nature of environmental sciences.  UNIT-II  NATURAL RESOURCES: LAND RESOURCES: Importance, Land degradation, Soil erosion and desertification, Effects of modern agriculture (fertilizer and pesticide problems).  FOREST RESOURCES: Use and over-exploitation-Mining and Dams-their effects on forest and tribal people.  WATER RESOURCES: Use and over-utilization of surface and ground water - Floods and droughts.  ENERGY RESOURCES: Renewable and non-renewable energy, need to use of alternate energy sources, Impact of energy use on environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 00000    | CO4 Identify how the environment is polluted and suggest the mitigation measures.                                                                                      |  |  |  |  |
| CO6 Categorize the environmental protection laws in our country and role of information technology in environment protection.  UNIT-I  MULTIDISCIPLINARY NATURE OF ENVIRONMENTAL SCIENCES: Introduction, Definition, Scope and Importance of environmental sciences - Various components of environment – Atmosphere, lithosphere, hydrosphere and biosphere – Multidisciplinary nature of environmental sciences.  UNIT-II  NATURAL RESOURCES: LAND RESOURCES: Importance, Land degradation, Soil erosion and desertification, Effects of modern agriculture (fertilizer and pesticide problems).  FOREST RESOURCES: Use and over-exploitation-Mining and Dams-their effects on forest and tribal people.  WATER RESOURCES: Use and over-utilization of surface and ground water - Floods and droughts.  ENERGY RESOURCES: Renewable and non-renewable energy, need to use of alternate energy sources, Impact of energy use on environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | CO5 Understand the environmental problems in India and way to minimize the effects.                                                                                    |  |  |  |  |
| Information technology in environment protection.  UNIT-I  MULTIDISCIPLINARY NATURE OF ENVIRONMENTAL SCIENCES: Introduction, Definition, Scope and Importance of environmental sciences - Various components of environment - Atmosphere, lithosphere, hydrosphere and biosphere - Multidisciplinary nature of environmental sciences.  UNIT-II  NATURAL RESOURCES: LAND RESOURCES: Importance, Land degradation, Soil erosion and desertification, Effects of modern agriculture (fertilizer and pesticide problems).  FOREST RESOURCES: Use and over-exploitation-Mining and Dams-their effects on forest and tribal people.  WATER RESOURCES: Use and over-utilization of surface and ground water - Floods and droughts. ENERGY RESOURCES: Renewable and non-renewable energy, need to use of alternate energy sources, Impact of energy use on environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                                                                                                                                        |  |  |  |  |
| UNIT-I  MULTIDISCIPLINARY NATURE OF ENVIRONMENTAL SCIENCES: Introduction, Definition, Scope and Importance of environmental sciences - Various components of environment – Atmosphere, lithosphere, hydrosphere and biosphere – Multidisciplinary nature of environmental sciences.  UNIT-II  NATURAL RESOURCES: LAND RESOURCES: Importance, Land degradation, Soil erosion and desertification, Effects of modern agriculture (fertilizer and pesticide problems).  FOREST RESOURCES: Use and over-exploitation-Mining and Dams-their effects on forest and tribal people.  WATER RESOURCES: Use and over-utilization of surface and ground water - Floods and droughts.  ENERGY RESOURCES: Renewable and non-renewable energy, need to use of alternate energy sources, Impact of energy use on environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 1                                                                                                                                                                      |  |  |  |  |
| MULTIDISCIPLINARY NATURE OF ENVIRONMENTAL SCIENCES: Introduction, Definition, Scope and Importance of environmental sciences - Various components of environment – Atmosphere, lithosphere, hydrosphere and biosphere – Multidisciplinary nature of environmental sciences.  UNIT-II  NATURAL RESOURCES: LAND RESOURCES: Importance, Land degradation, Soil erosion and desertification, Effects of modern agriculture (fertilizer and pesticide problems).  FOREST RESOURCES: Use and over-exploitation-Mining and Dams-their effects on forest and tribal people.  WATER RESOURCES: Use and over-utilization of surface and ground water - Floods and droughts.  ENERGY RESOURCES: Renewable and non-renewable energy, need to use of alternate energy sources, Impact of energy use on environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                                                                                                                                                                        |  |  |  |  |
| components of environment – Atmosphere, lithosphere, hydrosphere and biosphere – Multidisciplinary nature of environmental sciences.  UNIT-II  NATURAL RESOURCES: LAND RESOURCES: Importance, Land degradation, Soil erosion and desertification, Effects of modern agriculture (fertilizer and pesticide problems).  FOREST RESOURCES: Use and over-exploitation-Mining and Dams-their effects on forest and tribal people.  WATER RESOURCES: Use and over-utilization of surface and ground water - Floods and droughts.  ENERGY RESOURCES: Renewable and non-renewable energy, need to use of alternate energy sources, Impact of energy use on environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                        |  |  |  |  |
| WIT-II  NATURAL RESOURCES: LAND RESOURCES: Importance, Land degradation, Soil erosion and desertification, Effects of modern agriculture (fertilizer and pesticide problems).  FOREST RESOURCES: Use and over-exploitation-Mining and Dams-their effects on forest and tribal people.  WATER RESOURCES: Use and over-utilization of surface and ground water - Floods and droughts.  ENERGY RESOURCES: Renewable and non-renewable energy, need to use of alternate energy sources, Impact of energy use on environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | Introduction, Definition, Scope and Importance of environmental sciences - Various                                                                                     |  |  |  |  |
| UNIT-II  NATURAL RESOURCES: LAND RESOURCES: Importance, Land degradation, Soil erosion and desertification, Effects of modern agriculture (fertilizer and pesticide problems).  FOREST RESOURCES: Use and over-exploitation-Mining and Dams-their effects on forest and tribal people.  WATER RESOURCES: Use and over-utilization of surface and ground water - Floods and droughts.  ENERGY RESOURCES: Renewable and non-renewable energy, need to use of alternate energy sources, Impact of energy use on environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                                                                                                                                                        |  |  |  |  |
| Course Content  NATURAL RESOURCES: Importance, Land degradation, Soil erosion and desertification, Effects of modern agriculture (fertilizer and pesticide problems).  FOREST RESOURCES: Use and over-exploitation-Mining and Dams-their effects on forest and tribal people.  WATER RESOURCES: Use and over-utilization of surface and ground water - Floods and droughts.  ENERGY RESOURCES: Renewable and non-renewable energy, need to use of alternate energy sources, Impact of energy use on environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | Multidisciplinary nature of environmental sciences.                                                                                                                    |  |  |  |  |
| Course Content  Content  Course Content  Content  Course Content  LAND RESOURCES: Importance, Land degradation, Soil erosion and desertification, Effects of modern agriculture (fertilizer and pesticide problems).  FOREST RESOURCES: Use and over-exploitation-Mining and Dams-their effects on forest and tribal people.  WATER RESOURCES: Use and over-utilization of surface and ground water - Floods and droughts.  ENERGY RESOURCES: Renewable and non-renewable energy, need to use of alternate energy sources, Impact of energy use on environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                        |  |  |  |  |
| Content  Effects of modern agriculture (fertilizer and pesticide problems).  FOREST RESOURCES: Use and over-exploitation-Mining and Dams-their effects on forest and tribal people.  WATER RESOURCES: Use and over-utilization of surface and ground water - Floods and droughts.  ENERGY RESOURCES: Renewable and non-renewable energy, need to use of alternate energy sources, Impact of energy use on environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                                                                                                                                                                        |  |  |  |  |
| FOREST RESOURCES: Use and over-exploitation-Mining and Dams-their effects on forest and tribal people.  WATER RESOURCES: Use and over-utilization of surface and ground water - Floods and droughts.  ENERGY RESOURCES: Renewable and non-renewable energy, need to use of alternate energy sources, Impact of energy use on environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Course     |                                                                                                                                                                        |  |  |  |  |
| forest and tribal people.  WATER RESOURCES: Use and over-utilization of surface and ground water - Floods and droughts.  ENERGY RESOURCES: Renewable and non-renewable energy, need to use of alternate energy sources, Impact of energy use on environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                                                                                                                                                                        |  |  |  |  |
| and droughts.  ENERGY RESOURCES: Renewable and non-renewable energy, need to use of alternate energy sources, Impact of energy use on environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                                                                                                        |  |  |  |  |
| <b>ENERGY RESOURCES:</b> Renewable and non-renewable energy, need to use of alternate energy sources, Impact of energy use on environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | WATER RESOURCES: Use and over-utilization of surface and ground water - Floods                                                                                         |  |  |  |  |
| alternate energy sources, Impact of energy use on environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                                                                                                                                                                        |  |  |  |  |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | <b>ENERGY RESOURCES:</b> Renewable and non-renewable energy, need to use of                                                                                            |  |  |  |  |
| UNIT-III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | ••                                                                                                                                                                     |  |  |  |  |
| ECOCYCTEM. Definition tymes atmentions (hintin and chiefin annually)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                                                                                                                                                                        |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | <b>ECOSYSTEM</b> : Definition, types, structure (biotic and abiotic components) and functions of an Ecosystem – Energy flow, Food chain, food web, ecological pyramids |  |  |  |  |
| and Ecological succession.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                                                                                                                                                        |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                        |  |  |  |  |

|                                         | <b>BIO-DIVERSITY AND ITS CONSERVATION:</b> Definition - genetic, species and ecosystem diversity- value of biodiversity - hotspots of biodiversity in India - threats to biodiversity – in situ and ex situ conservation of biodiversity.                                                                                                                                                                                                                        |  |  |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                         | UNIT-IV                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                                         | ENVIRONMENTAL POLLUTION: Causes, effects and control measures of Air pollution, Water pollution, Soil pollution, Marine pollution, Noise pollution, Thermal pollution and Nuclear hazards.  SOLID WASTE MANAGEMENT: causes, effects and control measures of urban and industrial waste.  DISASTER MANAGEMENT: Floods, earthquake and cyclones.                                                                                                                   |  |  |
| Course                                  | UNIT-V                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Content                                 | SOCIAL ISSUES AND ENVIRONMENT: From unsustainable to sustainable development, urban problems related to energy, water conservation, rainwater harvesting and water shed management.  CASE STUDIES: Silent valley project, Madhura Refinery and TajMahal, Tehri Dam, Kolleru Lake Aquaculture and Fluorosis in Andhra Pradesh.  CLIMATE CHANGE- Global warming, Acid rain and Ozone depletion.                                                                    |  |  |
|                                         | UNIT-VI                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                                         | HUMAN POPULATION AND ENVIRONMENT: Population growth, variation among nations and population explosion- Role of information technology in environment and human health.  ENVIRONMENTAL ACTS: Water (Prevention and control of pollution) Act-Air (Prevention and control of pollution) Act — Wildlife protection Act and Forest conservation Act.  FIELD WORK: Visit to Local Area having river/Forest/grass land/hill/mountain to document environmental assets. |  |  |
| Text Books<br>and<br>Reference<br>Books | <ol> <li>TEXT BOOKS:         <ol> <li>"Environmental science and Engineering" by Anubha Kaushik and C.P.Kaushik, New Age International publishers. Sixth Edition 2018.</li> <li>"Environmental science and Engineering" by N. Arumugam, V. Kumaresan, Saras Publication; 2 edition (2014)</li> </ol> </li> <li>REFERENCE BOOKS:         <ol></ol></li></ol>                                                                                                      |  |  |
| E-Resources                             | <ol> <li>"Environmental science" by M. Chandrasekhar, Hi-Tech Publications. 2009.</li> <li>https://nptel.ac.in/courses</li> <li>https://freevideolectures.com/university/iitm</li> </ol>                                                                                                                                                                                                                                                                         |  |  |

# 19EC21P1 – ELECTRONIC DEVICES LAB

| Course Category: | Program Core                                        | Credits:                    | 1.5       |
|------------------|-----------------------------------------------------|-----------------------------|-----------|
| Course Type:     | Practical                                           | Lecture-Tutorial- Practice: | 0 - 0 - 3 |
| Prerequisite:    | Basic Electrical Sciences and<br>Electronic Devices | Sessional Evaluation:       | 40        |
|                  |                                                     | External Evaluation:        | 60        |
|                  | Electronic Devices                                  | Total Marks:                | 100       |

|                      | Students undergoing this course are expected to understand:                                                                            |  |  |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Course<br>Objectives | <ol> <li>The behaviour of various semiconductor devices.</li> <li>The V-I characteristics of various semiconductor devices.</li> </ol> |  |  |  |
|                      | Upon successful completion of the course, the students will be able to:                                                                |  |  |  |
|                      | CO1 Analyse the electronic circuits experimentally.                                                                                    |  |  |  |
|                      | CO2 Verify the V-I characteristics of various semiconductor devices experimentally.                                                    |  |  |  |
| Course<br>Outcomes   | CO3 Analyse& Calculate the cut-in voltage and forward resistance of P-N Junction diode practically.                                    |  |  |  |
|                      | CO4 Examine the performance of JFET and UJT.                                                                                           |  |  |  |
|                      | CO5 Understand the performance LED and DIAC                                                                                            |  |  |  |
|                      | CO6 Inspect the input and output characteristics of BJT.                                                                               |  |  |  |
|                      | Minimum of <b>TEN</b> experiments to be completed out of the following:                                                                |  |  |  |
|                      | LICE OF EXPEDIMENTS                                                                                                                    |  |  |  |
|                      | <u>LIST OF EXPERIMENTS</u>                                                                                                             |  |  |  |
|                      | P-N Junction Diode Characteristics(Si Diode)                                                                                           |  |  |  |
|                      | 2. Zener Diode Characteristics                                                                                                         |  |  |  |
|                      | 3. Bi-Polar Junction Transistor Characteristics (CE Configuration)                                                                     |  |  |  |
|                      | 4. Junction Field Effect Transistor Characteristics                                                                                    |  |  |  |
| Course               | 5. Uni-Junction Transistor Characteristics                                                                                             |  |  |  |
| Content              | 6. Light Dependent Resistor Characteristics                                                                                            |  |  |  |
|                      | 7. Photo Transistor Characteristics                                                                                                    |  |  |  |
|                      | 8. Thermistor Characteristics                                                                                                          |  |  |  |
|                      | 9. LED Characteristics                                                                                                                 |  |  |  |
|                      | 10. DIAC Characteristics                                                                                                               |  |  |  |
|                      | 11. SCR Characteristics                                                                                                                |  |  |  |
|                      | 12. Solar Cell Characteristics                                                                                                         |  |  |  |
|                      | 12. Solai Celi Characteristics                                                                                                         |  |  |  |
|                      |                                                                                                                                        |  |  |  |

# 19EC21P2 – ANALOG CIRCUITS LAB

| Course Category: | Program Core                                                         | Credits:                    | 1.5       |
|------------------|----------------------------------------------------------------------|-----------------------------|-----------|
| Course Type:     | Practical                                                            | Lecture-Tutorial- Practice: | 0 - 0 - 3 |
| Prerequisite:    | Electronic Devices & Circuits and<br>Analysis of Electronic Circuits | Sessional Evaluation:       | 40        |
|                  |                                                                      | External Evaluation:        | 60        |
|                  |                                                                      | Total Marks:                | 100       |

|                      | Students undergoing this course are expected to understand:                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Course<br>Objectives | <ol> <li>The design and analysis of various electronic circuits.</li> <li>The behaviour of various rectifiers and amplifiers.</li> </ol>                                                                                                                                                                                                                                                                        |  |  |  |  |
| Course<br>Outcomes   | Upon successful completion of the course, the students will be able to:  CO1 Analyse the electronic circuits experimentally.  CO2 Design & Analyse the rectifiers (With & Without filters).  CO3 Calculate the frequency response of the RC coupled amplifier practically.  CO4 Analyse the Transistor Voltage Regulator (Series and Shunt).  CO5 Understand the performance of feedback amplifiers practically |  |  |  |  |
|                      | CO6 Design & Analyse the various oscillators.                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|                      | Minimum of <b>TEN</b> experiments to be completed out of the following: <u>LIST OF EXPERIMENTS</u>                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                      | 1. Rectifiers without Filters (HWR, FWR, BR).                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|                      | 2. Rectifiers with Filters (C, LC, CLC).                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|                      | 3. R-C Coupled Amplifier.                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                      | 4. FET Amplifier.                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Course               | 5. C88olpitts Oscillator.                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Content              | 6. Current Series Feedback Amplifier (With & Without feedback).                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                      | 7. Determination of f <sub>T</sub> of a Transistor.                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                      | 8. R-C Phase Shift Oscillator.                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                      | 9. Wien Bridge Oscillator.                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                      | 10. Darlington Pair Amplifier.                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                      | 11. Transistor Voltage Regulator (Series and Shunt)                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                      | 12. Voltage Series Feedback Amplifier (With & Without feedback).                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |

# 19EC21P3 – ELECTRONIC CIRCUIT DESIGN AND SIMULATION LAB

| Course Category: | Program Core                            | Credits:                                      | 1         |
|------------------|-----------------------------------------|-----------------------------------------------|-----------|
| Course Type:     | Practical                               | Lecture-Tutorial- Practice:                   | 0 - 0 - 2 |
| Prerequisite:    | Electronic Devices, Signals and Systems | Sessional Evaluation:<br>External Evaluation: | 40<br>60  |
|                  |                                         | Total Marks:                                  | 100       |

|                    | Studen                                                                  | nts undergoing this course are expected to understand:                                                     |  |  |  |
|--------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|--|
| Course             | 1.                                                                      | The design and analysis of various electronic circuits.                                                    |  |  |  |
| Objectives         | 2.                                                                      | The behaviour of various rectifiers and amplifiers.                                                        |  |  |  |
|                    | Upon successful completion of the course, the students will be able to: |                                                                                                            |  |  |  |
|                    | CO1 Simulate and Verification the Class-A Power Amplifier.              |                                                                                                            |  |  |  |
|                    | CO2                                                                     | Design & simulate the Rectifiers.                                                                          |  |  |  |
| Course<br>Outcomes | CO3                                                                     | Analyse & Calculate the frequency response CE and CS Amplifier.  Analyse the Transistor Voltage Regulator. |  |  |  |
| Outcomes           |                                                                         |                                                                                                            |  |  |  |
|                    | CO5                                                                     | Design and Verification the Pre-emphasis and De-emphasis circuits.                                         |  |  |  |
|                    | CO6                                                                     | Simulation and Verification of Logic Gates.                                                                |  |  |  |
|                    | Minin                                                                   | our of TEN avantages to be completed out of the following:                                                 |  |  |  |
|                    | Minimum of <b>TEN</b> experiments to be completed out of the following: |                                                                                                            |  |  |  |
|                    | LIST OF EXPERIMENTS                                                     |                                                                                                            |  |  |  |
|                    | Verification of Half–Wave and Full-Wave Rectifier                       |                                                                                                            |  |  |  |
|                    | 2. Frequency Response of CE Amplifier                                   |                                                                                                            |  |  |  |
|                    | 3. Frequency Response of CS Amplifier                                   |                                                                                                            |  |  |  |
| Course             | 4. Half adder / Full adder circuits using gates                         |                                                                                                            |  |  |  |
| Content            | 5. Design and Verification of Pre-emphasis and De-emphasis circuits     |                                                                                                            |  |  |  |
|                    | 6. Verification of Clippers                                             |                                                                                                            |  |  |  |
|                    | 7.                                                                      | Verification of Clampers                                                                                   |  |  |  |
|                    | 8. 1                                                                    | Design and Verification of RC coupled amplifier                                                            |  |  |  |
|                    | 9. 1                                                                    | Design and Verification of Voltage Regulator                                                               |  |  |  |
|                    | 10. 1                                                                   | Design and Verification of Logic Gates                                                                     |  |  |  |
|                    | 11. 0                                                                   | Characteristics of the UJT                                                                                 |  |  |  |
|                    | 12. 4                                                                   | Astable multivibrator                                                                                      |  |  |  |
|                    |                                                                         |                                                                                                            |  |  |  |

#### NBKR INSTITUTE OF SCIENCE & TECHNOLOGY: VIDYANAGAR

(AUTONOMOUS)

#### (AFFILIATED TO JNTU ANANTAPUR: ANANTHAPURAMU)

#### SPSR NELLORE DIST

### II YEAR OF FOUR-YEAR B.TECH DEGREE COURSE – II SEMESTER

#### **ELECTRONICS AND COMMUNICATION ENGINEERING**

SCHEME OF INSTRUCTION AND EVALUATION

(With effect from the academic year 2019-2020)

(For the batch admitted in the academic year 2019-2020)

|      |                |                                                |    | Instruction<br>Hours/Week |     |         | Evaluation            |      |                       |                        |                              |                             |                              |                           |               |     |
|------|----------------|------------------------------------------------|----|---------------------------|-----|---------|-----------------------|------|-----------------------|------------------------|------------------------------|-----------------------------|------------------------------|---------------------------|---------------|-----|
|      | Course<br>Code | Course Title                                   |    |                           |     | Credits | Sessional-I<br>Marks  |      | Sessional-II<br>Marks |                        | Total Sessional<br>Marks(40) | End Semester<br>Examination |                              | Maximum<br>Total<br>Marks |               |     |
| S.No |                | THEORY                                         | L  | Т                         | D/P |         | Test <sup>\$</sup> -I | A#-I | Max.<br>Marks         | Test <sup>\$</sup> -II | A#-<br>II                    | Max.<br>Marks               |                              | Duration<br>In Hours      | Max.<br>Marks | 100 |
| 1    | 19EC2201       | Probability Theory and Stochastic<br>Processes |    | 0                         | -   | 3       | 34                    | 6    | 40                    | 34                     | 6                            | 40                          | 0.8*Best of                  | 3                         | 60            | 100 |
| 2    | 19EC2202       | Analog IC Applications                         |    | 1                         | -   | 3       | 34                    | 6    | 40                    | 34                     | 6                            | 40                          | two+0.2*                     | 3                         | 60            | 100 |
| 3    | 19EC2203       | Electromagnetic Fields & Waves                 | 3  | 0                         | -   | 3       | 34                    | 6    | 40                    | 34                     | 6                            | 40                          |                              | 3                         | 60            | 100 |
| 4    | 19EC2204       | Analog Communication                           |    | 0                         | -   | 3       | 34                    | 6    | 40                    | 34                     | 6                            | 40                          |                              | 3                         | 60            | 100 |
| 5    | 19EC2205       | Digital IC Applications                        |    | 0                         | -   | 3       | 34                    | 6    | 40                    | 34                     | 6                            | 40                          |                              | 3                         | 60            | 100 |
|      |                | PRACTICALS                                     |    |                           |     |         |                       |      |                       |                        |                              |                             |                              |                           |               |     |
| 6    | 19EC22P1       | Pulse and Digital Circuits Lab                 | -  | -                         | 3   | 1.5     | -                     | -    | -                     | -                      | -                            | 40                          | Day to Day<br>Evaluation and | 3                         | 60            | 100 |
| 7    | 19EC22P2       | Analog IC Applications Lab                     | -  | -                         | 3   | 1.5     | -                     | -    | -                     | -                      | -                            | 40                          | a test<br>(40 Marks)         | 3                         | 60            | 100 |
| 8    | 19EC22P3       | Digital System Design Lab Using<br>VHDL        | -  | 1                         | 2   | 1       |                       | -    | -                     | -                      | -                            | 40                          | (10 Marks)                   | 3                         | 60            | 100 |
|      |                | MANDATORY                                      |    |                           |     |         |                       |      |                       |                        |                              |                             |                              |                           |               |     |
| 9    | 19MC2201       | Economics & Accountancy*                       |    | -                         | -   | -       | -                     | -    | -                     | -                      | -                            | -                           |                              | -                         | -             | -   |
|      |                | TOTAL                                          | 14 | 1                         | 8   | 19      | -                     | -    | -                     | -                      | -                            | 320                         | -                            | -                         | 480           | 800 |

<sup>\*</sup> Common to ECE & EEE.

<sup>\*\*</sup>Common to ECE, CE, EEE & ME.

<sup>\*#</sup> Common to ECE, CE, EEE, CSE & IT.

<sup>#</sup> A for Assignment (continuous evaluation),

<sup>\$</sup> Test (Descriptive & Objective) duration = 2 Hours

# 19EC2201 – PROBABILITY THEORY AND STOCHASTIC PROCESSES

| Course category: | Program core                      | Credits:                               | 3        |
|------------------|-----------------------------------|----------------------------------------|----------|
| Course Type:     | Theory                            | <b>Lecture - Tutorial - Practical:</b> | 3 - 0- 0 |
| Prerequisite:    | Knowledge of Signals and systems, | Sessional Evaluation:                  | 40       |
| _                | integrations and differential     | External Evaluation:                   | 60       |
|                  | equations.                        | Total Marks:                           | 100      |

|                      | Students undergoing this course are expected to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Course<br>Objectives | <ol> <li>Provide mathematical background and probability theory.</li> <li>Understand the random variable concepts with distribution and density functions.</li> <li>Know basic concepts of multiple random variables, Conditional probability and conditional expectation, joint distribution and independence.</li> <li>Make the difference between time averages and statistical averages.</li> <li>Analysis of random process and application to the signal processing in the communication system.</li> <li>Demonstrate the students how to model a noise source and design of filters for white and coloured noises and maximize S/N ratio.</li> </ol> |  |  |  |  |  |
|                      | Upon successful completion of the course, the students will be able to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                      | CO1 Understand fundamentals of probability theory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|                      | CO2 Learn the fundamentals of random variables.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Course               | CO3 Illustrate the concepts of vector random variables and related problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Outcomes             | CO4 Remember the characterization of random processes and their properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|                      | CO5 Evaluate response of a system to random signal and noise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                      | CO6 Know the noise and how these noises are effecting the communication system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                      | UNIT-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                      | <b>PROBABILITY</b> : Introduction, Set theory and Venn diagrams -Axioms- Joint and conditional probability - Bayes' theorem - Bernoulli trials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                      | UNIT –II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Course<br>Content    | <b>RANDOM VARIABLE</b> : Concept — Distribution function — Density functions — Conditional density functions — Expectation — Conditional expected value — Moments — Chebyshev, Markov's and Chernoff's inequalities — Characteristics and moment generating functions - Transformation of continuous and discrete random variables.                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|                      | UNIT –III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|                      | MULTIPLE RANDOM VARIABLES: Vector random variables — Joint distribution / Density functions — Conditional density / Distribution functions - Statistical independence — PDF and CDF for sum of random variables — Central limits theorem - Operations on multiple random variables — Expected value of function of random variables — Joint characteristic function — Joint by Gaussian random variables — Transformations of multiple random variables.                                                                                                                                                                                                    |  |  |  |  |  |

|                                         | UNIT – IV                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                         | RANDOM PROCESSES: Concept — Stationarity — Independence — Time averages — Ergodicity — Correlation function and its Properties.  Gaussian process— Power spectral density and its properties — Relation between power spectral density and auto-correlation — Cross power spectral density and its properties — Power spectrum for discrete time processes and sequences — Definition of white and coloured noise.                      |  |  |  |  |  |
| Course<br>Content                       | UNIT-V                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| Content                                 | LINEAR SYSTEMS WITH RANDOM INPUTS: Random signal response of linear system — System evaluation using random noise— Spectral characteristics of system response - Band pass, Band limited and Narrow band processes — Properties of band limited processes.                                                                                                                                                                              |  |  |  |  |  |
|                                         | UNIT-VI                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                                         | MODELING OF NOISE SOURCES: Classification of noise sources — Resistive (Thermal) noise — Effective noise temperature — Antenna as a noise source — Available power gain — Equivalent networks — Input noise temperature — Noise figure.  OPTIMUM LINEAR SYSTEMS: Maximization of (S/N); Matched filter for coloured and white noise — Minimization of Mean Squared Error — Wiener filter.                                               |  |  |  |  |  |
|                                         | TEXT BOOKS:                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Text Books<br>and<br>Reference<br>Books | <ol> <li>P.Z.Peebles Jr., "Probability Random Variables and Random Signal Principles".         Tata McGraw-Hill, 4<sup>th</sup> edition, 2001.</li> <li>A.Papoulis and S.Unnikrishna Pillai, "Probability Random Variables and Stochastic Processes", PHI, 4<sup>th</sup> edition, 2008</li> <li>J.LAunon and V.Chandrasekhar, "Introduction to Probability and Random Processes", McGraw-Hill 2<sup>nd</sup> edition, 1997.</li> </ol> |  |  |  |  |  |
| DUUKS                                   | REFERENCE:                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                         | <ol> <li>D.G. Childer, "Probability and Random Processes", McGraw Hill, 2<sup>nd</sup> edition 1997.</li> <li>GR.Babu and K. Pushpa, "Probability Theory and Stochastic Processes", Premier Publishing House, 3<sup>rd</sup> edition 2010.</li> </ol>                                                                                                                                                                                   |  |  |  |  |  |
| E-Resources                             | <ol> <li>http://nptel.ac.in/cources</li> <li>https:// iete-elan.ac.in</li> <li>https://freevideolectures.com/university/iit</li> </ol>                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |

# 19EC2202 – ANALOG IC APPLICATIONS

(Common to ECE and EEE)

| Course category: | Program core                       | Credits:                        | 3         |
|------------------|------------------------------------|---------------------------------|-----------|
| Course Type:     | Theory                             | Lecture - Tutorial - Practical: | 2 - 1 - 0 |
| Prerequisite:    | Circuit & Networks,                | Sessional Evaluation:           | 40        |
|                  | Electronics Devices & Circuits and | External Evaluation:            | 60        |
|                  | Pulse & Analog Circuits            | Total Marks:                    | 100       |

|                   | Students undergoing this course are expected to:                                                                                                                                                                                                                                                                                 |  |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Course            | <ol> <li>Learn the basic building blocks of Op-amp &amp; its characteristics.</li> <li>Study linear and non-linear applications of operational amplifiers.</li> <li>Design Multivibrators.</li> </ol>                                                                                                                            |  |  |  |  |
| Objectives        | 4. Understand the theory and applications of 555 timer and P.L.L.                                                                                                                                                                                                                                                                |  |  |  |  |
|                   | 5. Design of various filters using op amp.                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                   | 6. Learn theory of A.D.C.s and D.A.C.s.                                                                                                                                                                                                                                                                                          |  |  |  |  |
|                   | Upon successful completion of the course, the students will be able to:                                                                                                                                                                                                                                                          |  |  |  |  |
|                   | CO1 Gain the basics of op-amp characteristics and its applications.                                                                                                                                                                                                                                                              |  |  |  |  |
|                   | CO2 Study and analyse each building blocks of op-amp and its applications.                                                                                                                                                                                                                                                       |  |  |  |  |
| Course            | CO3 Analyse and design of Multivibrators, Oscillators and comparators using opamp.                                                                                                                                                                                                                                               |  |  |  |  |
| Outcomes          | CO4 Illustrate and design of Multi-vibrators using 555 timer, understand of PLL and its applications.                                                                                                                                                                                                                            |  |  |  |  |
|                   | CO5 Analyze and design of Active filters and regulators.                                                                                                                                                                                                                                                                         |  |  |  |  |
|                   | CO6 Apply and Analyze A/D and D/A converters and their applications.                                                                                                                                                                                                                                                             |  |  |  |  |
|                   | UNIT – I  OPERATIONAL AMPLIFIER: Introduction to I.C.s, Op-Amp Ideal Characteristics, DC & AC Characteristics, Internal Circuit, Inverting and Non-Inverting Modes of Operation, Differential Amplifier and its Transfer Characteristics, Derivation of C.M.R.R. & Improvement Methods of Differential Amplifier Characteristics |  |  |  |  |
| Course<br>Content | UNIT – II  OPERATIONAL AMPLIFIER APPLICATIONS:  Summer, Integrator, Differentiator, Voltage Follower, Instrumentation Amplifier, V-I                                                                                                                                                                                             |  |  |  |  |
|                   | and I-V Converters, Precision Rectifiers, Analog multiplier (AD 534 IC)                                                                                                                                                                                                                                                          |  |  |  |  |
|                   | UNIT – III  COMPARATORS AND WAVEFORM GENERATORS: Comparator, Regenerative Comparator, Astable and Mono stable Multi-vibrators using Op-Amp, Sine Wave Generators using Op-Amp (R.C. Phase Shift oscillator).                                                                                                                     |  |  |  |  |

|                    | IC TIMERS: 555 Timer, Astable and Monostable Modes (without applications).                                                                                 |  |  |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                    | PHASE LOCKED LOOPS: Basic Principle, First and Second order PLL concepts.                                                                                  |  |  |  |
|                    | UNIT – V                                                                                                                                                   |  |  |  |
| Course             | <b>ACTIVE FILTERS:</b> Low Pass, High Pass and Band Pass Filters, State Variable Filters.                                                                  |  |  |  |
| Content            | <b>VOLTAGE REGULATORS:</b> Series Op-Amp Regulator, I.C. Voltage Regulators 78XX, I.C723 Regulator, Switching Regulators, Step up and step down regulators |  |  |  |
|                    | (buck & boost).  UNIT – VI                                                                                                                                 |  |  |  |
|                    | UNII – VI                                                                                                                                                  |  |  |  |
|                    | <b>ELECTRONIC DATA CONVERTERS:</b> Introduction, <b>D.A.C.s</b> -Weighted Resistor, R-2R.                                                                  |  |  |  |
|                    | <b>A.D.C.s</b> -Parallel Comparator Type, Successive Approximation and Dual Slope.                                                                         |  |  |  |
|                    | TEXT BOOKS:                                                                                                                                                |  |  |  |
|                    | 1. D. Roy Choudary, Shail B. Jain, "Linear Integrated Circuits", New Age International Publishers, 5 <sup>th</sup> edition 2018.                           |  |  |  |
| Text Books and     | 2. Sergio Franco's "Design With Operational Amplifiers and Analog Integrated Circuits", 4th edition, 2016.                                                 |  |  |  |
| Reference<br>Books | REFERENCE BOOKS:                                                                                                                                           |  |  |  |
|                    | 1. J. Michael Jacob, "Applications and Design with Analog Integrated Circuits", PHI, EEE, 2 <sup>nd</sup> edition, 1996.                                   |  |  |  |
|                    | 2. Ramkant A. Gayakwad, "Op-Amps and Linear Integrated Circuits", LPE, Pearson Education, 4 <sup>th</sup> Edition, 2015                                    |  |  |  |
| E Dogowess         | 1. http://www.nptel.ac.in                                                                                                                                  |  |  |  |
| E-Resources        | 2. http://www.ebookee.com/linearintegratedcircuits.                                                                                                        |  |  |  |

# 19EC2203 – ELECTROMAGNETIC FIELDS & WAVES

| Course category: | Program core                 | Credits:                        | 3         |
|------------------|------------------------------|---------------------------------|-----------|
| Course Type:     | Theory                       | Lecture - Tutorial - Practical: | 3 - 0 - 0 |
| Prerequisite:    | Basic concepts of coordinate | <b>Sessional Evaluation:</b>    | 40        |
|                  | system & fundamentals of     | <b>External Evaluation:</b>     | 60        |
|                  | electricity & magnetism      | Total Marks:                    | 100       |

|                   | Students undergoing this course are expected to understand:                            |  |  |  |  |
|-------------------|----------------------------------------------------------------------------------------|--|--|--|--|
|                   | Co-ordinate systems, Vector calculus.                                                  |  |  |  |  |
|                   | 2. Electrostatics, Coulomb's law, Mathematical analysis of Gauss's law.                |  |  |  |  |
| Course            | 3. Behaviour of conductors with regard to Current, Current Density, Resistance         |  |  |  |  |
| Course            | Understand the significance of Ohm's law for EM fields.                                |  |  |  |  |
| Objectives        | 4. Magnetic Static Fields and various laws applicable to magnetic fields.              |  |  |  |  |
|                   | 5. Dipole Moment of materials, Boundary conditions governing Magnetic interface        |  |  |  |  |
|                   | and study about energy stored in Magnetic Fields.                                      |  |  |  |  |
|                   | 6. Maxwell's equations in different forms and their applications to EM fields          |  |  |  |  |
|                   | Uniform plane wave propagation.                                                        |  |  |  |  |
|                   | Upon successful completion of the course, the students will be able to:                |  |  |  |  |
|                   | CO1 Know the conversions of one co-ordinate system to other forms.                     |  |  |  |  |
|                   | CO2 Remember Gauss Law, Coulomb's law to find fields and potentials for a variou       |  |  |  |  |
|                   | situations.                                                                            |  |  |  |  |
| Course            | CO3 Derive the Continuity equation and give the importance of current density.         |  |  |  |  |
| Outcomes          | CO4 Understand Biot-Savart's Law and Ampere's Circuital law and apply to solve         |  |  |  |  |
|                   | problems on these.                                                                     |  |  |  |  |
|                   | CO5 Acquire the knowledge of Dipole moment, Boundary conditions of Magnetic            |  |  |  |  |
|                   | Fields                                                                                 |  |  |  |  |
|                   | CO6 Know the Maxwell's equation in differential and integral forms, Faraday's law      |  |  |  |  |
|                   | Uniform plane wave propagation                                                         |  |  |  |  |
|                   | UNIT-I                                                                                 |  |  |  |  |
|                   | REVIEW OF COORDINATE SYSTEMS: Introduction to coordinate systems                       |  |  |  |  |
|                   | Cartesian, Cylindrical and Spherical coordinate systems, Vector transformations, Vecto |  |  |  |  |
|                   | calculus.                                                                              |  |  |  |  |
|                   | UNIT-II                                                                                |  |  |  |  |
|                   | <b>ELECTROSTATIC FIELDS:</b> Coulomb's Law, Electric Field Intensity, Electric Flux    |  |  |  |  |
| <b>C</b>          | Density -Gauss's Law, Gauss's law in point form, Electric Potential, Potential Gradien |  |  |  |  |
| Course<br>Content | and Energy Stored in Electric Field.                                                   |  |  |  |  |
| Content           | UNIT-III                                                                               |  |  |  |  |
|                   | CONDUCTORS AND DIELECTRICS: Current and Current Density- Continuity                    |  |  |  |  |
|                   | Equation-Conductors-Ohms Law, Resistance, power dissipation and Joules law             |  |  |  |  |
|                   | Dielectrics: Dipole Moment-Polarization-bound Charge Densities-Boundary Conditions     |  |  |  |  |
|                   | Capacitance.                                                                           |  |  |  |  |
|                   |                                                                                        |  |  |  |  |
|                   |                                                                                        |  |  |  |  |
|                   |                                                                                        |  |  |  |  |

|                   | UNIT-IV                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                   | MAGNETOSTATIC FIELDS: Ampere's force law, Biot-Savart's Law, Lorentz force law, Ampere's circuital law in point form, Magnetic Vector Potential.                                                                                                                                                               |  |  |  |  |
|                   | UNIT-V                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Course<br>Content | MAGNETIC FIELD IN MATERIALS: Dipole Moment, Magnetization and bound current densities, Boundary Conditions, Inductance, Energy Stored in Magnetic Field.                                                                                                                                                       |  |  |  |  |
|                   | UNIT-VI                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|                   | MAXWELL'S EQUATIONS: Faraday's law, Motional and transformer induced EMFs, Faraday's law in point form, Displacement current, Maxwell's equations in differential and integral forms, Poynting theorem, Wave Equation – Uniform Plane Waves in Lossless Media and in Lossy Media.                              |  |  |  |  |
| Text Books        | <ul> <li>TEXT BOOKS:</li> <li>1. Matthew N.O.Sadiku: "Elements of Engineering Electromagnetics" Oxford University Press, 4<sup>th</sup> edition, 2007.</li> <li>2. E.C. Jordan &amp; K.G. Balmain "Electromagnetic Waves and Radiating Systems." Pearson Education/PHI 4<sup>th</sup> edition 2006.</li> </ul> |  |  |  |  |
| and<br>Reference  | REFERENCES:                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Books             | 1. NarayanaRao, N: "Elements of Engineering Electromagnetics" 6th edition,                                                                                                                                                                                                                                     |  |  |  |  |
|                   | Pearson Education, New Delhi, 2006.  2. G.S.N. Raju, Electromagnetic Field Theory & Transmission Lines, Pearson Education, 2006.                                                                                                                                                                               |  |  |  |  |
|                   |                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| E-Resources       | 1. https://nptel.ac.in/courses                                                                                                                                                                                                                                                                                 |  |  |  |  |
| L-Resources       | <ol> <li>https://iete-elan.ac.in</li> <li>https://freevideolectures.com/university/iit</li> </ol>                                                                                                                                                                                                              |  |  |  |  |
|                   |                                                                                                                                                                                                                                                                                                                |  |  |  |  |

# 19EC2204 – ANALOG COMMUNICATION

| Course catego     | rv:                                                                                  | Program core                                                                                                                                                                          | Credits:                                                                                                                                                                                                                                          | 3                                                                                         |  |  |  |
|-------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|
| Course Type:      | ٠, ٠                                                                                 | Theory                                                                                                                                                                                | Lecture - Tutorial - Practical:                                                                                                                                                                                                                   | 3 - 0 - 0                                                                                 |  |  |  |
| Prerequisite:     |                                                                                      | Knowledge in Fourier series and                                                                                                                                                       | Sessional Evaluation :                                                                                                                                                                                                                            | 40                                                                                        |  |  |  |
|                   |                                                                                      | Fourier transforms.                                                                                                                                                                   | External Evaluation:                                                                                                                                                                                                                              | 60                                                                                        |  |  |  |
|                   |                                                                                      |                                                                                                                                                                                       | Total Marks:                                                                                                                                                                                                                                      | 100                                                                                       |  |  |  |
|                   | Stude                                                                                | nts undergoing this course are expecte                                                                                                                                                | d to understand:                                                                                                                                                                                                                                  |                                                                                           |  |  |  |
|                   | 1.                                                                                   | The Generation and Detection of A.I                                                                                                                                                   | M waves.                                                                                                                                                                                                                                          |                                                                                           |  |  |  |
| l                 | 2.                                                                                   | DSB & SSB modulation and demod                                                                                                                                                        | ulation.                                                                                                                                                                                                                                          |                                                                                           |  |  |  |
| Course            | 3.                                                                                   | The difference between SSB-SC, DS                                                                                                                                                     |                                                                                                                                                                                                                                                   |                                                                                           |  |  |  |
|                   | 4.                                                                                   | 1 2                                                                                                                                                                                   | Modulation and Phase Modulation                                                                                                                                                                                                                   |                                                                                           |  |  |  |
| Objectives        |                                                                                      | generation and detection methods.                                                                                                                                                     |                                                                                                                                                                                                                                                   |                                                                                           |  |  |  |
|                   | 5.                                                                                   | The effect of noise on different mod                                                                                                                                                  |                                                                                                                                                                                                                                                   | circuits                                                                                  |  |  |  |
|                   |                                                                                      | like pre - emphasis and de - emphasi                                                                                                                                                  |                                                                                                                                                                                                                                                   |                                                                                           |  |  |  |
|                   | 6.                                                                                   | The concepts to realize or implemen                                                                                                                                                   |                                                                                                                                                                                                                                                   |                                                                                           |  |  |  |
|                   |                                                                                      | demodulation of AM and FM Schem                                                                                                                                                       |                                                                                                                                                                                                                                                   | rs.                                                                                       |  |  |  |
|                   |                                                                                      | successful completion of the course, t                                                                                                                                                |                                                                                                                                                                                                                                                   |                                                                                           |  |  |  |
|                   | CO1                                                                                  | Understand the need for modulation,                                                                                                                                                   |                                                                                                                                                                                                                                                   | ves.                                                                                      |  |  |  |
| ~                 | CO2                                                                                  | 1                                                                                                                                                                                     |                                                                                                                                                                                                                                                   |                                                                                           |  |  |  |
| Course            | CO3                                                                                  | Demonstrate FM signal generation and detection.                                                                                                                                       |                                                                                                                                                                                                                                                   |                                                                                           |  |  |  |
| Outcomes          | CO4                                                                                  | Get familiarized with the different types of noises present in the Analog                                                                                                             |                                                                                                                                                                                                                                                   |                                                                                           |  |  |  |
|                   |                                                                                      | Communication.                                                                                                                                                                        |                                                                                                                                                                                                                                                   |                                                                                           |  |  |  |
|                   | CO5                                                                                  | State and prove Sampling theorem.                                                                                                                                                     |                                                                                                                                                                                                                                                   |                                                                                           |  |  |  |
|                   | CO6                                                                                  | Analyze the Characteristics of AM and F.M radio Transmitter and receiver.                                                                                                             |                                                                                                                                                                                                                                                   |                                                                                           |  |  |  |
| Course<br>Content | modu<br>Ampl<br>Single<br>waves<br>Law I<br>DSB<br>Suppr<br>Loop,<br>discri<br>SSB V | LITUDE MODULATION: Introduction and its types. itude Modulation: Definition, Time tone and multi tone modulations, Power: Square law Modulator, Switching Detector, Envelop Detector. | domain and frequency domain dower relations in AM waves. Generation Modulator. Detection of AM Waves.  ITT –II  ATION: Introduction to Double Son of DSB-SC Modulated waves:  ATION: Introduction to SSB-SC, Indeeds for generating SSB-SC, Demod | escription,<br>ion of AM<br>es: Square<br>Side Band<br>COSTAS<br>Frequency<br>lulation of |  |  |  |
|                   |                                                                                      |                                                                                                                                                                                       |                                                                                                                                                                                                                                                   |                                                                                           |  |  |  |

| Г              |                                                                                                                                                                                                                                                                                                                                                    |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | UNIT –III                                                                                                                                                                                                                                                                                                                                          |
|                | ANGLE MODULATION: Frequency Modulation, Phase modulation: Single tone frequency modulation, Spectrum Analysis of Sinusoidal FM Wave, Narrow band FM, Wide band FM, Transmission bandwidth of FM Wave, Generation of FM Waves, Direct and Indirect methods of FM, Detection of FM Waves: Discriminators and its types, Phase Locked Loop.  UNIT –IV |
|                | <b>NOISE IN ANALOG COMMUNICATION:</b> Noise in AM, DSB-SC and SSB-SC Systems, Noise in Angle Modulation Systems, Threshold Effect. Pre-Emphasis and De-Emphasis.                                                                                                                                                                                   |
| Course         | UNIT –V                                                                                                                                                                                                                                                                                                                                            |
| Content        | <b>SAMPLING THEOREM</b> : Definition, Nyquist rate, Types of Sampling, Aliasing Effect, Sampling of Band Pass Signals.                                                                                                                                                                                                                             |
|                | <b>PULSE ANALOG MODULATION:</b> Types of Pulse Analog Modulations, Generation and Detection methods of PAM, PWM, PPM, Comparison of Pulse Analog Modulation schemes.                                                                                                                                                                               |
|                | UNIT-VI                                                                                                                                                                                                                                                                                                                                            |
|                | <b>RADIO TRANSMITERS:</b> Block diagram of AM transmitter, Frequency Scintillation, Radio Broadcast Transmitter, Armstrong FM Transmitter, Simple FM Transmitter using Reactance Modulator.                                                                                                                                                        |
|                | <b>RADIO RECEIVERS:</b> TRF Receiver, Super Heterodyne Receiver, Intermediate Frequency, Image Frequency, AGC, AFC.                                                                                                                                                                                                                                |
|                | TEXT BOOKS:                                                                                                                                                                                                                                                                                                                                        |
| Text Books and | <ol> <li>"Communication Systems" Simon Haykin, Wiley, 2<sup>nd</sup> Ed., 2007</li> <li>"Electronic Communication Systems" John Kennedy, TMH, 5<sup>th</sup> Ed., 2011.</li> <li>"Analog Communication Systems" Sanjay Sharma, Katson Books, 2013.</li> </ol>                                                                                      |
| Reference      | REFERENCE BOOKS:                                                                                                                                                                                                                                                                                                                                   |
| Books          | 1. "Communication Systems Engineering" John Proakis, MasoudSaleb, Pearson, 2 <sup>nd</sup> Ed, 2002.                                                                                                                                                                                                                                               |
|                | 2. "Principles of Communication Systems" Taub and Schilling, McGraw-Hill ISE, 4 <sup>th</sup> Ed, 2017.                                                                                                                                                                                                                                            |
|                | 3. "Analog Communication Systems" P. Chakrabarthi, Dhanapat Rai & Sons, 2018.                                                                                                                                                                                                                                                                      |
|                | 1. http://nptel.ac.in/cources                                                                                                                                                                                                                                                                                                                      |
| E-Resources    | <ol> <li>https:// iete-elan.ac.in</li> <li>https://freevideolectures.com/university/iit</li> </ol>                                                                                                                                                                                                                                                 |
|                |                                                                                                                                                                                                                                                                                                                                                    |

# 19EC2205 – DIGITAL IC APPLICATIONS

| Course category:    | Program core                       | Credits:                               | 3       |
|---------------------|------------------------------------|----------------------------------------|---------|
| <b>Course Type:</b> | Theory                             | <b>Lecture - Tutorial - Practical:</b> | 3 - 0-0 |
| Prerequisite:       | Electronic Devices, Digital System | <b>Sessional Evaluation:</b>           | 40      |
|                     | Design & Programming Skills,       | External Evaluation:                   | 60      |
|                     |                                    | Total Marks:                           | 100     |

| Implementing logic gates and Boolean expressions using different logic families.  Explain how digital circuit of large complexity can be built in a methodological way, starting from Boolean logic and applying a set of rigorous techniques.  Create minimal realizations of single and multiple output Boolean functions.  Design and analyze combinational circuits using V.H.D.L. language.  Design and analyze sequential circuits using V.H.D.L. language.  To have a profound understanding of the design of complex digital VLSI circuits and synthesis tool for hardware design.  Don successful completion of the course, the students will be able to:  Demonstrate knowledge of V.H.D.L. History & Language fundamentals  Demonstrate knowledge of Objects in V.H.D.L  Design and analyze combinational circuits for various practical problems using basic gates  Design and analyze sequential circuits for various practical problems using flip flops               |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Explain how digital circuit of large complexity can be built in a methodological way, starting from Boolean logic and applying a set of rigorous techniques.  Create minimal realizations of single and multiple output Boolean functions.  Design and analyze combinational circuits using V.H.D.L. language.  Design and analyze sequential circuits using V.H.D.L. language.  To have a profound understanding of the design of complex digital VLSI circuits and synthesis tool for hardware design.  Don successful completion of the course, the students will be able to:  D1 Understand the process of integration and characteristics of different logic families  D2 Demonstrate knowledge of V.H.D.L. History & Language fundamentals  D3 Demonstrate knowledge of Objects in V.H.D.L  D4 Design and analyze combinational circuits for various practical problems using basic gates  D5 Design and analyze sequential circuits for various practical problems using flip |  |
| Understand the process of integration and characteristics of different logic families Demonstrate knowledge of V.H.D.L. History & Language fundamentals Demonstrate knowledge of Objects in V.H.D.L Design and analyze combinational circuits for various practical problems using basic gates Design and analyze sequential circuits for various practical problems using flip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Demonstrate knowledge of V.H.D.L. History & Language fundamentals Demonstrate knowledge of Objects in V.H.D.L Design and analyze combinational circuits for various practical problems using basic gates Design and analyze sequential circuits for various practical problems using flip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Demonstrate knowledge of Objects in V.H.D.L  Design and analyze combinational circuits for various practical problems using basic gates  Design and analyze sequential circuits for various practical problems using flip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Design and analyze combinational circuits for various practical problems using basic gates  Design and analyze sequential circuits for various practical problems using flip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| basic gates  Design and analyze sequential circuits for various practical problems using flip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Design and analyze sequential circuits for various practical problems using flip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 11003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| O6 Understand the synthesis tool for hardware design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| UNIT – I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| <b>IGITAL INTEGRATED CIRCUITS:</b> Evaluation of ICs, Advantages and assification of ICs. Digital IC characteristics, Digital IC families- DTL, HTL, ECL, OS, CMOS, TTL-Totem-pole, Open collector and Tristate outputs and IC packaging's.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| UNIT – II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| VHDL INTRODUCTION AND LANGUAGE FUNDAMENTALS:  VHDL History – Design methodology: - Description style, Direction of design, design flow, step in digital system design -Hardware modeling issue: concurrency, delays, delta time and back annotation – organization of a VHDL design file – libraries.  Language fundamentals: Basic sequential statements – Date types – Assignment statements and operators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |

|                                         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | UNIT – III                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         | OBJECTS IN VHDL: Signals, Variable, constants, files-attributes of objects – VHDL package, package body and configurations – Entity declarations and statements, Logic gates using VHDL  UNIT – IV                                                                                                                                                                                                                |
|                                         | COMBINATIONAL CIRCUIT BUILDING BLOCKS: Multiplexers, Decoders, Encoders – Code converters and their implémentation using VHDL.                                                                                                                                                                                                                                                                                    |
| Course<br>Content                       | UNIT – V                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                         | <b>SEQUENTIAL LOGIC DESIGN:</b> Latches and flip-flops, registers, counters (Asynchronous and synchronous) BCD, Ring and Johnson counter, FSM: Meelay and Moore-Machines and their implementation using VHDL.                                                                                                                                                                                                     |
|                                         | UNIT – VI                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                         | VHDL SYNTHESIS: VHDL Synthesis, Circuit Design Flow, Circuit Synthesis, Simulation, Layout, Design capture tools, Design Verification Tools.                                                                                                                                                                                                                                                                      |
|                                         | TEXT BOOKS:                                                                                                                                                                                                                                                                                                                                                                                                       |
| Text Books<br>and<br>Reference<br>Books | <ol> <li>B.S. sonde, "Introduction to system design using ICs", Wiley Eastern,2<sup>nd</sup> Ed, 1980</li> <li>J Bhasker, "VHDL primer", PEARSON Education, 3<sup>rd</sup> Ed, 2015.</li> <li>Morris Mano, "Digital Logic and Computer Design", Pearson Education, 4<sup>th</sup> Ed. 2007</li> <li>Pucknell Douglas A," Basic VLSI Design", Prentice-Hall of India Pvt.Ltd, 3<sup>rd</sup> Ed., 2009.</li> </ol> |
|                                         | REFERENCE BOOKS:                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                         | <ol> <li>Stephen Brown and zvonkovranesic, 'Fundamentals of digital design with VHDL, TMH 3<sup>rd</sup> Ed., 2017.</li> <li>A.P.Godse &amp; Bakshi Digital IC Application-Technical Publications, 2014.</li> <li>S.S. Limaye, 'VHDL – A design oriented Approach, 'TMH edition (2009).</li> </ol>                                                                                                                |
| E-Resources                             | <ol> <li>http://nptel.ac.in/cources</li> <li>https:// iete-elan.ac.in</li> <li>https://freevideolectures.com/university/iit</li> </ol>                                                                                                                                                                                                                                                                            |

# 19MC2201- ECONOMICS & ACCOUNTANCY

(Common to ECE and EEE)

| <b>Course Category:</b> | Humanities | Credits                     | 0     |
|-------------------------|------------|-----------------------------|-------|
| <b>Course Type:</b>     | Theory     | Lecture-Tutorial-Practical: | 2-0-0 |
| <b>Pre-requisite:</b>   | Nil        | Sessional Evaluation:       | 40    |
|                         |            | External Evaluation:        | 60    |
|                         |            | Total Marks:                | 100   |

|                      | Students undergoing this course are expected to understand:                                                                                                                                                                                                                                                                                                                |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Course<br>Objectives | <ol> <li>Causes of economic problems.</li> <li>Behaviour of a Consumer while purchasing and consuming various commodities and services</li> <li>Various production and cost concepts used in managerial decision making process</li> <li>Formation of different types of business organizations in India.</li> <li>Application of the basic accounting concepts</li> </ol> |  |
|                      | Upon successful completion of the course , the students will be able to:  CO1 Demonstrate an ability to define, analyze and identify the appropriate solution to a business problem using sound economic and accounting principles.                                                                                                                                        |  |
|                      | CO2 Know the role of various cost concepts in managerial decisions and the managerial uses of production function.                                                                                                                                                                                                                                                         |  |
| Course               | CO3 Understand to take price and output decisions under various market structures.                                                                                                                                                                                                                                                                                         |  |
| Outcomes             | CO4 Know in brief formalities to be fulfilled to start a business organization.                                                                                                                                                                                                                                                                                            |  |
|                      | CO5 Analyse the firm's financial position with the techniques of economic aspects as well as financial analysis.                                                                                                                                                                                                                                                           |  |
|                      | CO6 Evaluate and select profitable investment proposals                                                                                                                                                                                                                                                                                                                    |  |
|                      | UNIT – I                                                                                                                                                                                                                                                                                                                                                                   |  |
|                      | INTRODUCTION TO ECONOMICS: Definition of Economics and basic concepts of Micro and Macro-economics.  The concept of Demand-Law of demand — Elasticity of Demand: Types and measurement-Demand Forecasting-Methods of Demand Forecasting.                                                                                                                                   |  |
| Course               | UNIT – II                                                                                                                                                                                                                                                                                                                                                                  |  |
| Content              | THEORY OF PRODUCTION AND COST: Production function – Cobb – Douglas production function and its properties – Law of variable proportions – Law of Returns to Scale. Cost concepts – Cost- Out put relations in short run long run- Revenue curves – Break-Even Analysis.  UNIT – III                                                                                       |  |
|                      | <b>THEORY OF PRICING</b> : Classification of markets – Pricing under perfect Competition – Pricing under Monopoly – Price discrimination – Monopolistic Competition.                                                                                                                                                                                                       |  |

|                                         | UNIT – IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | <b>TYPES OF BUSINESS ORGANIZATIONS:</b> Sole proprietorship, partnership and Joint Stock Company – Shares and debentures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                         | <b>BANKING SYSTEM</b> : Central bank, Commercial banks and their functions. Impact of technology in banking sector.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Course                                  | UNIT – V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Course<br>Content                       | FINANCIAL ACCOUNTING: Concepts and principles, Journal and Ledger, Trial Balance, Final Accounts: Trading account, Profit and Loss account and Balance sheet (Simple Final account problems without adjustments).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                         | UNIT-VI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                         | FUNDAMENTAL CONCEPTS OF CAPITAL AND CAPITAL BUDGETING: Factors and Sources of Capital -Meaning, process and Methods Capital budgeting (Payback period, NPV, ARR & IRR- simple problems).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Text Books<br>and<br>Reference<br>Books | <ol> <li>Varshney &amp; Maheswari: Managerial Economics, S. Chand Publishers</li> <li>Business Organisations: C.B.Gupta, S.Chand Publishers</li> <li>Managerial Economics and Financial Accounting: A.R.Arya Sri, Tata Mcgraw Hills publishers.</li> <li>REFERENCE BOOKS:         <ol> <li>Economic Analysis: S.Sankaran, Margham Publications.</li> <li>S.N.Maheswari &amp; S.K. Maheswari, Financial Accounting, Vikas Publishers.</li> <li>S. A. Siddiqui &amp; A. S. Siddiqui, Managerial Economics &amp; Financial Analysis, New age International Space Publications.</li> <li>M. Sugunatha Reddy: Managerial Economics and Financial Analysis, Research India Publication, New Delhi.</li> </ol> </li> </ol> |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

# 19EC22P1 – PULSE AND DIGITAL CIRCUITS LAB

| Course Category: | Program Core                                                                                   | Credits:                                                       | 1.5             |
|------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------|
| Course Type:     | Practical                                                                                      | Lecture-Tutorial- Practice:                                    | 0 - 0 - 3       |
| Prerequisite:    | Electronic Devices and Circuits, Pulse and Analog Circuits, Switching Theory and Logic design. | Sessional Evaluation:<br>External Evaluation :<br>Total Marks: | 40<br>60<br>100 |

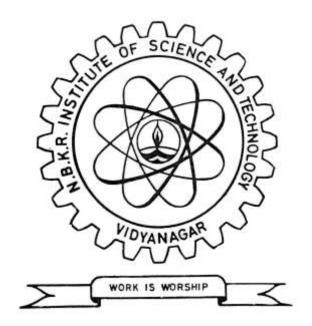
|            | Studer                                                                                                                                 | nts undergoing this course are expected to understand:                                                                                               |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Course     |                                                                                                                                        |                                                                                                                                                      |  |
| Objectives | <ol> <li>The behaviour of various semiconductor devices.</li> <li>The V-I characteristics of various semiconductor devices.</li> </ol> |                                                                                                                                                      |  |
|            | Linon                                                                                                                                  |                                                                                                                                                      |  |
|            | CO1                                                                                                                                    | successful completion of the course, the students will be able to:  Understand function of logic gates and can implement logic circuits using gates. |  |
|            | CO2                                                                                                                                    | Implement the combinational logic circuits.                                                                                                          |  |
| Course     | CO3                                                                                                                                    | Elucidate differences between synchronous and asynchronous circuits.                                                                                 |  |
| Outcomes   | CO4                                                                                                                                    | Demonstrate linear and non-linear wave Shaping.                                                                                                      |  |
|            | CO5                                                                                                                                    | Design Multivibrators.                                                                                                                               |  |
|            | CO6                                                                                                                                    | Design Schmitt Trigger                                                                                                                               |  |
|            | Minim                                                                                                                                  | num of <b>TEN</b> experiments to be completed out of the following:                                                                                  |  |
|            |                                                                                                                                        | LIST OF EXPERIMENTS                                                                                                                                  |  |
|            | 1.                                                                                                                                     | (a). Logic Gates                                                                                                                                     |  |
|            |                                                                                                                                        | (b). Realization of logic gates using NAND and NOR Gates                                                                                             |  |
|            | 2.                                                                                                                                     | Full Adder                                                                                                                                           |  |
|            | 3.                                                                                                                                     | Decoder                                                                                                                                              |  |
| Course     | 4.                                                                                                                                     | Divide by N-Ripple Counter                                                                                                                           |  |
| Content    | 5.                                                                                                                                     | Multiplexer                                                                                                                                          |  |
|            | 6.                                                                                                                                     | Divide by N-Synchronous Counter                                                                                                                      |  |
|            | 7.                                                                                                                                     | RC Differentiator and Integrator                                                                                                                     |  |
|            | 8.                                                                                                                                     | Diode Clippers & Clampers                                                                                                                            |  |
|            | 9.                                                                                                                                     | Astable Multivibrator using BJT                                                                                                                      |  |
|            | 10                                                                                                                                     | . Bistable Multivibrator using BJT                                                                                                                   |  |
|            | 11                                                                                                                                     | . Schmitt Trigger using BJT                                                                                                                          |  |
|            | 12                                                                                                                                     | . Bootstrap sweep circuit.                                                                                                                           |  |

# 19EC22P2 – IC APPLICATIONS LAB

| Course Category: | Program Core              | Credits:                    | 1.5       |
|------------------|---------------------------|-----------------------------|-----------|
| Course Type:     | Practical                 | Lecture-Tutorial- Practice: | 0 - 0 - 3 |
|                  | Analog Integrated Circuit | Sessional Evaluation:       | 40        |
| Prerequisite:    | Applications              | External Evaluation:        | 60        |
|                  |                           | Total Marks:                | 100       |

|                      | Students undergoing this course are expected to understand:                                        |
|----------------------|----------------------------------------------------------------------------------------------------|
| Course<br>Objectives | The basic applications of Op-Amp                                                                   |
|                      | 2. The R-2R ladder network used as an A/D converter in interfacing between Analog                  |
|                      | and digital.  3. 555 Timer applications –in various timer circuits and Delay circuits.             |
|                      | Upon successful completion of the course, the students will be able to:                            |
|                      | CO1 Design Rectifiers without and with Filters (HWR, FWR, BR).                                     |
|                      | CO2 Design various amplifier circuits using op-amp                                                 |
| Course<br>Outcomes   | CO3 Design various oscillator circuits using op-amp                                                |
| Outcomes             | CO4 Design regulator circuit using op-amp                                                          |
|                      | CO5 Design various feedback amplifier circuits using op-amp                                        |
|                      | CO6 Determine the f <sub>T</sub> of a given Transistor.                                            |
|                      | Minimum of <b>TEN</b> experiments to be completed out of the following: <b>LIST OF EXPERIMENTS</b> |
|                      | LIST OF EXPERIMENTS                                                                                |
|                      | 1. Voltage Follower, Inverting Amplifier                                                           |
|                      | 2. Summing Amplifier & Difference Amplifier                                                        |
|                      | 3. Astable Multivibrator using Op-Amp.                                                             |
|                      | 4. Astable Multivibrator using 555 Timer.                                                          |
| Course               | 5. Comparator using Op-Amp.                                                                        |
| Content              | 6. Zero crossing Detector using Op-Amp.                                                            |
|                      | 7. Ramp Generator using 555 Timer.                                                                 |
|                      | 8. Op-Amp Frequency Response.                                                                      |
|                      | 9. Narrow band pass filter using IC 747.                                                           |
|                      | 10. Full Wave Rectifier using Op-Amp.                                                              |
|                      | 11. R-2R Ladder Network.                                                                           |
|                      | 12. Schmitt Trigger using Op-Amp.                                                                  |

# 19EC22P3 – DIGITAL SYSTEM DESIGN LAB USING VHDL


| Course Category: | Program Core                                                        | Credits:                                                       | 2               |
|------------------|---------------------------------------------------------------------|----------------------------------------------------------------|-----------------|
| Course Type:     | Practical                                                           | Lecture-Tutorial- Practice:                                    | 0 - 0 - 3       |
| Prerequisite:    | Switching theory & logic design,<br>Digital design and digital IC's | Sessional Evaluation:<br>External Evaluation :<br>Total Marks: | 40<br>60<br>100 |

|                      | Students undergoing this course are expected to understand:             |                                                                                                                  |
|----------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Course<br>Objectives | 1. How to write VHDL programs of different digital circuits.            |                                                                                                                  |
| Objectives           | 2. How to simulate the VHDL programs of different digital circuits.     |                                                                                                                  |
|                      | Upon successful completion of the course, the students will be able to: |                                                                                                                  |
| Course<br>Outcomes   |                                                                         | Write and simulate the various logic gates by using VHDL.                                                        |
|                      |                                                                         | Write and simulate the adders and subtractors by using VHDL.                                                     |
|                      |                                                                         | Verify the truth table of various digital circuits and IC's.                                                     |
|                      |                                                                         | Design the various digital circuits.  Write and simulate the various counters by using VHDL.                     |
|                      |                                                                         | Write and simulate the various registers by using VHDL.  Write and simulate the various registers by using VHDL. |
|                      |                                                                         | um of <b>TEN</b> experiments to be completed out of the following:                                               |
| Course<br>Content    |                                                                         | uni of 1214 experiments to be completed out of the following.                                                    |
|                      |                                                                         | <u>LIST OF EXPERIMENTS</u>                                                                                       |
|                      | 1.                                                                      | Logic Gates                                                                                                      |
|                      | 2.                                                                      | Full Adder & Full Subtractor                                                                                     |
|                      | 3.                                                                      | 3 to 8 Decoder                                                                                                   |
|                      | 4.                                                                      | 8 to 3 Encoder                                                                                                   |
|                      | 5.                                                                      | 4 bit Comparator                                                                                                 |
|                      | 6.                                                                      | 8x1 Multiplexer                                                                                                  |
|                      | 7.                                                                      | 1x4 Demultiplexer                                                                                                |
|                      |                                                                         | D Flip-Flop                                                                                                      |
|                      |                                                                         | Decade Counter                                                                                                   |
|                      |                                                                         | Shift Register                                                                                                   |
|                      |                                                                         | -                                                                                                                |
|                      |                                                                         | BCD to 7-segment display code converter                                                                          |
|                      |                                                                         | 3 bit up/down Ripple counter                                                                                     |
|                      |                                                                         | 2 bit synchronous counter                                                                                        |
|                      | 14.                                                                     | Bi-directional shift register                                                                                    |

## **N.B.K.R. INSTITUTE OF SCIENCE & TECHNOLOGY**

(AUTONOMOUS)

COLLEGE WITH POTENTIAL FOR EXCELLENCE (CPE)
Affiliated to JNTUA, Anantapuramu
Re-Accredited by NAAC with 'A' Grade
B.Tech. Courses Accredited by NBA under TIER-I



# **SYLLABUS**B.TECH. DEGREE COURSE

III B.Tech.
I & II Semesters

#### **ELECTRONICS AND COMMUNICATION ENGINEERING**

(With effect from the batch admitted in the academic year 2019-2020)

VIDYANAGAR - 524413 SPSR Nellore-Dist. Andhra Pradesh www.nbkrist.org

#### **INSTITUTE:**

#### Vision:

To emerge as a comprehensive Institute that provides quality technical education and research thereby building up a precious human resource for the industry and society.

#### **Mission:**

- 1. To provide a learner-centered environment that challenges individuals to actively participate in the education process.
- 2. To empower the faculty to excel in teaching while engaging in research, creativity and public service.
- 3. To develop effective learning skills enabling students pick up critical thinking thus crafting them professionally fit and ethically strong.
- 4. To reach out industries, schools and public agencies to partner and share human and academic resources.

#### VISION AND MISSION OF THE DEPARTMENT

#### Vision:

To develop high quality engineers with sound technical knowledge, skills, ethics and morals in order to meet the global technological and industrial requirements in the area of Electronics and Communication Engineering.

#### Mission:

- 1. To produce high quality graduates and post-graduates of Electronics and Communication Engineering with modern technical knowledge, professional skills and good attitudes in order to meet industry and society demands.
- 2. To develop graduates with an ability to work productively in a team with professional ethics and social responsibility.
- 3. To develop highly employable graduates and post graduates who can meet industrial requirements and bring innovations.
- 4. Moulding the students with foundation knowledge and skills to enable them to take up postgraduate programmes and research programmes at the premier institutes.

#### **Programme Educational Objectives (PEOs):**

- 1. To provide the students with strong fundamental and advanced knowledge in mathematics, Science and Engineering with respect to Electronics and Communication Engineering discipline with an emphasis to solve Engineering problems.
- 2. To prepare the students through well designed curriculum to excel in bachelor degree programme in Electronics and Communication Engineering in order to engage in teaching or industrial or any technical profession and to pursue higher studies.

- 3. To train students with intensive and extensive engineering knowledge and skill so as to understand, analyze, design and create novel products and solutions in the field of Electronics and Communication Engineering.
- 4. To inculcate in students the professional and ethical attitude, effective communication skills, team spirit, multidisciplinary approach and ability to relate engineering issues to broader social context.
- 5. To provide students with an excellent academic environment to promote leadership qualities, character molding and lifelong learning as required for a successful professional career.

#### **Program Outcomes (POs):**

**PO1:** Ability to acquire and apply knowledge of science and engineering fundamentals in problem solving.

**PO2:** Acquire in-depth technical competence in a specific information technology discipline.

**PO3:** Ability to undertake problem identification, formulation and providing optimum solution.

**PO4:** Ability to utilize systems approach to design and evaluate operational performance.

**PO5:** Understanding of the principles of inter-disciplinary domains for sustainable development.

**PO6:** Understanding of professional & ethical responsibilities and commitment to them.

**PO7:** Ability to communicate effectively, not only with engineers but also with the community at large.

**PO8**: Ability to Communicate effectively on complex engineering activities with the engineering community and with society at large.

**PO9**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

**PO10**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

**PO11**: Understanding of the social, cultural, global and environmental responsibilities as a professional engineer.

**PO12**: Recognizing the need to undertake life-long learning, and possess/acquire the capacity to do so.

#### NBKR INSTITUTE OF SCIENCE & TECHNOLOGY: VIDYANAGAR

(AUTONOMOUS)

(AFFILIATED TO JNTU ANANTAPUR: ANANTHAPURAMU)

SPSR NELLORE DIST

#### III YEAR OF FOUR YEAR B.TECH DEGREE COURSE – I SEMESTER

#### **ELECTRONICS AND COMMUNICATION ENGINEERING**

SCHEME OF INSTRUCTION AND EVALUATION

(With effect from the academic year 2019-2020)

(For the batch admitted in the academic year 2021-2022)

|      |          |                                       | Instruction |            |     | Credit | Evaluation           |      |               |                        |       |                              |                              |                      |                        |     |
|------|----------|---------------------------------------|-------------|------------|-----|--------|----------------------|------|---------------|------------------------|-------|------------------------------|------------------------------|----------------------|------------------------|-----|
|      | Course   | Course Title                          |             | Hours/Week |     |        | Sessional-I<br>Marks |      | Se            | essional-<br>Marks     | II    | Total Sessional<br>Marks(40) | End Semester<br>Examination  |                      | Maximum<br>Total Marks |     |
| S.No | Code     | THEORY                                | L           | Т          | D/P |        | Test <sup>\$</sup> - | A#-I | Max.<br>Marks | Test <sup>\$</sup> -II | A#-II | Max.<br>Marks                |                              | Duration<br>In Hours | Max.<br>Marks          | 100 |
| 1    | 19EC3101 | Microprocessors and Microcontrollers* | 3           | 0          | -   | 3      | 34                   | 6    | 40            | 34                     | 6     | 40                           |                              | 3                    | 60                     | 100 |
| 2    | 19EC3102 | Digital Signal Processing*            | 2           | 1          | -   | 3      | 34                   | 6    | 40            | 34                     | 6     | 40                           | 0.8*Best of<br>two+0.2*      | 3                    | 60                     | 100 |
| 3    | 19EC3103 | Digital Communication                 | 2           | 1          | -   | 3      | 34                   | 6    | 40            | 34                     | 6     | 40                           | least of two                 | 3                    | 60                     | 100 |
| 4    | 19EC3104 | Antennas & Wave Propagation           | 3           | 0          | -   | 3      | 34                   | 6    | 40            | 34                     | 6     | 40                           |                              | 3                    | 60                     | 100 |
| 5    | 19EE3103 | Linear Control Systems                | 3           | 0          | -   | 3      | 34                   | 6    | 40            | 34                     | 6     | 40                           |                              | 3                    | 60                     | 100 |
| 6    | 19EC31EX | Program Elective-I                    | 3           | 0          | -   | 3      | 34                   | 6    | 40            | 34                     | 6     | 40                           |                              | 3                    | 60                     | 100 |
|      |          | PRACTICALS                            |             |            |     |        |                      |      |               |                        |       |                              |                              |                      |                        |     |
| 7    | 19EC31P1 | MP & MC Lab                           | -           | -          | 3   | 1.5    | -                    | -    | -             | -                      | -     | 40                           | Day to Day<br>Evaluation and | 3                    | 60                     | 100 |
| 8    | 19EC31P2 | Analog Communication Lab              | -           | -          | 3   | 1.5    | -                    |      | -             | -                      | -     | 40                           | a test (40 Marks)            | 3                    | 60                     | 100 |
|      | •        | MANDATORY                             |             |            |     |        |                      |      |               |                        |       |                              |                              |                      | •                      | •   |
| 9    | 19AC3101 | Audit Course                          | 3           | -          | -   | -      | -                    |      | -             | -                      | -     | 40                           |                              | 3                    | 60                     | 100 |
|      |          | TOTAL                                 | 19          | 2          | 6   | 21     | •                    | -    | •             | -                      | -     | 360                          | -                            | -                    | 540                    | 900 |

<sup>\*</sup> Common to ECE & EEE.

**PE**-Program Elective, **OE**-Open Elective

<sup>#</sup> A for Assignment (continuous evaluation)

<sup>\$</sup> Test (Descriptive & Objective) duration = 2 Hours

## 19EC3101-MICROPROCESSORS AND MICROCONTROLLERS

(Common to ECE & EEE)

| Course Cate | egory:                                                                              | Program core                                                                                                   | Credits:                               | 3              |  |  |  |  |  |  |  |
|-------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------|--|--|--|--|--|--|--|
| Course      | Type:                                                                               | Theory                                                                                                         | Lecture - Tutorial - Practical:        | 3 - 0 - 0      |  |  |  |  |  |  |  |
| Prerequ     | uisite:                                                                             | Computer architecture and Basic                                                                                | Sessional Evaluation:                  | 40             |  |  |  |  |  |  |  |
|             |                                                                                     | programming.                                                                                                   | External Evaluation:                   | 60             |  |  |  |  |  |  |  |
|             |                                                                                     |                                                                                                                | Total Marks:                           | 100            |  |  |  |  |  |  |  |
|             | Stude                                                                               | nts undergoing this course are expected                                                                        | to understand:                         |                |  |  |  |  |  |  |  |
|             | 1.                                                                                  | The history and need of different ty                                                                           |                                        |                |  |  |  |  |  |  |  |
|             |                                                                                     | architecture details, pin configuration,                                                                       |                                        |                |  |  |  |  |  |  |  |
|             | 2.                                                                                  | And develop various projects, by learning programming, and interfacing details                                 |                                        |                |  |  |  |  |  |  |  |
|             |                                                                                     | 8085 microprocessor.                                                                                           |                                        |                |  |  |  |  |  |  |  |
|             | 3.                                                                                  | The internal architecture details, p                                                                           |                                        | their timing   |  |  |  |  |  |  |  |
| Course      |                                                                                     | diagrams of 8086µp, and develop asse                                                                           |                                        |                |  |  |  |  |  |  |  |
| Objectives  | 4.                                                                                  | The internal architecture details, pir                                                                         | configuration, and their timing        | diagrams of    |  |  |  |  |  |  |  |
|             | _                                                                                   | 8051μp.                                                                                                        | 1 . 11 . 6 .0051                       | 1              |  |  |  |  |  |  |  |
|             | 5.                                                                                  | The programming and interfacing of                                                                             | details of 8051 microcontroller a      | nd memory      |  |  |  |  |  |  |  |
|             |                                                                                     | interfacing too.                                                                                               | Enine addressing mades and CD          | II Dagistana   |  |  |  |  |  |  |  |
|             | 0.                                                                                  | The internal architecture details, pipe of P.I.C. µc.                                                          | ining, addressing modes, and C.P.      | U. Registers   |  |  |  |  |  |  |  |
|             | Linon                                                                               | successful completion of the course, th                                                                        | a students will be able to:            |                |  |  |  |  |  |  |  |
|             | Сроп                                                                                | <u>,                                      </u>                                                                 |                                        | C 0005         |  |  |  |  |  |  |  |
|             | CO1                                                                                 | Understand the evaluation of different types of microprocessors and features of 8085                           |                                        |                |  |  |  |  |  |  |  |
|             |                                                                                     | μp along with memory interfacing.                                                                              |                                        | d a state that |  |  |  |  |  |  |  |
|             | CO2                                                                                 | Assess and solve basic binary math op                                                                          |                                        | •              |  |  |  |  |  |  |  |
|             |                                                                                     | microprocessor 8085 internal archite manufacturing and performance.                                            | cture and its operation within         | the area of    |  |  |  |  |  |  |  |
|             |                                                                                     |                                                                                                                | tecture of 8086up and its modes of     | of operations  |  |  |  |  |  |  |  |
| Course      | CO3                                                                                 | Gain the knowledge on internal architecture of 8086µp and its modes of operational along with timing diagrams. |                                        |                |  |  |  |  |  |  |  |
| Outcomes    | GO 1                                                                                | Design electrical circuitry to the Microcontroller I/O ports in order to interface the                         |                                        |                |  |  |  |  |  |  |  |
|             | CO4                                                                                 | processor to external devices.                                                                                 |                                        |                |  |  |  |  |  |  |  |
|             | CO5                                                                                 | Illustrate how the different peripherals are interfaced with 8086 µc and develop                               |                                        |                |  |  |  |  |  |  |  |
|             | CO3                                                                                 | hardware projects using DAC, ADC, & 7-Segment Display.                                                         |                                        |                |  |  |  |  |  |  |  |
|             | CO6                                                                                 | Gain the knowledge on internal architecture of 8051µp and its modes of operations                              |                                        |                |  |  |  |  |  |  |  |
|             |                                                                                     | along with timing diagrams by which improving programming skills on                                            |                                        |                |  |  |  |  |  |  |  |
|             |                                                                                     | microcontroller.                                                                                               |                                        |                |  |  |  |  |  |  |  |
|             | _                                                                                   | UNIT                                                                                                           |                                        |                |  |  |  |  |  |  |  |
|             | <b>INTRODUCTION TO MICROPROCESSORS:</b> Types of microprocessors, Features of       |                                                                                                                |                                        |                |  |  |  |  |  |  |  |
|             | 8085                                                                                | 8085 microprocessor, Architecture of 8085 microprocessor, pin configuration, Register set,                     |                                        |                |  |  |  |  |  |  |  |
|             | Instruction Cycle, Timing Diagrams, Stack and Subroutines.                          |                                                                                                                |                                        |                |  |  |  |  |  |  |  |
|             | UNIT-II                                                                             |                                                                                                                |                                        |                |  |  |  |  |  |  |  |
| Course      | INST                                                                                | RUCTION SET OF 8085 MICROP                                                                                     | ROCESSORS: Addressing mode             | s, Assembly    |  |  |  |  |  |  |  |
| Content     | Langu                                                                               | age Programs (8085) for addition, sub-                                                                         | traction, multiplication, division etc | c., Interrupts |  |  |  |  |  |  |  |
|             | of 8085, Memory interfacing of 8085 microprocessor.                                 |                                                                                                                |                                        |                |  |  |  |  |  |  |  |
|             | UNIT-III                                                                            |                                                                                                                |                                        |                |  |  |  |  |  |  |  |
|             | ARC                                                                                 |                                                                                                                |                                        | description    |  |  |  |  |  |  |  |
|             | ARCHITECTURE OF 8086 MICROPROCESSOR: Architecture, pin description,                 |                                                                                                                |                                        |                |  |  |  |  |  |  |  |
|             | Instruction set, Addressing modes, Interrupt system. Minimum mode and Maximum mode  |                                                                                                                |                                        |                |  |  |  |  |  |  |  |
|             | operations of 8086 and its timing diagrams, Assembler directives, Assembly language |                                                                                                                |                                        |                |  |  |  |  |  |  |  |
|             | progra                                                                              | ams (8086).                                                                                                    |                                        |                |  |  |  |  |  |  |  |

|                   | UNIT- IV                                                                                                                             |  |  |  |  |  |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|                   | DATA TRANSFER SCHEMES: Programmable Communication Interface 8251,                                                                    |  |  |  |  |  |  |  |  |
|                   | Programmable Interrupt Controller (8259) and its interfacing, Programmable DMA                                                       |  |  |  |  |  |  |  |  |
|                   | controller (8257) and its interfacing, Programmable Interval Timer (8253) and its                                                    |  |  |  |  |  |  |  |  |
|                   | interfacing.                                                                                                                         |  |  |  |  |  |  |  |  |
| C                 | UNIT-V                                                                                                                               |  |  |  |  |  |  |  |  |
| Course<br>Content | MEMORY INTERFACING TO 8086: Interfacing various types of RAM and ROM chips,                                                          |  |  |  |  |  |  |  |  |
| Content           | PPI (8255) and its interfacing, ADC and DAC Interfacing, Waveform generation, Traffic                                                |  |  |  |  |  |  |  |  |
|                   | light controller, Stepper motor control, temperature measurement and control.                                                        |  |  |  |  |  |  |  |  |
|                   | UNIT-VI                                                                                                                              |  |  |  |  |  |  |  |  |
|                   | 8051 MICROCONTROLLERS: Architecture, pin description, Register set, Instruction set.                                                 |  |  |  |  |  |  |  |  |
|                   | Interrupt structure, timer & serial port operations, Simple Assembly language programs on general arithmetic and logical operations. |  |  |  |  |  |  |  |  |
|                   | general artifificate and logical operations.                                                                                         |  |  |  |  |  |  |  |  |
|                   | TEXT BOOKS:                                                                                                                          |  |  |  |  |  |  |  |  |
|                   | 1. Ram. B, "Fundamentals of Microprocessors and Micro controllers", Dhanpat Rai                                                      |  |  |  |  |  |  |  |  |
|                   | publications.                                                                                                                        |  |  |  |  |  |  |  |  |
|                   | 2. Douglas V. Hall, "Microprocessors and interfacing: Programming and hard ware",                                                    |  |  |  |  |  |  |  |  |
|                   | TMH, 2 <sup>nd</sup> edition.  3. The 8051 Micro-Controllers, Kenneth J. Ayala, 3 <sup>rd</sup> Edition, Thomson Publications.       |  |  |  |  |  |  |  |  |
| Text Books        | 4. Design with PIC Micro-Controllers by John B. Peatman, Pearson Educations.                                                         |  |  |  |  |  |  |  |  |
| and               | REFERENCES BOOKS:                                                                                                                    |  |  |  |  |  |  |  |  |
| Reference         | 1. A.K. Ray and K.M. Bhurchandi, "Advanced Microprocessors and Peripherals",                                                         |  |  |  |  |  |  |  |  |
| Books             | TMH.                                                                                                                                 |  |  |  |  |  |  |  |  |
|                   | 2. "Microprocessor Architecture, Programming, and Applications with the 8085" by                                                     |  |  |  |  |  |  |  |  |
|                   | Ramesh S. Gaonkar", Prentice Hall of India.                                                                                          |  |  |  |  |  |  |  |  |
|                   | 3. Intel Microprocessors 8086/8088, 80186/80188, 80286, 80386, 80486, Pentium,                                                       |  |  |  |  |  |  |  |  |
|                   | Prentium Proprocessor, Pentium II, III, IV by Barry B.Brey.                                                                          |  |  |  |  |  |  |  |  |
|                   |                                                                                                                                      |  |  |  |  |  |  |  |  |
| E-Resources       | 1. http://w3.ualg.pt/~jmcardo/ensino/ihs2004/Benner93.pdf                                                                            |  |  |  |  |  |  |  |  |
|                   | 2. http://engreric.com/wpcontent/uploads/2014/06/Syllabus_CECS346_Fall15.pdf                                                         |  |  |  |  |  |  |  |  |

| Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |     |      |      |      |
|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                                                                                                   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1                                                                                               | 2   | 2   | 2   | 3   | 2   | ı   | -   | 1   | -   | -    | 1    | 3    |
| CO2                                                                                               | 2   | 2   | 2   | 3   | 2   | ı   | -   | -   | -   | -    | -    | 3    |
| CO3                                                                                               | 2   | 2   | 2   | 3   | 2   | -   | -   | -   | -   | -    | -    | 3    |
| CO4                                                                                               | 2   | 2   | 2   | 3   | 2   | -   | -   | -   | -   | -    | -    | 3    |
| CO5                                                                                               | 2   | 2   | 2   | 3   | 2   | ı   | -   | 1   | -   | -    | 1    | 2    |
| CO6                                                                                               | 2   | 2   | 2   | 3   | 2   | -   | -   | -   | _   | -    | -    | 3    |

## 19EC3102- DIGITAL SIGNAL PROCESSING

(Common to ECE and EEE)

| Course este        | COME                                                                                                                                                                         | Program core                                                                                                                 | Credits:                           | 3            |  |  |  |  |  |  |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------|--|--|--|--|--|--|--|
| Course cate        |                                                                                                                                                                              |                                                                                                                              |                                    |              |  |  |  |  |  |  |  |
| Course T           |                                                                                                                                                                              | Theory                                                                                                                       | Lecture - Tutorial - Practical:    | 2 - 1 - 0    |  |  |  |  |  |  |  |
| Prerequ            |                                                                                                                                                                              | Signal & System, Fourier                                                                                                     | <b>Sessional Evaluation:</b>       | 40           |  |  |  |  |  |  |  |
|                    |                                                                                                                                                                              | transform, Laplace Transform & Z                                                                                             | External Evaluation:               | 60           |  |  |  |  |  |  |  |
|                    |                                                                                                                                                                              | transform                                                                                                                    | Total Marks:                       | 100          |  |  |  |  |  |  |  |
|                    | Stude                                                                                                                                                                        | nts undergoing this course are expecte                                                                                       | ed to understand:                  |              |  |  |  |  |  |  |  |
|                    | 1.                                                                                                                                                                           | The basic concepts and analytical m                                                                                          | ethods of Z-transform.             |              |  |  |  |  |  |  |  |
|                    |                                                                                                                                                                              | The various DFT & FFT algorithms                                                                                             |                                    |              |  |  |  |  |  |  |  |
| Course             |                                                                                                                                                                              | The techniques and tools for digital                                                                                         |                                    |              |  |  |  |  |  |  |  |
| <b>Objectives</b>  |                                                                                                                                                                              | 4. The design of FIR filters.                                                                                                |                                    |              |  |  |  |  |  |  |  |
| 3                  | 5.                                                                                                                                                                           | 2                                                                                                                            |                                    |              |  |  |  |  |  |  |  |
|                    |                                                                                                                                                                              | The truncation and Rounding errors                                                                                           | . Quantization noise               |              |  |  |  |  |  |  |  |
|                    |                                                                                                                                                                              | <u>-</u>                                                                                                                     |                                    |              |  |  |  |  |  |  |  |
|                    | Upon                                                                                                                                                                         | successful completion of the course,                                                                                         |                                    |              |  |  |  |  |  |  |  |
|                    | CO1                                                                                                                                                                          | Explain the concept of Z-transform                                                                                           |                                    | e concept of |  |  |  |  |  |  |  |
|                    | CO1                                                                                                                                                                          | discrete and fast Fourier trans forms                                                                                        |                                    |              |  |  |  |  |  |  |  |
|                    | CO2                                                                                                                                                                          | Understand the concept of IDFT and                                                                                           | I IZT                              |              |  |  |  |  |  |  |  |
| Course<br>Outcomes | CO3                                                                                                                                                                          | Apply the Concept of FIR ,IIR Stru                                                                                           | ctures and frequency domain filter | models       |  |  |  |  |  |  |  |
| Outcomes           | CO4 Design Parallel and cascade structure and Butterworth, Chebyshev filters.                                                                                                |                                                                                                                              |                                    |              |  |  |  |  |  |  |  |
|                    | CO5                                                                                                                                                                          | Design FIR filter using Fourier seri-                                                                                        | es method and understand the cond  | ept of fixed |  |  |  |  |  |  |  |
|                    | 003                                                                                                                                                                          | point and floating-point representation                                                                                      |                                    |              |  |  |  |  |  |  |  |
|                    | CO6                                                                                                                                                                          | Understand limit cycle oscillations of                                                                                       | concept and windowing technique.   |              |  |  |  |  |  |  |  |
|                    | COO                                                                                                                                                                          | TIN                                                                                                                          | NIT – I                            | -            |  |  |  |  |  |  |  |
|                    | <b>REVIEW OF Z-Transforms:</b> Z-transform and Inverse Z-Transform, Theorems and Properties, system function, Fourier representation of finite duration sequences.           |                                                                                                                              |                                    |              |  |  |  |  |  |  |  |
|                    | UNIT – II  DISCRETE & FAST FOURIER TRANSFORM: DFT, properties of DFT, FFT, FFT algorithms, Use of DFT for fast computation of convolution, IDFT.                             |                                                                                                                              |                                    |              |  |  |  |  |  |  |  |
|                    | UNIT – III                                                                                                                                                                   |                                                                                                                              |                                    |              |  |  |  |  |  |  |  |
| Course             | DIGITAL FILTER STRUCTURES: Basic FIR structures, IIR structures: Direct form-I,                                                                                              |                                                                                                                              |                                    |              |  |  |  |  |  |  |  |
| Content            |                                                                                                                                                                              | Digital Filter STRUCTURES: Basic FIR structures, IIR structures: Direct form-I, Direct form-II, Parallel form, Cascade form. |                                    |              |  |  |  |  |  |  |  |
| Content            | Direct                                                                                                                                                                       | 1 101111 11, 1 draiter form, Cascade form                                                                                    |                                    |              |  |  |  |  |  |  |  |
|                    |                                                                                                                                                                              | IIN                                                                                                                          | IT – IV                            |              |  |  |  |  |  |  |  |
|                    | DESI                                                                                                                                                                         | GN OF IIR FILTERS: Analog filter                                                                                             |                                    | 1            |  |  |  |  |  |  |  |
|                    |                                                                                                                                                                              | <u> </u>                                                                                                                     | ± ±                                |              |  |  |  |  |  |  |  |
|                    | _                                                                                                                                                                            | Chebyshev, Design of IIR Digital Filters from Analog Filters, Impulse Invariant and Bilinear Transformation Method.          |                                    |              |  |  |  |  |  |  |  |
|                    | UNIT – V                                                                                                                                                                     |                                                                                                                              |                                    |              |  |  |  |  |  |  |  |
|                    | <b>DESIGN OF FIR FILTERS</b> : Introduction to FIR filter, Methods of FIR                                                                                                    |                                                                                                                              |                                    |              |  |  |  |  |  |  |  |
|                    | series method, Windowing, Sampling.  UNIT-VI                                                                                                                                 |                                                                                                                              |                                    |              |  |  |  |  |  |  |  |
|                    |                                                                                                                                                                              |                                                                                                                              |                                    |              |  |  |  |  |  |  |  |
|                    | FINIT                                                                                                                                                                        |                                                                                                                              |                                    | int number   |  |  |  |  |  |  |  |
|                    | FINITE WORDLENGTH EFFECTS: Fixed point and floating point                                                                                                                    |                                                                                                                              |                                    |              |  |  |  |  |  |  |  |
|                    | representations – Truncation and Rounding errors – Quantization noise – coefficient quantization error – Product quantization error – Overflow error – Round off noise power |                                                                                                                              |                                    |              |  |  |  |  |  |  |  |
|                    |                                                                                                                                                                              | t cycle oscillations due to product rou                                                                                      |                                    | noise power  |  |  |  |  |  |  |  |
|                    | - mm                                                                                                                                                                         | i eyere osemanons due to product fou                                                                                         | ina on ana overnow enois.          |              |  |  |  |  |  |  |  |

|                    | TEXTBOOKS:                                                                      |  |  |  |  |  |  |  |
|--------------------|---------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                    | 1. Digital Signal Processing A.V Oppenheim and R.W. Schafer, Prentice – Hall of |  |  |  |  |  |  |  |
|                    | India.                                                                          |  |  |  |  |  |  |  |
|                    | 2. Digital Signal Processing, S. Salivahanam – TMH.                             |  |  |  |  |  |  |  |
| Text Books and     | 3. Digital Signal Processing Computer Base Approach, S.K. Mitra – Tata McGraw-  |  |  |  |  |  |  |  |
| Reference<br>Books | Hill (III)                                                                      |  |  |  |  |  |  |  |
| DOOKS              | REFERENCES BOOKS:                                                               |  |  |  |  |  |  |  |
|                    | 1. Digital Signal Processing, P. Ramesh Babu, Scitech Publications.             |  |  |  |  |  |  |  |
|                    | 2. Digital Signal Processing, John G Proakis and monolokis – Wiley Eastern      |  |  |  |  |  |  |  |
|                    | Economy edition.                                                                |  |  |  |  |  |  |  |
|                    | 1. http://nptel.ac.in/courses                                                   |  |  |  |  |  |  |  |
| E-Resources        | 2. https://dspace.mit.edu/handle/1721.1/57007                                   |  |  |  |  |  |  |  |
|                    | 3. http://dl.acm.org/citation.cfm?id=562622                                     |  |  |  |  |  |  |  |

| Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |     |      |      |      |
|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                                                                                                   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1                                                                                               | 3   | 2   | 2   | 3   | 2   | ı   | ı   | -   | -   | ı    | -    | 3    |
| CO2                                                                                               | 3   | 2   | 2   | 3   | 2   | 1   | 1   | -   | -   | 1    | -    | 3    |
| CO3                                                                                               | 3   | 2   | 2   | 3   | 2   | -   | -   | -   | -   | -    | -    | 3    |
| CO4                                                                                               | 3   | 2   | 2   | 3   | 2   | 1   | 1   | -   | -   | ı    | -    | 3    |
| CO5                                                                                               | 3   | 2   | 1   | 3   | 2   | 1   | 1   | _   | -   | 1    | -    | 3    |
| CO6                                                                                               | 3   | 2   | 1   | 3   | 2   | -   | -   | -   | -   | -    | -    | 2    |

## 19EC3103-DIGITAL COMMUNICATION

| Course Catego     | ory: F                                                                                                                                                                        | Program Core                                                                                            | Credits:                         | 3            |  |  |  |  |  |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------|--------------|--|--|--|--|--|--|--|
| Course Ty         | pe: T                                                                                                                                                                         | Theory                                                                                                  | Lecture-Tutorial-Practical:      | 2-1-0        |  |  |  |  |  |  |  |
| Prerequis         |                                                                                                                                                                               | Random Signals and Stochastic                                                                           | Sessional Evaluation:            | 40           |  |  |  |  |  |  |  |
| _                 | F                                                                                                                                                                             | Processes- Analog Communication                                                                         | External Evaluation:             | 60           |  |  |  |  |  |  |  |
|                   |                                                                                                                                                                               |                                                                                                         | Total Marks:                     | 100          |  |  |  |  |  |  |  |
|                   | Stude                                                                                                                                                                         | ents undergoing this course are expected to                                                             | understand:                      |              |  |  |  |  |  |  |  |
|                   | 1                                                                                                                                                                             | . The basic components of digital comm                                                                  |                                  |              |  |  |  |  |  |  |  |
|                   |                                                                                                                                                                               | 2. The pulse code modulation schemes for                                                                | 11                               |              |  |  |  |  |  |  |  |
| Course            | ] 3                                                                                                                                                                           | 3. The Inter-Symbol Interference (ISI)                                                                  | and Nyquist criterion for dis    | tortion less |  |  |  |  |  |  |  |
| <b>Objectives</b> | ,                                                                                                                                                                             | baseband binary transmission                                                                            | al masshand mas dulation schames |              |  |  |  |  |  |  |  |
|                   |                                                                                                                                                                               | <ul><li>The transmission and detection of digit</li><li>The mathematical background for diffe</li></ul> | -                                | •            |  |  |  |  |  |  |  |
|                   |                                                                                                                                                                               | 5. The mathematical background for diffe                                                                |                                  |              |  |  |  |  |  |  |  |
|                   |                                                                                                                                                                               | completing the course the student will be                                                               |                                  |              |  |  |  |  |  |  |  |
|                   | CO1                                                                                                                                                                           | Illustrate the digital transmission with the                                                            |                                  |              |  |  |  |  |  |  |  |
|                   | CO2                                                                                                                                                                           | <del>-</del>                                                                                            |                                  |              |  |  |  |  |  |  |  |
| Course            | CO3                                                                                                                                                                           | Analyze the need for Nyquist criterion for                                                              |                                  |              |  |  |  |  |  |  |  |
| Outcomes          | 1 0 0 0   1 ====== j === = × j 1 ==== === ==========                                                                                                                          |                                                                                                         |                                  |              |  |  |  |  |  |  |  |
|                   | CO5 Derive expressions for error probabilities of ASK and FSK, BPSK a                                                                                                         |                                                                                                         |                                  |              |  |  |  |  |  |  |  |
|                   | CO6                                                                                                                                                                           |                                                                                                         |                                  |              |  |  |  |  |  |  |  |
|                   | C00                                                                                                                                                                           |                                                                                                         |                                  |              |  |  |  |  |  |  |  |
|                   | UNIT – I ELEMENTS OF DIGITAL COMMUNICATION SYSTEMS: Block diagram of Digital                                                                                                  |                                                                                                         |                                  |              |  |  |  |  |  |  |  |
|                   | Communication System, Merits and Demerits of Digital Transmission, Line Coding.                                                                                               |                                                                                                         |                                  |              |  |  |  |  |  |  |  |
|                   |                                                                                                                                                                               | MULTIPLEXING TECHNIQUES: FDM, TDM, CDM, Comparison of FDM, TDM and                                      |                                  |              |  |  |  |  |  |  |  |
|                   | CDM, Digital Multiplexers.                                                                                                                                                    |                                                                                                         |                                  |              |  |  |  |  |  |  |  |
|                   | UNIT – II                                                                                                                                                                     |                                                                                                         |                                  |              |  |  |  |  |  |  |  |
|                   | PULSE CODE MODULATIONS: Introduction to PCM, Transmitter and Receiver,                                                                                                        |                                                                                                         |                                  |              |  |  |  |  |  |  |  |
|                   |                                                                                                                                                                               | Uniform Quantization, Non-uniform Quantization, Companding, DPCM Transmitter and                        |                                  |              |  |  |  |  |  |  |  |
|                   | Receiver, Delta Modulation Transmitter and Receiver, Adaptive Delta Modulation Transmitter and Receiver, Noise in PCM and DM systems. Comparison of Pulse Code                |                                                                                                         |                                  |              |  |  |  |  |  |  |  |
|                   | Modulation Schemes.                                                                                                                                                           |                                                                                                         |                                  |              |  |  |  |  |  |  |  |
| Course            | UNIT – III                                                                                                                                                                    |                                                                                                         |                                  |              |  |  |  |  |  |  |  |
| Content           | BASEBAND TRANSMISSION: Introduction, Inter-Symbol Interference (ISI), Nyquist                                                                                                 |                                                                                                         |                                  |              |  |  |  |  |  |  |  |
|                   | Criterion for Distortion Less Baseband Binary Transmission, Ideal Nyquist Channel, Raised                                                                                     |                                                                                                         |                                  |              |  |  |  |  |  |  |  |
|                   | Cosine Filter & its Spectrum, Correlative Coding – Duo Binary & Modified Duo Binary                                                                                           |                                                                                                         |                                  |              |  |  |  |  |  |  |  |
|                   | Signaling Schemes, Baseband M-array PAM Transmission, Equalization Schemes, Eye                                                                                               |                                                                                                         |                                  |              |  |  |  |  |  |  |  |
|                   | Patterns.                                                                                                                                                                     |                                                                                                         |                                  |              |  |  |  |  |  |  |  |
|                   | UNIT – IV PASSBAND DATA TRANSMISSION: Introduction, Passband Transmission Model,                                                                                              |                                                                                                         |                                  |              |  |  |  |  |  |  |  |
|                   |                                                                                                                                                                               |                                                                                                         |                                  | · ·          |  |  |  |  |  |  |  |
|                   | Generation and Detection of Coherent Amplitude Shift Keying, Frequency Shift Keying, Binary Phase Shift Keying and Quadrature Phase Shift keying, Generation and Detection of |                                                                                                         |                                  |              |  |  |  |  |  |  |  |
|                   | non-coherent FSK and DPSK, Generation and Detection of QAM, Comparison of ASK,                                                                                                |                                                                                                         |                                  |              |  |  |  |  |  |  |  |
|                   | FSK, BPSK, DPSK and QPSK Schemes.                                                                                                                                             |                                                                                                         |                                  |              |  |  |  |  |  |  |  |
|                   | UNIT – V                                                                                                                                                                      |                                                                                                         |                                  |              |  |  |  |  |  |  |  |
|                   | Matched Filter: Integrator and dump filter, Optimum filter, Matched filter, Properties of                                                                                     |                                                                                                         |                                  |              |  |  |  |  |  |  |  |
|                   | Matched filter, Matched filter for rectangular pulse, Bit Error Rate due to Noise.                                                                                            |                                                                                                         |                                  |              |  |  |  |  |  |  |  |
|                   | Error probabilities- ASK, FSK, BPSK and QPSK.                                                                                                                                 |                                                                                                         |                                  |              |  |  |  |  |  |  |  |

|             | UNIT – VI                                                                                     |
|-------------|-----------------------------------------------------------------------------------------------|
| Course      | Introduction to Mobile Communication: Evolution of Mobile Communications,                     |
| Content     | Global System for Mobile (GSM): Architecture, Interfaces, Channels and Applications.          |
|             | TEXT BOOKS:                                                                                   |
|             | 1. Communication Systems - Simon Haykin - Wiley India Edition, 4 <sup>th</sup> Edition, 2011. |
|             | 2. Digital and Analog Communicator Systems - Sam Shanmugam- John Wiley- 2005.                 |
|             | 3. Lee. W. C. Y - "Mobile Cellular Telecommunication - Analog and Digital                     |
| Text Books  | Systems", Mc Graw Hill, 2015.                                                                 |
| and         | REFERENCE BOOKS:                                                                              |
| Reference   | 4. Principles of communication systems - Herbert Taub. Donald L Schiling- Goutam              |
| Books       | Sana- 3 <sup>rd</sup> Edition-McGraw-Hill- 2008.                                              |
|             | 5. Communication Systems- Analog & Digital –R. P. Singh & S.D. Sapre- T.M.H.                  |
|             | Publications. 2 <sup>nd</sup> Edition, 2008.                                                  |
|             | 6. Digital Communications - John G. Proakis. Masoud salehi – 5 <sup>th</sup> Edition-         |
|             | McGraw-Hill- 2008.                                                                            |
| E-Resources | 1. http://www.nptel.ac.in.                                                                    |
|             | 2. http://www.ebookee.com/digitalcommunicationsystems.                                        |

| Contribution | Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |      |      |      |
|--------------|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|              | PO1                                                                                               | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1          | 3                                                                                                 | 3   | 1   | -   | -   | -   | -   | -   | -   | 1    | -    | -    |
| CO2          | 3                                                                                                 | 3   | 2   | -   | -   | 1   | 1   | 1   | 1   | 1    | 1    | ı    |
| CO3          | 3                                                                                                 | 3   | 2   | 1   | 1   | -   | -   | 1   | -   | 2    | -    | 1    |
| CO4          | 3                                                                                                 | 3   | 1   | 1   | 1   | -   | -   | 2   | -   | 2    | -    | 1    |
| CO5          | 3                                                                                                 | 3   | 1   | 1   | 1   | -   | -   | 2   | -   | 1    | 1    | 1    |
| CO6          | 3                                                                                                 | 3   | 1   | 1   | 1   | -   | -   | 2   | -   | 1    | 1    | 1    |

## 19EC3104 -ANTENNAS AND WAVE PROPAGATION

| Course cates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gory:                                                                                                                                                                                                                                                                                  | Program Core                                                              | Credits:                        | 3         |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------|-----------|--|--|--|--|--|--|--|--|
| Course T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                        | Theory                                                                    | Lecture - Tutorial - Practical: | 2 - 1 - 0 |  |  |  |  |  |  |  |  |
| Prerequ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                        | Vector Calculus, Basics of                                                | Sessional Evaluation:           | 40        |  |  |  |  |  |  |  |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                        | Electromagnetic Fields and Waves                                          | External Evaluation:            | 60        |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        |                                                                           | Total Marks:                    | 100       |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stude                                                                                                                                                                                                                                                                                  | Students undergoing this course are expected to:                          |                                 |           |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1. Study the propagation of signals; calculate various line parameters.                                                                                                                                                                                                                |                                                                           |                                 |           |  |  |  |  |  |  |  |  |
| G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2. Study the concept of polarization and its significance in wireless communications.                                                                                                                                                                                                  |                                                                           |                                 |           |  |  |  |  |  |  |  |  |
| Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3. Learn antenna basics, antenna parameters and calculation of radiation resis                                                                                                                                                                                                         |                                                                           |                                 |           |  |  |  |  |  |  |  |  |
| Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                        | of various antennas.                                                      |                                 |           |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.                                                                                                                                                                                                                                                                                     | Study antenna arrays and to draw th                                       | eir radiation 3-D patterns.     |           |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.                                                                                                                                                                                                                                                                                     | Understand the basic working princ                                        | iple of VHF and UHF antennas.   |           |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.                                                                                                                                                                                                                                                                                     | Understand different kinds of Wave                                        | Propagation.                    |           |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Upon                                                                                                                                                                                                                                                                                   | successful completion of the course,                                      | the students will be able to:   |           |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CO1                                                                                                                                                                                                                                                                                    | Understand the fundamentals of Tra                                        |                                 |           |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CO2                                                                                                                                                                                                                                                                                    |                                                                           |                                 |           |  |  |  |  |  |  |  |  |
| Course<br>Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO3 Learn antenna basics, Antenna Parameters and calculation of Resistances.                                                                                                                                                                                                           |                                                                           |                                 |           |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CO4                                                                                                                                                                                                                                                                                    |                                                                           |                                 |           |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CO5                                                                                                                                                                                                                                                                                    | CO5 Learn different types of Antennas to be employed in V.H.F. and U.H.F. |                                 |           |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CO6                                                                                                                                                                                                                                                                                    |                                                                           |                                 |           |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UNIT I POLARIZATION, REFLECTION AND REFRACTION: Polarization- Linear, Circular and Elliptical polarizations, Normal incidence on plane boundaries, Reflection and Transmission coefficients, Oblique incidence on plane boundaries- Parallel and perpendicular polarizations.  UNIT-II |                                                                           |                                 |           |  |  |  |  |  |  |  |  |
| Course<br>Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>TRANSMISSION LINES:</b> Primary and Secondary Constants of the Line, Transmission Line Equations, Propagation Constant, Characteristic Impedance, Distortion less Line, Input Impedance of Open and Short Circuited Lines, Standing Waves, Reflection Coefficient, Smith Chart.     |                                                                           |                                 |           |  |  |  |  |  |  |  |  |
| Coefficient, Smith Chart.  UNIT III  RADIATION FUNDAMENTALS: Definition of antenna, Retarded Potentials, Approximation, Radiation from a current Element, Half Wave Dipole and I Antennas.  ANTENNA PARAMETERS: Radiation Pattern, Radiation Intensity, Directiv H.P.B.W., Effective Aperture, Relation between Directivity and Maximum Aperture.  UNIT IV  LINEAR WIRE ANTENNAS: Current Distribution on Thin Linear Wire Array of Two Point Sources, Principle of Pattern Multiplication, Uniform Linear Broad Side and End fire Array and Binomial Arrays.  TRAVELLING WAVE ANTENNAS: Long Wire and Rhombic Antennas, Antenna, Folded Dipole Antennas (Without Analysis) |                                                                                                                                                                                                                                                                                        |                                                                           |                                 |           |  |  |  |  |  |  |  |  |

|                | UNIT V                                                                               |  |  |  |  |  |  |  |  |  |
|----------------|--------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|                | SURFACE AND SPACE WAVE PROPAGATION: Friis Transmission Equation,                     |  |  |  |  |  |  |  |  |  |
|                | Salient Features of Somerfield Theory, Ground Wave Field Strength Calculation,       |  |  |  |  |  |  |  |  |  |
|                | Antennas located over Flat Earth, Effect of Curvature of Earth, Refraction of Radio  |  |  |  |  |  |  |  |  |  |
| Course         | Waves in Troposphere, Effective Radius of Earth, Radio Horizon and Maximum Radio     |  |  |  |  |  |  |  |  |  |
| Content        | Range.                                                                               |  |  |  |  |  |  |  |  |  |
|                | UNIT VI                                                                              |  |  |  |  |  |  |  |  |  |
|                | SKY WAVE PROPAGATION: Structure of Ionosphere, Mechanism of Wave                     |  |  |  |  |  |  |  |  |  |
|                | Refraction in Ionosphere, Critical Frequency, M.U.F., Virtual Height, Skip Distance, |  |  |  |  |  |  |  |  |  |
|                | Effect of Earth's Magnetic Field, Faraday's rotation.                                |  |  |  |  |  |  |  |  |  |
|                | TEXT BOOKS:                                                                          |  |  |  |  |  |  |  |  |  |
|                | 1. Antennas by John D Krauss – ISE.                                                  |  |  |  |  |  |  |  |  |  |
| Text Books and | 2. Antenna and Wave Propagation by K.D. Prasad - Khanna Publication.                 |  |  |  |  |  |  |  |  |  |
| Reference      |                                                                                      |  |  |  |  |  |  |  |  |  |
| Books          | REFERENCE BOOKS:                                                                     |  |  |  |  |  |  |  |  |  |
|                | 1. Transmission Lines and Networks by Umesh Sinha –S athya Prakashan.                |  |  |  |  |  |  |  |  |  |
|                | 2. Electromagnetic Waves and Radiating Systems by Jordan E.C. and Balmain H. G       |  |  |  |  |  |  |  |  |  |
|                | P.H.I.                                                                               |  |  |  |  |  |  |  |  |  |
| E-Resources    | 1. http://www.nptel.ac.in.                                                           |  |  |  |  |  |  |  |  |  |
|                | 2. http://www.ebookee.com/antennaandwavepropagation.                                 |  |  |  |  |  |  |  |  |  |

| Contribution o | Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |      |      |      |
|----------------|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                | PO1                                                                                               | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1            | 3                                                                                                 | 2   | 2   | 3   | 1   | 1   | 1   | -   | -   | -    | ı    | 2    |
| CO2            | 3                                                                                                 | 2   | 2   | 3   | 1   | 1   | 1   | -   | -   | -    | 1    | 2    |
| CO3            | 3                                                                                                 | 2   | 2   | 3   | 1   | 1   | 1   | -   | -   | -    | ı    | 2    |
| CO4            | 3                                                                                                 | 2   | 2   | 3   | 1   | 1   | -   | -   | -   | -    | -    | 3    |
| CO5            | 3                                                                                                 | 2   | 2   | 3   | 2   | 1   | 1   | -   | -   | -    | ı    | 3    |
| CO6            | 3                                                                                                 | 2   | 2   | 3   | 2   | -   | -   | _   | -   | -    | -    | 2    |

## 19EE3103-LINEAR CONTROL SYSTEMS

| Course catego                                                                                                                                                                                                                                                                                                                                                                                                                                    | ory:                                                                                                                                                                                                       | Program core                                                                                     | Credits:                                    | 3             |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------|---------------|--|--|--|--|--|
| Course Ty                                                                                                                                                                                                                                                                                                                                                                                                                                        | pe:                                                                                                                                                                                                        | Гћеогу                                                                                           | Lecture - Tutorial - Practical:             | 3 - 0- 0      |  |  |  |  |  |
| Prerequis                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                            | Basic knowledge of differentiation, ntegration and Laplace transform                             | Sessional Evaluation : External Evaluation: | 40<br>60      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                            | echniques.                                                                                       | Total Marks:                                | 100           |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Students undergoing this course are expected to understand:                                                                                                                                                |                                                                                                  |                                             |               |  |  |  |  |  |
| Course Objectives  1. The various types of control systems and methods to obtain transfer function. 2. The mathematical models of physical systems. 3. The time domain responses of first and second-order systems for different input signals. 4. The stability of a control system using different techniques. 5. The frequency domain techniques to assess the system performance. 6. The different types of compensators for linear systems. |                                                                                                                                                                                                            |                                                                                                  |                                             |               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Upor                                                                                                                                                                                                       | successful completion of the course                                                              | the students will be able to:               |               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO1                                                                                                                                                                                                        |                                                                                                  | control systems and methods to o            | btain transfe |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO2                                                                                                                                                                                                        | Develop mathematical models of p                                                                 | hysical systems.                            |               |  |  |  |  |  |
| Course<br>Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                               | CO3                                                                                                                                                                                                        | Determine the time domain responsible different input signals.                                   | ses of first and second-order system        | s for         |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO4                                                                                                                                                                                                        | Evaluate the stability of a control s                                                            | ystem using different techniques.           |               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                            | Apply frequency domain technique                                                                 | es to assess the system performance.        |               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO5                                                                                                                                                                                                        | Design the different types of composition                                                        |                                             |               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                            | Ţ                                                                                                | JNIT –I                                     |               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  | loop                                                                                                                                                                                                       | RODUCTION TO CLASSICAL (control systems - types of feedback diagrams and their reduction- signal | k- feedback and its effects- transf         | fer function  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MATHEMATICAL MODELING OF PHYSICAL SYSTEMS: Mathematical modeling and transfer functions of electrical, mechanical and electro-mechanical elements - DC servo motors- two-phase AC servo motors - synchros. |                                                                                                  |                                             |               |  |  |  |  |  |
| Course<br>Content                                                                                                                                                                                                                                                                                                                                                                                                                                | UNIT-III  TIME DOMAIN ANALYSIS: Introduction, standard test signals- time response specifications-steady state error constants.                                                                            |                                                                                                  |                                             |               |  |  |  |  |  |
| STABILITY OF CONTROL SYSTEMS: Routh-Hurwitz criterion- root locathe construction of root location to proportional- derivative a controllers.  UNIT-V FREQUENCY DOMAIN ANALYSIS: Introduction- frequency domain specifications stated and specifications.                                                                                                                                                                                         |                                                                                                                                                                                                            |                                                                                                  |                                             |               |  |  |  |  |  |

|                 | UNIT-VI                                                                                       |
|-----------------|-----------------------------------------------------------------------------------------------|
| Course          | <b>DESIGN OF COMPENSATORS:</b> Introduction- need for compensators- lag and lead              |
| Content         | compensators design in frequency domain.                                                      |
|                 |                                                                                               |
|                 | Text books:                                                                                   |
|                 | 1. "Control system engineering", by I.J.Nagrath and M.Gopal, 6 <sup>th</sup> Edition, New age |
|                 | International (P) Ltd.                                                                        |
|                 | 2. "Control systems", by A.Nagoorkani, 2 <sup>nd</sup> Edition, RBA publishers.               |
| Text Books      | 3. "Control systems", by A.Anandkumar, 2 <sup>nd</sup> Edition, PHI publishers.               |
| and             |                                                                                               |
| Reference Books | Reference books:                                                                              |
|                 | 1. "Automatic control systems", by B.C.Kuo, 7 <sup>th</sup> Edition, PHI publishers.          |
|                 | 2. "Discrete time control systems", by K.Ogata, PHI Publishers.                               |
|                 | 3. "Control systems engineering", by Norman S Nise, Wiley, 2000.                              |
|                 |                                                                                               |
|                 | http://nptel.ac.in/courses                                                                    |
| E-Resources     | http://iete-elan.ac.in                                                                        |
|                 | http://freevideolectures.com/university/iitm                                                  |

| Contribution o | Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |      |      |      |
|----------------|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                | PO1                                                                                               | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1            | 3                                                                                                 | 3   | 2   | 3   | 2   | -   | -   | -   | -   | -    | -    | 3    |
| CO2            | 3                                                                                                 | 3   | 2   | 3   | 2   | -   | -   | -   | -   | -    | -    | 3    |
| CO3            | 3                                                                                                 | 3   | 2   | 3   | 2   | -   | -   | -   | -   | -    | -    | 3    |
| CO4            | 3                                                                                                 | 3   | 2   | 3   | 2   | -   | -   | -   | -   | -    | -    | 3    |
| CO5            | 3                                                                                                 | 3   | 2   | 3   | 2   | -   | -   | -   | -   | -    | -    | 3    |
| CO6            | 3                                                                                                 | 3   | 2   | 3   | 2   | -   | -   | -   | -   | -    | -    | 2    |

#### 19EC31P1 - MP & MC LAB

(Common to ECE, EEE)

| Course Cate          | gory:                                                              | Program Core                                                                                                                                                                                                                                                                                                                                                                            | Credits:                                                       | 1.5               |  |  |  |  |  |
|----------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------|--|--|--|--|--|
| Course '             | Type:                                                              | Practical                                                                                                                                                                                                                                                                                                                                                                               | Lecture-Tutorial- Practice:                                    | 0-0-3             |  |  |  |  |  |
| Prerequ              | uisite:                                                            | Basic knowledge in programming C, knowledge in microprocessors and programming                                                                                                                                                                                                                                                                                                          | Sessional Evaluation:<br>External Evaluation :<br>Total Marks: | 40<br>60<br>100   |  |  |  |  |  |
|                      | Students undergoing this course are expected to understand:        |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |                   |  |  |  |  |  |
| Course<br>Objectives | 1.3. The various nardware modules to be interfaced with up and uc. |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |                   |  |  |  |  |  |
|                      | Upon                                                               | successful completion of the course,                                                                                                                                                                                                                                                                                                                                                    |                                                                |                   |  |  |  |  |  |
|                      | CO1                                                                | Set up programming strategies and so on the training boards.                                                                                                                                                                                                                                                                                                                            | elect proper mnemonics and run the                             | ir program        |  |  |  |  |  |
|                      | CO2                                                                | Acquire interfacing knowledge with                                                                                                                                                                                                                                                                                                                                                      | microprocessor kit.                                            |                   |  |  |  |  |  |
| Course<br>Outcomes   | CO3                                                                | Design the high speed communication                                                                                                                                                                                                                                                                                                                                                     | n circuits using serial bus connection                         | on                |  |  |  |  |  |
| Outcomes             | CO4                                                                | Use a commercial C.P.U.(s) as realis introducing students to C.P.U. instru                                                                                                                                                                                                                                                                                                              |                                                                |                   |  |  |  |  |  |
|                      | CO5                                                                | Understand the full internal working utilization of the various hardware re                                                                                                                                                                                                                                                                                                             |                                                                |                   |  |  |  |  |  |
|                      | CO6                                                                | Develop testing and experimental pro<br>analyse their operation under differen                                                                                                                                                                                                                                                                                                          | ocedures on Microprocessor and Mi                              |                   |  |  |  |  |  |
| Course<br>Content    | <ol> <li>2.</li> <li>3.</li> </ol>                                 | LIST OF E Summation & Block Transfer of Dat a) Write and execute 8086 to add the result. b) Write and execute 8086 A.L.P. to another memory area. c) Write and execute 8086 A.L.P. to 1) Repeated addition 2) Using SHIFT and AI d) Write and execute 8086 A.L.P. 1)Binary division 2)B.C.D. division Searching & Sorting Data a) Write and execute 8086 A.L.P. from a given data array | EXPERIMENTS Ta             | memory area ions. |  |  |  |  |  |

|           | <ul> <li>4. Stepper Motor Module Write and execute 8086 A.L.P. to rotate a stepper motor either in clockwise direction or in anticlockwise direction and to control the speed of rotation</li> <li>5. Serial Input Display Unit Module(S.I.D.U.)</li> </ul>                                                                                    |  |  |  |  |  |  |  |  |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|           | Write and execute 8086 A.L.P. to display the desired word in a display of serial input display unit interface module                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |
| Course    | 6. Parallel Input Display Unit Module (P.I.D.U.) Write and execute 8086 A.L.P. to design an up and down counter using P.I.D.U. Interface module                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |
| Content   | 7. Digital to Analog Converter Interface Module Write and execute 8086 A.L.P. to generate given waveform through C.R.O. using D.A.C.                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |
|           | <ul> <li>8. ARITHEMATIC OPERATIONS USING 8051</li> <li>a) Write an assembly language program to perform the addition, subtraction, multiplication &amp; Division of two numbers.</li> <li>b) Write an assembly language program to find the square of a given number N.</li> </ul>                                                             |  |  |  |  |  |  |  |  |  |
|           | 9. SEARCHING OPERATIONS USING 8051                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |
|           | <ul><li>a) To find smallest, largest number from given array of numbers</li><li>b) To sort given array of numbers in ascending &amp; descending order</li></ul>                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |
|           | 10. LOGICAL AND BIT MANIPULATION OPERATIONS USING 8051 a) Write an assembly language program to count number of ones and zeros in a eight bit number.                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |
|           | <ul><li>b) Write an assembly language program to find whether given eight-bit number is odd or even. If odd store 00h in accumulator. If even store FFh in accumulator.</li><li>c) Write an assembly language program to perform logical operations AND, OR, XOR on two eight-bit numbers stored in internal RAM locations 21h, 22h.</li></ul> |  |  |  |  |  |  |  |  |  |
| Reference | A K Ray and K M Bhurchandi, "Advanced Microprocessors & Peripherals", 2nd ed.,     TMH, 2006.      Mohamed Ali Mazidi, Janice Gillispie Mazidi, "The 8051 microcontroller and                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
| Books     | 2. Mohamed Ali Mazidi, Janice Gillispie Mazidi, "The 8051 microcontroller and embedded systems", Pearson education, 2004.                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |

## 19EC31P2 – ANALOG COMMUNICATION LAB

| <b>Course Category</b> | <b>7</b> :                                                                                                                                                                                                                                     | Program Core                                                                                                                                                                                                                                                                                                                          | Credits:                    | 1.5       |  |  |  |  |  |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------|--|--|--|--|--|
| Course Type:           |                                                                                                                                                                                                                                                | Practical                                                                                                                                                                                                                                                                                                                             | Lecture-Tutorial- Practice: | 0 - 0 - 3 |  |  |  |  |  |
| Prerequisite:          | Electronic Devices and Circuits, Signals and Systems  Sessional Evaluation: External Evaluation: Total Marks: 100                                                                                                                              |                                                                                                                                                                                                                                                                                                                                       |                             |           |  |  |  |  |  |
| Course<br>Objectives   | Students undergoing this course are expected to understand:  1. The design and analysis of various communication circuits.  2. To study and verify the various modulation techniques.                                                          |                                                                                                                                                                                                                                                                                                                                       |                             |           |  |  |  |  |  |
| Course<br>Outcomes     | Upon successful completion of the course, the students will be able to:  CO1 Analyse the electronic circuits experimentally.  Design & Analyse the Amplitude Modulation and De-Modulation system.  Study and verify the Mixer Characteristics. |                                                                                                                                                                                                                                                                                                                                       |                             |           |  |  |  |  |  |
|                        | CO4<br>CO5<br>CO6                                                                                                                                                                                                                              | examine the PAM and PPM practically Understand the performance of transmis Design & Analyse the Frequency Modu                                                                                                                                                                                                                        |                             |           |  |  |  |  |  |
| Course<br>Content      | Minin                                                                                                                                                                                                                                          | 1. Amplitude Modulation.  2. Amplitude De-Modulation.  3. Frequency Modulation.  4. Pulse Amplitude Modulation.  5. Pulse Position Modulation.  6. Pulse Width Modulation.  7. Proto Type Filters.  8. Pre-Emphasis and De-Emphasi  9. Transmission Lines.  10. FM using Variable Reactance Modulation.  11. Frequency De-Modulation. | XPERIMENTS  S.              |           |  |  |  |  |  |

| S.No | COURSE CODE | ELECTIVES-I                               |
|------|-------------|-------------------------------------------|
| 1.   | 19EC31E1    | ELECTRONIC MEASUREMENTS & INSTRUMENTATION |
| 2.   | 19EC31E2    | COGNITIVE RADIO                           |
| 3.   | 19EC31E3    | OPTOELECTRONICS                           |
| 4.   | 19EC31E4    | RELIABILITY ENGINEERING                   |

## 19EC31E1 – ELECTRONIC MEASUREMENTS & INSTRUMENTATION

| Course cate          | gory:                                                                                                                                                                                                                                                                                                                                                                                                | Program core                                                                                                                                                                                         | Credits: 3                                                                 |                 |  |  |  |  |  |  |  |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------|--|--|--|--|--|--|--|
| Course T             | Гуре:                                                                                                                                                                                                                                                                                                                                                                                                | Theory                                                                                                                                                                                               | Lecture - Tutorial - Practical:                                            | 3-0 - 0         |  |  |  |  |  |  |  |
| Prerequ              |                                                                                                                                                                                                                                                                                                                                                                                                      | Electronic Devices and Circuits,<br>Pulse and Analog Circuits, Signals<br>& Systems                                                                                                                  | Sessional Evaluation :<br>External Evaluation:<br>Total Marks:             | 40<br>60<br>100 |  |  |  |  |  |  |  |
|                      | 1.                                                                                                                                                                                                                                                                                                                                                                                                   | dents undergoing this course are expected to understand:  1. The various standards and units of measurements, electronic instruments, their construction, applications, and principles of operation. |                                                                            |                 |  |  |  |  |  |  |  |
| Course<br>Objectives | 3.<br>4.<br>5.<br>6.                                                                                                                                                                                                                                                                                                                                                                                 | The functioning of CRO including digital oscilloscope and its operation.  The measurement using bridges for resistances, inductance and capacitances.                                                |                                                                            |                 |  |  |  |  |  |  |  |
|                      | Upon                                                                                                                                                                                                                                                                                                                                                                                                 | successful completion of the course,                                                                                                                                                                 | the students will be able to:                                              |                 |  |  |  |  |  |  |  |
|                      | CO1                                                                                                                                                                                                                                                                                                                                                                                                  | Explain various performance charac resolution and speed of response and                                                                                                                              | teristics of instruments like accurac<br>I their importance in meters.     | y, sensitivity, |  |  |  |  |  |  |  |
|                      | CO2                                                                                                                                                                                                                                                                                                                                                                                                  | Design basic meters with good perfo                                                                                                                                                                  | ormance characteristics.                                                   |                 |  |  |  |  |  |  |  |
| Course<br>Outcomes   | CO3                                                                                                                                                                                                                                                                                                                                                                                                  | Generate various signals using signal generators and harmonic distortion analyzed with the help of oscilloscope.                                                                                     |                                                                            |                 |  |  |  |  |  |  |  |
|                      | CO4                                                                                                                                                                                                                                                                                                                                                                                                  | Analyse the waveforms and signals                                                                                                                                                                    | with the help of digital oscilloscope                                      |                 |  |  |  |  |  |  |  |
|                      | CO5                                                                                                                                                                                                                                                                                                                                                                                                  | Understand precision measurement using different transducers.                                                                                                                                        | techniques to measure resistance                                           | , capacitance   |  |  |  |  |  |  |  |
|                      | CO6                                                                                                                                                                                                                                                                                                                                                                                                  | Identify the transducers for various voltage, and speed with the help of b                                                                                                                           | oridges.                                                                   | ent of force,   |  |  |  |  |  |  |  |
|                      | Static<br>Error                                                                                                                                                                                                                                                                                                                                                                                      | FORMANCE CHARACTERISTIC characteristics, Accuracy, Resolutions in Measurement, Dynamic Characteristic error, Problems in error calculations                                                          | n, Precision, Expected value, Error<br>eteristics-speed of response, Fidel | •               |  |  |  |  |  |  |  |
| Course               | WNIT-II  METERS: D.C. Voltmeters- D.C. Ammeters Multi range, Range extension, A.C voltmeters- multi range, range extension, Ohmmeters - series type, shunt type, Multimeter for Voltage, Current and resistance measurements.  UNIT-III                                                                                                                                                              |                                                                                                                                                                                                      |                                                                            |                 |  |  |  |  |  |  |  |
| Content              | <b>FIXED AND VARIABLE SIGNAL GENERATORS</b> : AF oscillators, Standard and sine and square wave signal generators, Function Generators, Square pulse, Random no sweep, Arbitrary waveform. Wave Analyzers, Harmonic Distortion Analyzers, Spectr Analyzer.                                                                                                                                           |                                                                                                                                                                                                      |                                                                            |                 |  |  |  |  |  |  |  |
|                      | <b>UNIT-IV</b> OSCILLOSCOPES: C.R.T. features, vertical amplifiers, horizontal deflection system, sweep, trigger pulse, delay line, sync selector circuits, triggered sweep C.R.O., Dual beam C.R.O., Measurement of Amplitude and Frequency, Dual Trace Oscilloscope, Sampling Oscilloscope, Digital Readout Oscilloscope, Digital Storage Oscilloscope, Lissajous method of frequency measurement. |                                                                                                                                                                                                      |                                                                            |                 |  |  |  |  |  |  |  |

|                | UNIT-V                                                                                            |  |  |  |  |  |  |  |
|----------------|---------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                | BRIDGE MEASUREMENT: Wheatstone bridge, Kelvin Bridge, Measurement of                              |  |  |  |  |  |  |  |
|                | Resistance, A.C. Bridges, Measurement of inductance- Maxwell's bridge, and                        |  |  |  |  |  |  |  |
|                | Measurement of capacitance - Schering Bridge. Errors and precautions in using bridges, Q-         |  |  |  |  |  |  |  |
| Course         | meter.                                                                                            |  |  |  |  |  |  |  |
| Content        | UNIT-VI                                                                                           |  |  |  |  |  |  |  |
|                | <b>TRANSDUCERS:</b> Active & Passive transducers : Resistance, Capacitance, Inductance;           |  |  |  |  |  |  |  |
|                | Strain gauges, L.V.D.T., Piezo Electric transducers, Resistance Thermometers,                     |  |  |  |  |  |  |  |
|                | Thermocouples, Thermistors, Sensistors. Measurement of physical parameters force,                 |  |  |  |  |  |  |  |
|                | Pressure, Velocity, Humidity, Moisture, Speed, Proximity and Displacement, Industrial             |  |  |  |  |  |  |  |
|                | Applications, Data acquisition systems.                                                           |  |  |  |  |  |  |  |
|                | TEXT BOOKS:                                                                                       |  |  |  |  |  |  |  |
|                | 1. Modern Electronic Instrumentation and Measurement Techniques – A. D. Helfrick                  |  |  |  |  |  |  |  |
|                | and W. D. Cooper, P.H.I., 5 <sup>th</sup> Edition, 2002.                                          |  |  |  |  |  |  |  |
| Text Books and | 2. Electronic instrumentation, second edition - H. S. Kalsi, Tata McGraw Hill, 2004               |  |  |  |  |  |  |  |
| Reference      | REFERENCE BOOKS:                                                                                  |  |  |  |  |  |  |  |
| Books          | 1. Electronic Instrumentation & Measurements - David A. Bell, P.H.I., 2 <sup>nd</sup> Edition,    |  |  |  |  |  |  |  |
|                | 2003.                                                                                             |  |  |  |  |  |  |  |
|                | 2. Principles of Industrial Instrumentation-Patranabis D.McGraw Hill US, 3 <sup>rd</sup> Edition. |  |  |  |  |  |  |  |
|                |                                                                                                   |  |  |  |  |  |  |  |
| E-Resources    | 1. http://www.nptel.ac.in.                                                                        |  |  |  |  |  |  |  |
|                | 2. http://www.ebookee.com/electronicmeasurementand instrumentation.                               |  |  |  |  |  |  |  |

| Contribution of C | Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |      |      |      |
|-------------------|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                   | PO1                                                                                               | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1               | 3                                                                                                 | 2   | 1   | 1   | -   | -   | -   | -   | -   | -    | -    | 1    |
| CO2               | 2                                                                                                 | 2   | 1   | 1   | -   | -   | -   | -   | -   | -    | -    | 1    |
| CO3               | 3                                                                                                 | 3   | 1   | 2   | -   | -   | -   | -   | -   | -    | -    | 1    |
| CO4               | 2                                                                                                 | 2   | 1   | 1   | -   | -   | -   | -   | -   | -    | -    | 1    |
| CO5               | 3                                                                                                 | 2   | 2   | 3   | _   | -   | -   | _   | _   | _    | _    | 1    |
| CO6               | 3                                                                                                 | 2   | 2   | 3   | _   | -   | -   | -   | _   | _    | _    | 2    |

## 19EC31E2 – COGNITIVE RADIO

| Course cate          | gory: Program Elective                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Credits: 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Course T             | ype: Theory                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>Lecture - Tutorial - Practical:</b> 3 - 0 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Prerequ              | isite: Computer networks, basic concepts of embedded systems.                                                                                                                                                                                                                                                                                                                                                                                                                  | Sessional Evaluation: 40 External Evaluation: 60 Total Marks: 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                      | Students undergoing this course are expe                                                                                                                                                                                                                                                                                                                                                                                                                                       | cted to understand:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| Course<br>Objectives | <ol> <li>The contribution of cognitive radiarchitectures that enable the development of the contralized and distributed).</li> <li>The technologies to allow an efficiency of the cognitive radiarchitectures.</li> </ol>                                                                                                                                                                                                                                                      | or deployment of cognitive radio network.<br>generation wireless networks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| Course               | e , the students will be able to: ding dynamic spectrum access and radio-resource the software radio, architecture of SDR                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Outcomes             | CO2 Demonstrate energy issues in cogn                                                                                                                                                                                                                                                                                                                                                                                                                                          | nitive radio.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|                      | CO4 Understand principle of cognitive                                                                                                                                                                                                                                                                                                                                                                                                                                          | techniques and AI techniques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|                      | CO5 Illustrate functions and design rule                                                                                                                                                                                                                                                                                                                                                                                                                                       | es of cognitive radio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|                      | CO6 Identify layer issues and design cr                                                                                                                                                                                                                                                                                                                                                                                                                                        | oss layer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| Course<br>Content    | INTRODUCTION TO SOFTWARE Benefits, Software defined Radio, Arc Architecture Implications.  USDR ARCHITECTURE: Essential Furt Hardware Architecture, Computational It Level Component Interfaces, Interface To UINTRODUCTION TO COGNITIVE Techniques — Position Awareness, Optimization of Radio Resources, Artific COGNITIVE RADIO ARCHITECTU And Design Rules, Cognition Cycle — Hierarchy, Architecture Maps, Building Defined Radio Architecture.  NEXT GENERATION WIRELESS | DEFINED RADIO: Definitions and Potential chitecture, Evolution, Technology Tradeoffs and Potential chitecture, Evolution, Technology Tradeoffs and Potential Chitecture, Evolution, Technology Tradeoffs and Potential Chitecture, Topologies of The Software defined Radio, Basic SDR Processing Resources, Software Architecture, Topologies Among Plug And Play Modules.  UNIT III  RADIOS: Marking Radio Self-Aware, Cognitive Environment Awareness in Cognitive Radios cial Intelligence Techniques.  UNIT IV  URE: Cognitive Radio — Functions, Components Orient, Plan, Decide and act Phases, Inference of the Cognitive Radio Architecture On Software UNIT V  NETWORKS: The XG Network Architecture ent, Spectrum Mobility, Spectrum Sharing, Upper Potential Chitecture (Potential Chitecture Chitecture (P |  |  |  |  |  |

|                             | UNIT VI                                                                                                                    |  |  |  |  |  |  |  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Course                      | COGNITIVE TECHNIQUES: PHYSICAL AND LINK LAYERS: Introduction, Optimizing physical and Link Layers for Multiple-Objectives, |  |  |  |  |  |  |  |
| Content                     | Under Current Channel Conditions, Defining the Cognitive Radio, developing Radio                                           |  |  |  |  |  |  |  |
|                             | Controls (Knobs) and Performance Measures (Meters), multi object decision making                                           |  |  |  |  |  |  |  |
|                             | Theory and Its Application to Cognitive Radio, The Multi-objective genetic algorithm for                                   |  |  |  |  |  |  |  |
|                             | Cognitive Radios, Advanced GA Techniques ,Need for a Higher-Layer Intelligence.                                            |  |  |  |  |  |  |  |
|                             | TEXT BOOKS:                                                                                                                |  |  |  |  |  |  |  |
|                             | 1. Joseph Mitola III,"Software Radio Architecture: Object-Oriented Approaches To                                           |  |  |  |  |  |  |  |
|                             | Wireless System Engineering", John Wiley & Sons Ltd. 2000.                                                                 |  |  |  |  |  |  |  |
|                             | 2. Thomas W.Rondeau, Charles W. Bostain, "Artificial Intelligence in Wireless                                              |  |  |  |  |  |  |  |
|                             | Communication", ARTECH HOUSE .2009.                                                                                        |  |  |  |  |  |  |  |
|                             | 3. Bruce A. Fette, "Cognitive Radio Technology", Elsevier, 2009.                                                           |  |  |  |  |  |  |  |
|                             | 4. Ian F. Akyildiz, Won – Yeol Lee, Mehmet C. Vuran, Shantidev Mohanty, "Next                                              |  |  |  |  |  |  |  |
| Tout Dealer and             | Generation / Dynamic Spectrum Access / Cognitive Radio Wireless Networks: A                                                |  |  |  |  |  |  |  |
| Text Books and<br>Reference | Survey" Elsevier Computer Networks, May 2006.                                                                              |  |  |  |  |  |  |  |
| Books                       | REFERENCES BOOKS:                                                                                                          |  |  |  |  |  |  |  |
|                             | 1. Simon Haykin, "Cognitive Radio: Brain –Empowered Wireless Communications",                                              |  |  |  |  |  |  |  |
|                             | IEEE Journal on Selected Areas in Communications, Feb 2005.                                                                |  |  |  |  |  |  |  |
|                             | 2. Hasari Celebi, Huseyin Arslan, "Enabling Location And Environment Awareness In                                          |  |  |  |  |  |  |  |
|                             | Cognitive Radios", Elsevier Computer Communications, Jan 2008.                                                             |  |  |  |  |  |  |  |
|                             | 3. Markus Dillinger, Kambiz Madani, Nancy Alonistioti, "Software Defined Radio",                                           |  |  |  |  |  |  |  |
|                             | John Wiley, 2003.                                                                                                          |  |  |  |  |  |  |  |
| E-Resources                 | 1. http://www.nptel.ac.in.                                                                                                 |  |  |  |  |  |  |  |
|                             | 2. http://www.ebookee.com/ Cognitive Radio Communication and Networks.                                                     |  |  |  |  |  |  |  |

| Contribution o | Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |      |      |      |
|----------------|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                | PO1                                                                                               | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1            | 3                                                                                                 | 2   | 2   | 2   | 2   | -   | -   | -   | -   | -    | -    | 2    |
| CO2            | 3                                                                                                 | 2   | 2   | 2   | 2   | -   | -   | -   | -   | -    | -    | 2    |
| CO3            | 3                                                                                                 | 2   | 2   | 2   | 2   | -   | -   | -   | -   | -    | -    | 2    |
| CO4            | 3                                                                                                 | 2   | 2   | 2   | 2   | -   | -   | -   | -   | -    | -    | 2    |
| CO5            | 3                                                                                                 | 2   | 1   | 2   | 1   | - 1 | -   | -   | 1   | -    | -    | 1    |
| CO6            | 3                                                                                                 | 2   | 1   | 2   | 1   | -   | -   | -   | 1   | -    | -    | 1    |

## 19EC31E3 – OPTOELETRONICS

| Course catego | ry: H                                                                                                                                                                      | Program Elective                                                                                                                                                                                          | Credits:                            | 3               |  |  |  |  |  |  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------|--|--|--|--|--|--|
| Course Ty     |                                                                                                                                                                            | Гheory                                                                                                                                                                                                    | Lecture - Tutorial - Practical:     | 3 - 0 - 0       |  |  |  |  |  |  |
| Prerequis     | ite:   I                                                                                                                                                                   | Engineering physics                                                                                                                                                                                       | Sessional Evaluation:               | 40              |  |  |  |  |  |  |
|               |                                                                                                                                                                            |                                                                                                                                                                                                           | External Evaluation:                | 60              |  |  |  |  |  |  |
|               |                                                                                                                                                                            |                                                                                                                                                                                                           | Total Marks:                        | 100             |  |  |  |  |  |  |
|               | Stude                                                                                                                                                                      | ents undergoing this course are expec                                                                                                                                                                     | eted to understand:                 |                 |  |  |  |  |  |  |
|               | 1                                                                                                                                                                          | . The operation of semiconductor opt                                                                                                                                                                      |                                     |                 |  |  |  |  |  |  |
|               | 2.                                                                                                                                                                         | <ul><li>2. The Hetero junctions and quantum wells and their application to Optoelectronic devices.</li><li>3. The design, analysis and modelling of semiconductor lasers (D.C. &amp; Modulation</li></ul> |                                     |                 |  |  |  |  |  |  |
| Course        | 3                                                                                                                                                                          |                                                                                                                                                                                                           |                                     |                 |  |  |  |  |  |  |
| Objectives    | Properties).                                                                                                                                                               |                                                                                                                                                                                                           |                                     |                 |  |  |  |  |  |  |
|               | 4.                                                                                                                                                                         | . The design and small-signal circuit                                                                                                                                                                     | modelling of various types of Photo | )               |  |  |  |  |  |  |
|               |                                                                                                                                                                            | Detectors.                                                                                                                                                                                                |                                     |                 |  |  |  |  |  |  |
|               | 1                                                                                                                                                                          | . The Fourier optics, nonlinear optica                                                                                                                                                                    |                                     |                 |  |  |  |  |  |  |
|               | 6.                                                                                                                                                                         | 6. The Holography, pattern recognition.                                                                                                                                                                   |                                     |                 |  |  |  |  |  |  |
|               | Upon                                                                                                                                                                       | successful completion of the course                                                                                                                                                                       | ·                                   |                 |  |  |  |  |  |  |
|               | CO1                                                                                                                                                                        |                                                                                                                                                                                                           | l radiation, black body radiation   | and material    |  |  |  |  |  |  |
|               |                                                                                                                                                                            | interactions.                                                                                                                                                                                             | ser excitations and Gaussian char   | racteristics of |  |  |  |  |  |  |
|               | CO2                                                                                                                                                                        | laser beam.                                                                                                                                                                                               | isei excitations and Gaussian chai  | racteristics of |  |  |  |  |  |  |
| Course        | Analysis O switching and mode looking                                                                                                                                      |                                                                                                                                                                                                           |                                     |                 |  |  |  |  |  |  |
| Outcomes      | CO3                                                                                                                                                                        | , ,                                                                                                                                                                                                       |                                     | a dynasiana and |  |  |  |  |  |  |
|               | CO4                                                                                                                                                                        | Semiconductor free electron.                                                                                                                                                                              | eon, Argon ion, carbon dioxide, ne  | 30dymum and     |  |  |  |  |  |  |
|               | CO5                                                                                                                                                                        |                                                                                                                                                                                                           | nt, electro optic modulation,       | Acousto-optic   |  |  |  |  |  |  |
|               |                                                                                                                                                                            | modulation and magneto optic dev                                                                                                                                                                          |                                     |                 |  |  |  |  |  |  |
|               | CO6                                                                                                                                                                        | Understand Image Binarization usi                                                                                                                                                                         | ng photographic process.            |                 |  |  |  |  |  |  |
|               |                                                                                                                                                                            | 1                                                                                                                                                                                                         | UNIT-I                              |                 |  |  |  |  |  |  |
|               |                                                                                                                                                                            | ICAL RADIATION: Radiometr                                                                                                                                                                                 |                                     | , Blackbody     |  |  |  |  |  |  |
|               | radia                                                                                                                                                                      | tion, Material interactions, Temperat                                                                                                                                                                     |                                     |                 |  |  |  |  |  |  |
|               | UNIT-II  LASEDS: Dedicactive Processes Lesson excitations Coverien characteristics of the lesson                                                                           |                                                                                                                                                                                                           |                                     |                 |  |  |  |  |  |  |
|               | <b>LASERS:</b> Radioactive Processes, Laser excitations, Gaussian characteristics of the laser beam, optical feedback, Q-switching and mode locking.                       |                                                                                                                                                                                                           |                                     |                 |  |  |  |  |  |  |
|               | UNIT-III                                                                                                                                                                   |                                                                                                                                                                                                           |                                     |                 |  |  |  |  |  |  |
|               | SPECIFIC LASERS – Helium – Neon Laser, Argon ion Laser, Carbon dioxide Laser,                                                                                              |                                                                                                                                                                                                           |                                     |                 |  |  |  |  |  |  |
|               | Neod                                                                                                                                                                       | ymium Laser, Semiconductor Laser,                                                                                                                                                                         |                                     |                 |  |  |  |  |  |  |
| Course        | 1401                                                                                                                                                                       | _                                                                                                                                                                                                         | NIT-IV                              | 771             |  |  |  |  |  |  |
| Content       | <b>MODULATION OF LIGHT:</b> Polarization, Light propagation in crystals, Electro-opt modulation, Acousto-optic modulation, Magneto-optic devices, Image Binarization using |                                                                                                                                                                                                           |                                     |                 |  |  |  |  |  |  |
|               |                                                                                                                                                                            | ographic process                                                                                                                                                                                          | Magneto-optic devices, image Bina   | lization using  |  |  |  |  |  |  |
|               | photo                                                                                                                                                                      |                                                                                                                                                                                                           | UNIT-V                              |                 |  |  |  |  |  |  |
|               | FOU                                                                                                                                                                        | RIER OPTICS: Scalar theory of di                                                                                                                                                                          |                                     | ies of Lenses,  |  |  |  |  |  |  |
|               |                                                                                                                                                                            | eal information processing systems,                                                                                                                                                                       |                                     | rs, Nonlinear   |  |  |  |  |  |  |
|               | optica                                                                                                                                                                     | al signal processing using contact scr                                                                                                                                                                    |                                     |                 |  |  |  |  |  |  |
|               | <br>                                                                                                                                                                       |                                                                                                                                                                                                           | JNIT-VI                             | Dottom          |  |  |  |  |  |  |
|               | 1                                                                                                                                                                          | CTRO-OPTIC SYSTEMS: Holognition, Optical computing systems.                                                                                                                                               | ography, phase contrast microsc     | copy, Pattern   |  |  |  |  |  |  |
|               | 16008                                                                                                                                                                      | muon, Opucai compuning systems.                                                                                                                                                                           |                                     |                 |  |  |  |  |  |  |

| Text Books and<br>Reference Books | <ol> <li>TEXT BOOKS:         <ol> <li>Electro-Optical Devices and systems by M. A. Karim PWS-KENT publishing company</li> <li>Optical Electronics by A. K. Ghatak and K. Thygarajan, Cambridge University press.</li> </ol> </li> <li>REFERENCE BOOKS:         <ol> <li>Optoelectronics-Emmanual Rosencher &amp; Borge Vinter by Cambridge University</li> <li>Laser Principals and Applications by J. Wilson, J. F. B. Hawkes, PHI Publications.</li> </ol> </li> </ol> |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E-Resources                       | <ol> <li>http://nptel.ac.in/courses/117103063/26</li> <li>https://www.youtube.com/user/nptelhrd</li> </ol>                                                                                                                                                                                                                                                                                                                                                               |

| Contribution o | Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |      |      |      |
|----------------|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                | PO1                                                                                               | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1            | 3                                                                                                 | 2   | 2   | 1   | 1   | -   | -   | -   | -   | -    | -    | 2    |
| CO2            | 2                                                                                                 | 2   | 2   | 1   | 1   | 1   | 1   | -   | 1   | -    | -    | 2    |
| CO3            | 2                                                                                                 | 2   | 2   | 1   | 1   | -   | -   | -   | -   | -    | -    | 2    |
| CO4            | 3                                                                                                 | 2   | 2   | 1   | 1   | -   | -   | -   | -   | -    | -    | 2    |
| CO5            | 3                                                                                                 | 2   | 1   | 1   | 1   | -   | -   | -   | -   | -    | -    | 1    |
| CO6            | 3                                                                                                 | 2   | 1   | 1   | 1   | -   | -   | -   | -   | -    | -    | 1    |

## 19EC31E4 – RELIABILITY ENGINEERING

| Course category: | Program Elective             | Credits:                        | 3         |
|------------------|------------------------------|---------------------------------|-----------|
| Course Type:     | Theory                       | Lecture - Tutorial - Practical: | 3 - 0 - 0 |
| Prerequisite:    | Basics of Analog and Digital | Sessional Evaluation:           | 40        |
|                  | communications Signals and   | External Evaluation:            | 60        |
|                  | Systems                      | Total Marks:                    | 100       |

|                                                                                                                                                                                                                                                                                                                           | Students undergoing this course are expected to:                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Course<br>Objectives                                                                                                                                                                                                                                                                                                      | <ol> <li>To acquire Knowledge about Quality and reliability and Probability concepts and failure time of Electronic system.</li> <li>To become familiar with system reliability and failure rates.</li> <li>To cater the knowledge Device Reliability and faults.</li> <li>To understand &amp; analyze various Reliability Techniques of electronic systems.</li> <li>Understanding the need of Reliability improvement methods of systems.</li> </ol> |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                           | 6. To analyze various Reliability Life Testing Methods                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                           | Upon successful completion of the course, the students will be able to:                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                           | CO1 Gain adequate knowledge about Quality and reliability and Probability concepts and failure time of Electronic system.                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| Course<br>Outcomes                                                                                                                                                                                                                                                                                                        | CO2 Understand the system reliability and failure rates.                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
| Outcomes                                                                                                                                                                                                                                                                                                                  | CO3 Know about different faults and Device Reliability                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                           | CO4 Able understand & analyze various Reliability Techniques of electronic system                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                           | CO5 Analyse Reliability improvement methods of systems.                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                           | CO6 Know about various Reliability Life Testing Methods                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                           | UNIT-I INTRODUCTION: Quality and reliability, importance of reliability, reliability parameters, Methods of achieving reliability, Reliability fundamentals and bath tub curve, Reliability measures and parameters, Electronic system reliability, Hazard rate model, Probability concepts and failure time distribution.  UNIT-II                                                                                                                    |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                           | <b>SYSTEM RELIABILITY:</b> System reliability modeling, v-out of 'n' system, Analysis of complex reliability structures, System reliability estimation. Measure of central tendency and dispersion system reliability with constant and variable failure rates. <b>UNIT-III</b>                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| Course<br>Content                                                                                                                                                                                                                                                                                                         | <b>DEVICE RELIABILITY:</b> Accelerated life testing, Early life reliability, Long-term device reliability, Electrostatic discharge, Electrical stress, Steady state hazard rate.                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                           | <b>RELIABILITY TECHNIQUES:</b> Reliability prediction, Cut set, Tie set, FME PTA, Markov, Monte Carlo Simulation, Application to electronic systems. V reliability: reliability screening and modeling, electrostatic discharge damage, M Electro-migration phenomena, dielectric breakdown, instabilities in ICs.                                                                                                                                     |  |  |  |  |  |  |  |  |
| UNIT-V MAINTAINABILITY AND AVAILABILITY CONCEPTS: Guidelines fo for maintainability, MITR, BIT / BITE facility, Spares provisioning, Electronics packaging and interconnections. Serial and parallel reliability maintainability availability failure mechanisms, reliability data and analysis, Reliability impressions. |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |

| Course<br>Content | methods.  UNIT-VI  RELIABILITY LIFE TESTING METHODS: Reliability Life Testing - Test time calculations, Burn-in testing, Acceptance testing, accelerated life testing and Experimental Design - Reliability Growth Testing - Growth process, Idealized growth curve and other growth modals. |  |  |  |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                   | TEXT BOOKS:  1. David J. Klinger, Yoshinao Nakada and Maria A. Menendez, "AT & T Reliability                                                                                                                                                                                                 |  |  |  |  |  |  |
|                   | Manual ", Von Nostrand Reinhold, New York, 5th Edition, 1998.                                                                                                                                                                                                                                |  |  |  |  |  |  |
|                   | 2. Gregg K. Hobbs, " Accelerated Reliability Engineering - HALT and HASS ", John                                                                                                                                                                                                             |  |  |  |  |  |  |
| Text Books        | Wiley & Sons, New York, 2000.                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| and               | 3. Lewis, "Introduction to Reliability Engineering", 2nd Edition, Wiley                                                                                                                                                                                                                      |  |  |  |  |  |  |
| Reference         | International, 1996.                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| Books             | REFERENCE BOOKS:                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|                   | 1. O' Connor, P.D.T., " Practical Reliability Engineering ", Hayden Book Company,                                                                                                                                                                                                            |  |  |  |  |  |  |
|                   | New Jersey, 1981.                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|                   | 2. S. K. Sinha, Reliability and Life Testing, Wiley Eastern Ltd., 1986.                                                                                                                                                                                                                      |  |  |  |  |  |  |
| E-Resources       | 1. http://www.nptel.ac.in.                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|                   | 2. https://outofprint.cc/downloads/introduction-to-reliability-engineering-lewis.pdf                                                                                                                                                                                                         |  |  |  |  |  |  |

| Contribution o | Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |      |      |      |
|----------------|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                | PO1                                                                                               | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1            | 2                                                                                                 | 2   | 2   | 1   | -   | -   | -   | -   | -   | -    | -    | 2    |
| CO2            | 2                                                                                                 | 2   | 2   | 1   | -   | -   | -   | -   | -   | -    | -    | 2    |
| CO3            | 3                                                                                                 | 1   | 2   | 1   | -   | -   | -   | -   | -   | -    | -    | 3    |
| CO4            | 2                                                                                                 | 1   | 2   | 1   | -   | -   | -   | -   | -   | -    | -    | 2    |
| CO5            | 3                                                                                                 | 2   | 1   | 1   | _   | - 1 | -   | -   | . 1 | -    | -    | 3    |
| CO6            | 2                                                                                                 | 2   | 1   | 1   | -   | -   | -   | -   | -   | -    | -    | 2    |

#### 19AC3101 – AUDIT COURSE

# HUMAN RESOURCE MANAGEMENT AND ORGANISATIONAL BEHAVIOUR

(Common to EEE & ECE)

| Course category:    | Humanities | Credits:                        | 3         |
|---------------------|------------|---------------------------------|-----------|
| <b>Course Type:</b> | Theory     | Lecture - Tutorial - Practical: | 3 - 0 - 0 |
| Prerequisite:       | -NIL-      | <b>Sessional Evaluation:</b>    | 40        |
|                     |            | External Evaluation:            | 60        |
|                     |            | Total Marks:                    | 100       |

|                      | Students undergoing this course are expected to:                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Course<br>Objectives | <ol> <li>Familiarize the students about different aspects of managing people in organizations from the stage of acquisition to development and retention.</li> <li>Familiarize the students with the components of individual and group behavior organizational setting and to help them learn behavioral skills in managing people at work</li> </ol>                                                                       |  |  |  |  |  |  |  |  |
|                      | Upon successful completion of the course, the students will be able to:                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
|                      | CO1 To understand HRM concepts and the role of HRM has to play in different aspects of HRM                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
| Course<br>Outcomes   | CO2 To understand the role of recruitment and selection in relation to the organizations.                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|                      | CO3 To understand job-based compensation scheme and performance management system and appraisals.                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
|                      | CO4 To understand the development of organizational behavior and its importance managing people at the workplace.                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
|                      | CO5 To understand human behavior as an individual.                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
|                      | CO6 To learn the foundation of group dynamics and management of different types of conflict at the workplace.                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                      | UNIT – I                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
|                      | Human Resource Management - Definition - Objectives - Functions - Scope - Importance - Computer Applications in Human Resource Management - characteristics of a good Human Resource Manager - Human Resource Planning - Job design.  UNIT - II  Recruitment and Selection - Sources of Recruitment - Selection Process - Test Types in selection-Interview Types - Placement and Induction- Training - Methods of Training. |  |  |  |  |  |  |  |  |
| Course<br>Content    | UNIT-III  Performance Appraisal - Methods of Performance Appraisal - Transfers - Promotion - Wage & Salary Administration - Wage Incentive - Fringe Benefits .  UNIT-IV                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
|                      | Definition, need and importance of organizational behaviour – Nature and scope – Frame work – Organizational behaviour models. Personality – types – Factors influencing personality – Theories – Learning – Types of learners – The learning process – Learning theories                                                                                                                                                    |  |  |  |  |  |  |  |  |
|                      | UNIT-V                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
|                      | Attitudes – Characteristics – Components – Formation – Measurement- Values.                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |

|            | Perceptions – Importance – Factors influencing perception – Interpersonal perception-    |  |  |  |  |  |  |  |
|------------|------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|            | Impression Management.                                                                   |  |  |  |  |  |  |  |
| Course     | UNIT-VI                                                                                  |  |  |  |  |  |  |  |
| Content    | Group dynamics- cohesiveness and productivity- Group decision making- Groups versus      |  |  |  |  |  |  |  |
|            | teams- Managing organizational conflict: sources, levels and types of conflict- Conflict |  |  |  |  |  |  |  |
|            | resolution.                                                                              |  |  |  |  |  |  |  |
|            | TEXT BOOKS:                                                                              |  |  |  |  |  |  |  |
|            | Human Resource Management - Dr. C.B. Gupta - Sultan and Sons.                            |  |  |  |  |  |  |  |
|            | 2. Personnel & Human Resource Management - P. SubbaRao - Himalaya                        |  |  |  |  |  |  |  |
| Text Books | Publishing House.                                                                        |  |  |  |  |  |  |  |
| and        | 3. Organisational Behaviour- L. M Prasad, S. Chand Publishers, New Delhi.                |  |  |  |  |  |  |  |
| Reference  | 4. Organisational Behavior- Stephen P. Robins- PHI Learning / Pearson Education.         |  |  |  |  |  |  |  |
| Books      | REFERENCE BOOKS:                                                                         |  |  |  |  |  |  |  |
|            | 1. Human Resource and Personnel Management - K. Aswathappa - Tata McGraw                 |  |  |  |  |  |  |  |
|            | Hill Publishing Co. Ltd.                                                                 |  |  |  |  |  |  |  |
|            | 2. Organizational Behaviour - Fred Luthans McGrawhill ,NewYork                           |  |  |  |  |  |  |  |

| Contribution o | Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |      |      |      |
|----------------|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                | PO1                                                                                               | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1            | -                                                                                                 | -   | -   | -   | -   | 2   | 2   | 2   | 2   | 2    | 2    | 3    |
| CO2            | -                                                                                                 | -   | -   | -   | -   | 2   | 2   | 2   | 2   | 2    | 2    | 3    |
| CO3            | -                                                                                                 | -   | -   | -   | -   | 2   | 1   | 1   | 1   | 2    | 2    | 3    |
| CO4            | -                                                                                                 | İ   | ı   | -   | -   | 2   | 1   | 1   | 1   | 2    | 2    | 3    |
| CO5            | -                                                                                                 | -   | -   | -   | _   | 2   | 1   | 1   | 1   | 2    | 1    | 3    |
| CO6            | -                                                                                                 | -   | -   | -   | -   | 2   | 2   | 2   | 2   | 2    | 1    | 2    |

#### **NBKR INSTITUTE OF SCIENCE & TECHNOLOGY: VIDYANAGAR**

(AUTONOMOUS)

(AFFILIATED TO JNTU ANANTAPUR: ANANTHAPURAMU)

**SPSR NELLORE DIST** 

# III YEAR OF FOUR-YEAR B.TECH DEGREE COURSE – II SEMESTER ELECTRONICS AND COMMUNICATION ENGINEERING

SCHEME OF INSTRUCTION AND EVALUATION

(With effect from the academic year 2019-2020)

(For the batch admitted in the academic year 2021-2022)

|      |                |                               |                           |   |             |     |                       |      |                       |                        |       | Evaluation                   | I                            |                      |                           |     |
|------|----------------|-------------------------------|---------------------------|---|-------------|-----|-----------------------|------|-----------------------|------------------------|-------|------------------------------|------------------------------|----------------------|---------------------------|-----|
| S.No | Course<br>Code | Course Title                  | Instruction<br>Hours/Week |   | Credit<br>s |     | ssional-I<br>Marks    |      | Sessional-II<br>Marks |                        |       | Total Sessional<br>Marks(40) | End Semester<br>Examination  |                      | Maximum<br>Total<br>Marks |     |
|      |                | THEORY                        | L                         | Т | D/P         |     | Test <sup>\$</sup> -I | A#-I | Max.<br>Marks         | Test <sup>\$</sup> -II | A#-II | Max.<br>Marks                |                              | Duration<br>In Hours | Max.<br>Marks             | 100 |
| 1    | 19EC3201       | Information Theory and Coding | 3                         | 0 | -           | 3   | 34                    | 6    | 40                    | 34                     | 6     | 40                           |                              | 3                    | 60                        | 100 |
| 2    | 19EC3202       | VLSI Design                   | 2                         | 1 | -           | 3   | 34                    | 6    | 40                    | 34                     | 6     | 40                           | 0.8*Best of<br>two+0.2*      | 3                    | 60                        | 100 |
| 3    | 19EC3203       | Computer Networks             | 3                         | 0 | -           | 3   | 34                    | 6    | 40                    | 34                     | 6     | 40                           | least of two                 | 3                    | 60                        | 100 |
| 4    | 19EC3204       | Fiber Optical Communication   | 3                         | 0 | -           | 3   | 34                    | 6    | 40                    | 34                     | 6     | 40                           |                              | 3                    | 60                        | 100 |
| 5    | 19EC32EX       | Program Elective-II           | 3                         | 0 | -           | 3   | 34                    | 6    | 40                    | 34                     | 6     | 40                           |                              | 3                    | 60                        | 100 |
|      |                | PRACTICALS                    |                           |   |             |     |                       |      |                       |                        |       |                              |                              |                      |                           |     |
| 6    | 19EC32P1       | Digital Communication Lab     | -                         | - | 3           | 1.5 | 1                     | -    | -                     | -                      | -     | 40                           | Day to Day<br>Evaluation and | 3                    | 60                        | 100 |
| 7    | 19EC32P2       | Digital Signal Processing Lab | -                         | - | 3           | 1.5 | -                     | -    | -                     | -                      | -     | 40                           | a test<br>(40 Marks)         | 3                    | 60                        | 100 |
| 8    | 19EC32MP       | Mini Project                  | -                         | - | 4           | 2   | -                     | -    | -                     | -                      | -     | 40                           | (10 Piario)                  | 3                    | 60                        | 100 |
| 9    | 19EC32IS       | Internship                    | -                         | - | -           | 2   | -                     | -    | -                     | -                      | -     | -                            |                              | -                    | -                         | -   |
|      |                | TOTAL                         | 14                        | 1 | 10          | 22  | -                     | -    | -                     | -                      | -     | 320                          | -                            | -                    | 480                       | 800 |

<sup>\*</sup> Common to ECE & EEE.

<sup>\*\*</sup>Common to, ECE, EEE, CE & ME,

**PE**-Program Elective, **OE**-Open Elective

<sup>#</sup> A for Assignment (continuous evaluation), \$ Test (Descriptive & Objective) duration = 2 Hours,

#### 19EC3201 – INFORMATION THEORY AND CODING

| Course catego        | ry:                                                                                                                                                                                                                                                                                                                      | Program core                                                                                                 | Credits:                                                                                                                                                                                                         | 3               |  |  |  |  |  |  |  |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|--|--|--|--|
| Course Ty            | pe:                                                                                                                                                                                                                                                                                                                      | Theory                                                                                                       | Lecture - Tutorial - Practical:                                                                                                                                                                                  | 3 - 0- 0        |  |  |  |  |  |  |  |  |
| Prerequis            | ite:                                                                                                                                                                                                                                                                                                                     | Data types, Communication theory,                                                                            | <b>Sessional Evaluation:</b>                                                                                                                                                                                     | 40              |  |  |  |  |  |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                          | basics of computer networks                                                                                  | <b>External Evaluation:</b>                                                                                                                                                                                      | 60              |  |  |  |  |  |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                          |                                                                                                              | Total Marks:                                                                                                                                                                                                     | 100             |  |  |  |  |  |  |  |  |
|                      | Stu                                                                                                                                                                                                                                                                                                                      | dents undergoing this course are expec                                                                       | eted to understand:                                                                                                                                                                                              |                 |  |  |  |  |  |  |  |  |
| Course<br>Objectives |                                                                                                                                                                                                                                                                                                                          | coding, Arithmetic coding, ZIP co<br>4. The Standard array and Syndrome<br>decoding of systematic and unsyst | nels.  e codes – Shannon-Fano algorithmeding.  decoding, Hamming codes, Encodiematic codes.                                                                                                                      | orithm, Huffman |  |  |  |  |  |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                          | 5. The Decoding of cyclic codes, BC                                                                          |                                                                                                                                                                                                                  |                 |  |  |  |  |  |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                          | -                                                                                                            | gorithm, Block and convolutional in                                                                                                                                                                              | nerieaving.     |  |  |  |  |  |  |  |  |
|                      | Upo                                                                                                                                                                                                                                                                                                                      | on successful completion of the course                                                                       |                                                                                                                                                                                                                  |                 |  |  |  |  |  |  |  |  |
|                      | CO                                                                                                                                                                                                                                                                                                                       | 1 Understand the fundamentals of in:                                                                         | formation Theory.                                                                                                                                                                                                |                 |  |  |  |  |  |  |  |  |
| Course               | CO                                                                                                                                                                                                                                                                                                                       | Explain different type of discrete channels and continuous channels                                          |                                                                                                                                                                                                                  |                 |  |  |  |  |  |  |  |  |
| Outcomes             | CO                                                                                                                                                                                                                                                                                                                       | 3 Learn various coding techniques ar                                                                         | nd algorithms.                                                                                                                                                                                                   |                 |  |  |  |  |  |  |  |  |
|                      | CO                                                                                                                                                                                                                                                                                                                       | Know the different types of Codes                                                                            | for Error Detection and Correction                                                                                                                                                                               |                 |  |  |  |  |  |  |  |  |
|                      | CO                                                                                                                                                                                                                                                                                                                       | CO5 Understand the Syndrome computation and error detection, Decoding of cyclic codes                        |                                                                                                                                                                                                                  |                 |  |  |  |  |  |  |  |  |
|                      | CO                                                                                                                                                                                                                                                                                                                       | 6 Know the Tree and Trellis diconvolutional codes                                                            | iagrams, Maximum likelihood d                                                                                                                                                                                    | ecoding of      |  |  |  |  |  |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                          |                                                                                                              | JNIT I                                                                                                                                                                                                           | _               |  |  |  |  |  |  |  |  |
|                      | Mai<br>info                                                                                                                                                                                                                                                                                                              | rginal, Conditional and Joint ent<br>ormation, information rate, channel cap                                 | ON THEORY – Concept of amount of information -units, Entropy - nditional and Joint entropies -Relation among entropies, Mutual formation rate, channel capacity, redundancy and efficiency of channels.  UNIT II |                 |  |  |  |  |  |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                          | sure Channel, Cascaded channels, repe                                                                        |                                                                                                                                                                                                                  | •               |  |  |  |  |  |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                          | nnel, Shannon theorem.                                                                                       |                                                                                                                                                                                                                  |                 |  |  |  |  |  |  |  |  |
|                      | CO                                                                                                                                                                                                                                                                                                                       | NTINUOUS CHANNELS – Capacit                                                                                  | y of band limited Gaussian channels                                                                                                                                                                              | s, Shannon-     |  |  |  |  |  |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                          | tley theorem, Trade off between Band                                                                         |                                                                                                                                                                                                                  | acity of a      |  |  |  |  |  |  |  |  |
| Course               | cha                                                                                                                                                                                                                                                                                                                      | nnel with infinite band width, Optimus                                                                       | •                                                                                                                                                                                                                |                 |  |  |  |  |  |  |  |  |
| Content              | GO                                                                                                                                                                                                                                                                                                                       |                                                                                                              | NIT III                                                                                                                                                                                                          | 1               |  |  |  |  |  |  |  |  |
|                      | SOURCE CODING – Encoding techniques, Purpose of encoding, Instantaneous codes, Construction of instantaneous codes, Kraft's inequality, Coding efficiency and redundancy, Noiseless coding theorem. Construction of basic source codes – Shannon-Fano algorithm, Huffman coding, Arithmetic coding, ZIP coding.  UNIT IV |                                                                                                              |                                                                                                                                                                                                                  |                 |  |  |  |  |  |  |  |  |
|                      | CODES FOR ERROR DETECTION AND CORRECTION – Parity check coding, Linear block codes, Error detecting and correcting capabilities, Generator and Parity check matrices, Standard array and Syndrome decoding, Hamming codes, Encoding and decoding of systematic and unsystematic codes.                                   |                                                                                                              |                                                                                                                                                                                                                  |                 |  |  |  |  |  |  |  |  |

|                 | UNIT V                                                                               |  |  |  |  |  |  |  |
|-----------------|--------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                 | CYCLIC CODES – Generator polynomial, Generator and Parity check matrices,            |  |  |  |  |  |  |  |
|                 | Encoding of cyclic codes, Syndrome computation and error detection, Decoding of      |  |  |  |  |  |  |  |
| Course          | cyclic codes, BCH codes, RS codes, Burst error correction.                           |  |  |  |  |  |  |  |
| Content         | UNIT VI                                                                              |  |  |  |  |  |  |  |
|                 | CONVOLUTIONAL CODES – Encoding- State, Tree and Trellis diagrams, Maximum            |  |  |  |  |  |  |  |
|                 | likelihood decoding of convolutional codes -Viterby algorithm, Sequential decoding - |  |  |  |  |  |  |  |
|                 | Stack algorithm. Block and convolutional interleaving, CIRC encoding and decoding.   |  |  |  |  |  |  |  |
|                 |                                                                                      |  |  |  |  |  |  |  |
|                 | TEXT BOOKS:                                                                          |  |  |  |  |  |  |  |
|                 | 1. Communication Systems Simon Haykin, John Wiley & Sons. Pvt. Ltd.                  |  |  |  |  |  |  |  |
|                 | 2. Principles of Communication Systems Taub & Schilling, Tata McGraw-Hill            |  |  |  |  |  |  |  |
| Text Books and  | 3. Principles of Digital Communication Das, Mullick & Chatterjee, Wiley Eastern Ltd. |  |  |  |  |  |  |  |
| Reference Books | REFERENCE BOOKS:                                                                     |  |  |  |  |  |  |  |
|                 | 1. Error Control Coding Fundamentals and Applications Shu Lin & Daniel J. Costello   |  |  |  |  |  |  |  |
|                 | Jr., Prentice Hall Inc.                                                              |  |  |  |  |  |  |  |
|                 | 2. Digital Communications Fundamentals and Applications Bernard Sklar, Person        |  |  |  |  |  |  |  |
|                 | Education Asia                                                                       |  |  |  |  |  |  |  |
| E-Resources     | 1. https://nptel.ac.in/courses/106105082                                             |  |  |  |  |  |  |  |
|                 |                                                                                      |  |  |  |  |  |  |  |

| Contribution o | Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |      |      |      |
|----------------|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                | PO1                                                                                               | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1            | 3                                                                                                 | 2   | 1   | -   | -   | -   | -   | -   | -   | -    | 2    | -    |
| CO2            | 3                                                                                                 | 2   | 2   | -   | -   | 1   | 1   | 1   | -   | -    | 2    | -    |
| CO3            | 3                                                                                                 | 3   | 2   | 1   | 1   | -   | 1   | 1   | -   | -    | 2    | 1    |
| CO4            | 3                                                                                                 | 3   | 1   | 1   | 1   | 1   | 1   | 1   | -   | -    | 2    | 1    |
| CO5            | 3                                                                                                 | 3   | 1   | 1   | 1   | -   | 1   | 2   | 1   | 1    | 1    | 1    |
| CO6            | 3                                                                                                 | 3   | 1   | 1   | 1   | -   | 1   | 2   | 1   | 1    | 1    | 1    |

## 19EC3202 – VLSI DESIGN

| Course cate          | gory:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Program Elective                        | Credits: 3                                                            |          |  |  |  |  |  |  |  |  |  |  |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------|----------|--|--|--|--|--|--|--|--|--|--|
| Course T             | Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Theory                                  | Lecture - Tutorial - Practical:                                       | 3 - 0- 0 |  |  |  |  |  |  |  |  |  |  |
| Prerequ              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Electronic Devices & Circuits,          | <b>Sessional Evaluation:</b>                                          | 40       |  |  |  |  |  |  |  |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Linear & Digital ICs and Basics of      | External Evaluation:<br>Total Marks:                                  | 60       |  |  |  |  |  |  |  |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IC Fabrication                          | 100                                                                   |          |  |  |  |  |  |  |  |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nts undergoing this course are expected |                                                                       |          |  |  |  |  |  |  |  |  |  |  |
| Course<br>Objectives | <ol> <li>To introduce the fundamental structures of VLSI Systems at the lowest levels of System abstraction.</li> <li>To know the basic electrical properties of MOS &amp; BI-CMOS circuits</li> <li>To understand the Basic Circuit Concepts and design process of VLSI circuits and also to introduce the fundamental principles of VLSI circuit design.</li> <li>To know the Gate level design and physical design by considering partioning, floor Planning, Placement and Routing.</li> <li>To bring both Circuits and System views on design together by considering circuit Subsystems and VLSI Design styles.</li> <li>To have a profound understanding of the design of complex digital VLSI circuits, computer aided simulation and synthesis tool for hardware design</li> </ol> |                                         |                                                                       |          |  |  |  |  |  |  |  |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·                                       |                                                                       |          |  |  |  |  |  |  |  |  |  |  |
|                      | Upon successful completion of the course, the students will be able to:  CO1 Know the trends in semiconductor technology, and how it impacts scaling and performance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                                                       |          |  |  |  |  |  |  |  |  |  |  |
|                      | CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | analyze the basic electrical characte   |                                                                       |          |  |  |  |  |  |  |  |  |  |  |
| Course<br>Outcomes   | CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | of inverters                            | ick diagrams, Fabrication steps, Static and Switching characteristics |          |  |  |  |  |  |  |  |  |  |  |
|                      | CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Estimate delay in circuits and know     |                                                                       | power    |  |  |  |  |  |  |  |  |  |  |
|                      | CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Understand design styles in VLSI li     |                                                                       |          |  |  |  |  |  |  |  |  |  |  |
|                      | CO6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Discriminate various faults in circui   | ts and to develop fault-modeling sy                                   | nthesis. |  |  |  |  |  |  |  |  |  |  |
| Course<br>Content    | Discriminate various faults in circuits and to develop fault modeling synthesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                                                       |          |  |  |  |  |  |  |  |  |  |  |

|                | PHYSICAL DESIGN: Floor- Planning, Placement, routing, Power delay estimation,                                                                     |  |  |  |  |  |  |  |  |  |  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
|                | Clock and Power routing                                                                                                                           |  |  |  |  |  |  |  |  |  |  |
|                | UNIT-V                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |
|                | SUBSYSTEM DESIGN: Shifters, Adders, ALUs, Multipliers, Parity generators,                                                                         |  |  |  |  |  |  |  |  |  |  |
|                | Comparators, Counters, High density Memory Elements.                                                                                              |  |  |  |  |  |  |  |  |  |  |
| Course         | VLSI DESIGN STYLES: Full-custom, Standard Cells, Gate-arrays, FPGAs and CPLDs                                                                     |  |  |  |  |  |  |  |  |  |  |
| Content        | and Design approach for Full Custom and Semi-Custom devices.                                                                                      |  |  |  |  |  |  |  |  |  |  |
|                | UNIT-VI                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |
|                | VHDL Synthesis: VHDL Synthesis, Circuit Design Flow, Circuit Synthesis, Simulation,                                                               |  |  |  |  |  |  |  |  |  |  |
|                | Layout, Design capture tools, Design Verification Tools. <b>TEST AND TESTABILITY:</b> Fault-modelling and simulation, test generation, design for |  |  |  |  |  |  |  |  |  |  |
|                | testability, Built-in self-test.                                                                                                                  |  |  |  |  |  |  |  |  |  |  |
|                | TEXT BOOKS:                                                                                                                                       |  |  |  |  |  |  |  |  |  |  |
|                | 1. Essentials of VLSI circuits and Systems – Kamran Eshraghian, Eshraghian                                                                        |  |  |  |  |  |  |  |  |  |  |
|                | Douglas and A. Pucknell, PHI, 2005 Edition.                                                                                                       |  |  |  |  |  |  |  |  |  |  |
|                | 2. Principles of CMOS VLSI Design- Weste and Eshraghian, Pearson                                                                                  |  |  |  |  |  |  |  |  |  |  |
|                | Education,1999                                                                                                                                    |  |  |  |  |  |  |  |  |  |  |
| Text Books and | 3. ASIC Design Flow by Smith.                                                                                                                     |  |  |  |  |  |  |  |  |  |  |
| Reference      | REFERENCE BOOKS:                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |
| Books          | 1. D. Roy Chowdhury. Linear Integrated circuits, New Age International                                                                            |  |  |  |  |  |  |  |  |  |  |
|                | Edition(2003)                                                                                                                                     |  |  |  |  |  |  |  |  |  |  |
|                | 2. Modern VLSI Design-Wayne Wolf, Pearson Education, 3 <sup>rd</sup> Edition 1997.                                                                |  |  |  |  |  |  |  |  |  |  |
|                | 3. Introduction to VLSI Circuits and Systems – John. P. Uyemura. John Wiley,                                                                      |  |  |  |  |  |  |  |  |  |  |
|                | 2003.                                                                                                                                             |  |  |  |  |  |  |  |  |  |  |
|                | 4. Digital Integrated Circuits – John M. Rabaey, PHI.                                                                                             |  |  |  |  |  |  |  |  |  |  |
|                | 1. http://nptel.ac.in/courses                                                                                                                     |  |  |  |  |  |  |  |  |  |  |
|                | 2. http://tocs.ulb.tu-darmstadt.de/35621702.pdf                                                                                                   |  |  |  |  |  |  |  |  |  |  |
| E-Resources    | 3. http://www.ulb.tu-darmstadt.de/tocs/23570458.pdf                                                                                               |  |  |  |  |  |  |  |  |  |  |
|                | 4. http://www.academia.edu/download/30922844/L1-print.pdf                                                                                         |  |  |  |  |  |  |  |  |  |  |

| Contribution of | Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |      |      |      |
|-----------------|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                 | PO1                                                                                               | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1             | 3                                                                                                 | 2   | 3   | -   | 3   | -   | 2   | 2   | -   | -    | -    | 3    |
| CO2             | 3                                                                                                 | 3   | 3   | 1   | 2   | -   | -   | 2   | -   | -    | -    | 2    |
| CO3             | 3                                                                                                 | 2   | 3   | 1   | 1   | -   | -   | -   | -   | -    | -    | 3    |
| CO4             | 3                                                                                                 | 2   | 2   | 1   | 2   | -   | -   | -   | -   | -    | -    | 2    |
| CO5             | 3                                                                                                 | 2   | 2   | 1   | 1   | -   | -   | 2   | -   | -    | -    | 3    |
| CO6             | 3                                                                                                 | 2   | 3   | _   | 3   | -   | -   | 2   | -   | -    | -    | 3    |

#### 19EC3203 – COMPUTER NETWORKS

| Course catego        | ory: Program core                                                                                                                                                                                                                                                                                        | Credits: 3                                                                                                |  |  |  |  |  |  |  |  |  |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| Course Ty            | •                                                                                                                                                                                                                                                                                                        | <b>Lecture - Tutorial - Practical:</b> 3 - 0- 0                                                           |  |  |  |  |  |  |  |  |  |  |
| Prerequis            | Data types, Communication theory, basics of computer networks                                                                                                                                                                                                                                            | Sessional Evaluation: 40 External Evaluation: 60 Total Marks: 100                                         |  |  |  |  |  |  |  |  |  |  |
|                      | Students undergoing this course are expe                                                                                                                                                                                                                                                                 | ected to:                                                                                                 |  |  |  |  |  |  |  |  |  |  |
| Course<br>Objectives | <ol> <li>Become familiar with the fundamental</li> <li>Acquire the Knowledge about various</li> <li>Acquire knowledge about principles a design issues</li> <li>Understand the Data compression tech</li> <li>Understand the presentation layer.</li> <li>Become familiar with the World wide</li> </ol> | Local Area Networks & Routing algorithms and techniques of different network layer aniques & Cryptography |  |  |  |  |  |  |  |  |  |  |
|                      | Upon successful completion of the course , the students will be able to:  CO1 Understand the basics of communication, and different models of data                                                                                                                                                       |                                                                                                           |  |  |  |  |  |  |  |  |  |  |
|                      | transmission                                                                                                                                                                                                                                                                                             | es, and various protocols for data transmission                                                           |  |  |  |  |  |  |  |  |  |  |
| Course<br>Outcomes   | CO3 Understand the Local Area Netwo                                                                                                                                                                                                                                                                      | orks.                                                                                                     |  |  |  |  |  |  |  |  |  |  |
| Outcomes             | CO4 Studies design issues of Link layer                                                                                                                                                                                                                                                                  | ers.                                                                                                      |  |  |  |  |  |  |  |  |  |  |
|                      | CO5 Understand the error detection and correction schemes                                                                                                                                                                                                                                                |                                                                                                           |  |  |  |  |  |  |  |  |  |  |
|                      | CO6 Create tables using external medi                                                                                                                                                                                                                                                                    | a and tries to Design webpage                                                                             |  |  |  |  |  |  |  |  |  |  |
| Course<br>Content    |                                                                                                                                                                                                                                                                                                          |                                                                                                           |  |  |  |  |  |  |  |  |  |  |

| Course<br>Content | APPLICATION LAYER: World wide web, web browsers, web servers, uniform resource locator, Home pages, Basics of HTML, creating links, Anatomy of URL and kinds of URLs, HTML assignments, Editors and converters, New features of HTML, creating tables, Using images, Using external media, writing and designing web pages, Introduction to CGI scripts. |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | TEXT BOOKS:  1. Computer Networks – Andrew S Tanenbaum, 4th edition. Pearson Education/PHI                                                                                                                                                                                                                                                               |
| Text Books        | 2. Data Communications and Networking – Behrouz A.Forouzan, Third edition, TMH.                                                                                                                                                                                                                                                                          |
| and               | REFERENCES:                                                                                                                                                                                                                                                                                                                                              |
| Reference Books   | <ol> <li>An Engineering Approach to Computer Networks – S.Keshav,2<sup>nd</sup> edition, Pearson Education</li> <li>Understanding communications and Networks,3<sup>rd</sup> edition,W.A.Shay,Thomson</li> </ol>                                                                                                                                         |
| F Degaymage       |                                                                                                                                                                                                                                                                                                                                                          |
| E-Resources       | https://nptel.ac.in/courses/106105082                                                                                                                                                                                                                                                                                                                    |

| Contribution o | f Course C | Outcomes | toward | ds achie | evemer | nt of Pro | ogram ( | Outcom | es (3-H | igh, 2-M | edium, 1 | -Low) |
|----------------|------------|----------|--------|----------|--------|-----------|---------|--------|---------|----------|----------|-------|
|                | PO1        | PO2      | PO3    | PO4      | PO5    | PO6       | PO7     | PO8    | PO9     | PO10     | PO11     | PO12  |
| CO1            | 2          | 3        | 1      | -        | 2      | 2         | -       | -      | -       | -        | -        | 2     |
| CO2            | 3          | 3        | 2      | -        | 2      | -         | -       | -      | -       | -        | -        | 2     |
| CO3            | 2          | 3        | 2      | 1        | -      | -         | -       | -      | -       | -        | -        | 2     |
| CO4            | 3          | 3        | 2      | 1        | -      | -         | -       | -      | -       | -        | -        | 2     |
| CO5            | 2          | 3        | 1      | 1        | -      | -         | -       | -      | -       | -        | -        | 2     |
| CO6            | 3          | 3        | 1      | 1        | -      | -         | 2       | -      | -       | -        | -        | 2     |

## 19EC3204 – FIBER OPTICAL COMMUNICATION

| Course category: | Program Elective                   | Credits:                        | 3         |
|------------------|------------------------------------|---------------------------------|-----------|
| Course Type:     | Theory                             | Lecture - Tutorial - Practical: | 3 - 0 - 0 |
| Prerequisite:    | Electro Magnetic Fields and waves, | Sessional Evaluation:           | 40        |
| _                | Antenna and Wave Propagation,      | <b>External Evaluation:</b>     | 60        |
|                  | Electronic Devices and Circuits.   | Total Marks:                    | 100       |

|                      | Students undergoing this course are expected to understand:                                |  |  |  |  |  |  |
|----------------------|--------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                      | Students undergoing and course are expected to understand.                                 |  |  |  |  |  |  |
| Course<br>Objectives | 7. An overview of the Ray theory.                                                          |  |  |  |  |  |  |
|                      | 8. Optical materials, dispersion, diffraction, absorption, scattering, fiber losses,       |  |  |  |  |  |  |
|                      | fiber modes and configurations, fiber types and rays and fiber materials.                  |  |  |  |  |  |  |
|                      | 9. L.E.D., Lasers and their excitations and noises of light sources and coupling to        |  |  |  |  |  |  |
|                      | single mode fibers, splicing and connectors.                                               |  |  |  |  |  |  |
|                      | 10. The operating principles of optical Detectors and Receivers.                           |  |  |  |  |  |  |
|                      | 11. The behavior of the optical amplifiers, semiconductor and doped optical                |  |  |  |  |  |  |
|                      | amplifiers, and optical networks.                                                          |  |  |  |  |  |  |
|                      |                                                                                            |  |  |  |  |  |  |
|                      | 12. The knowledge of measurement of optical parameters and applications of                 |  |  |  |  |  |  |
|                      | optical fibers in different fields.                                                        |  |  |  |  |  |  |
|                      | Upon successful completion of the course, the students will be able to:                    |  |  |  |  |  |  |
|                      | CO1 Acquire knowledge about optical materials, fiber characteristics, classification       |  |  |  |  |  |  |
|                      | with different losses.                                                                     |  |  |  |  |  |  |
|                      | CO2 Understand the fibre modes, configurations and fibre materials for proper optical      |  |  |  |  |  |  |
|                      | propagation.                                                                               |  |  |  |  |  |  |
| Course               | CO3 Acquire knowledge of L.E.D., Laser excitations, fiber noises, coupling of fibers       |  |  |  |  |  |  |
| Outcomes             | and its receivers.                                                                         |  |  |  |  |  |  |
|                      | CO4 Analyse optical sources and detectors and receivers' performance and                   |  |  |  |  |  |  |
|                      | calculation  Understand the optical amplifiers and basic noise networks in optical fiber   |  |  |  |  |  |  |
|                      | cos applications.                                                                          |  |  |  |  |  |  |
|                      | Understand the massuraments of entired parameters and emplications of entired              |  |  |  |  |  |  |
|                      | ribers in different fields.                                                                |  |  |  |  |  |  |
|                      | UNIT-I                                                                                     |  |  |  |  |  |  |
|                      | INTRODUCTION TO OPTICAL FIBERS: Introduction- Ray theory transmission-                     |  |  |  |  |  |  |
|                      | Total internal reflection-Acceptance angle –Numerical aperture – Skew rays –               |  |  |  |  |  |  |
|                      | Electromagnetic mode theory of optical propagation –EM waves modes in planar               |  |  |  |  |  |  |
| Course               | Guide – phase and group velocity – cylindrical fibers – SM fibers.                         |  |  |  |  |  |  |
| Course<br>Content    | UNIT –II TRANSMISSION CHARACTERISTICS OF OPTICAL FIBERS: Attenuation –                     |  |  |  |  |  |  |
| Content              | Material absorption losses in silica glass fibers – Linear and Nonlinear Scattering losses |  |  |  |  |  |  |
|                      | - Fiber Bend losses – Midband and Farband infrared Transmission – Intra and inter          |  |  |  |  |  |  |
|                      | Modal Dispersion – Over all Fiber Dispersion – Polarization- nonlinear Phenomena.          |  |  |  |  |  |  |
|                      | Optical fiber connectors, Fiber alignment and Joint Losses – Fiber Splices – Fiber         |  |  |  |  |  |  |
|                      | connectors –Expanded Beam Connectors – Fiber Couplers.                                     |  |  |  |  |  |  |
|                      | UNIT –III                                                                                  |  |  |  |  |  |  |
|                      | FIBER OPTICAL SOURCES: Light Emitting Diodes, LED structures, Surface and                  |  |  |  |  |  |  |
|                      | edge emitters, mono and hetero structures - internal - quantum efficiency, injection       |  |  |  |  |  |  |

|             | laser diode structures - comparison of LED and ILD                                         |  |  |  |  |  |  |  |
|-------------|--------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|             | TINITE IX                                                                                  |  |  |  |  |  |  |  |
|             | UNIT -IV                                                                                   |  |  |  |  |  |  |  |
|             | FIBER OPTICAL DETECTORS AND RECEIVERS:                                                     |  |  |  |  |  |  |  |
|             | OPTICAL DETECTORS: PIN Photo detectors, Avalanche photo diodes,                            |  |  |  |  |  |  |  |
|             | construction, characteristics and properties, Comparison of performance, Photo detector    |  |  |  |  |  |  |  |
|             | noise -Noise sources, Signal to Noise ratio, Detector response time.                       |  |  |  |  |  |  |  |
|             | <b>OPTICAL RECEIVERS</b> : Fundamental receiver operation, Pre amplifiers, Error           |  |  |  |  |  |  |  |
|             | sources – Receiver Configuration-Probability of Error – Quantum limit.                     |  |  |  |  |  |  |  |
|             | UNIT- V                                                                                    |  |  |  |  |  |  |  |
| Course      | FIBER OPTICAL AMPLIFIERS AND NETWORKS: Semiconductor Optical                               |  |  |  |  |  |  |  |
| Content     | amplifiers – EDFA- Raman amplifier.                                                        |  |  |  |  |  |  |  |
|             | <b>WDM SYSTEM</b> : Principles of WDM networks. Nonlinear effects in fiber optic links.    |  |  |  |  |  |  |  |
|             | Concept of self-phase modulation, group velocity dispersion and solution based             |  |  |  |  |  |  |  |
|             | communication.                                                                             |  |  |  |  |  |  |  |
|             | UNIT- VI                                                                                   |  |  |  |  |  |  |  |
|             | FIBER OPTICAL MEASUREMENTS: Fiber Attenuation measurements-                                |  |  |  |  |  |  |  |
|             | Dispersion measurements -Fiber Refractive index profile measurements - Fiber cut-          |  |  |  |  |  |  |  |
|             | off Wavelength Measurements -Fiber Numerical Aperture Measurements - Fiber                 |  |  |  |  |  |  |  |
|             | diameter measurements.                                                                     |  |  |  |  |  |  |  |
|             | <b>OPTICAL FIBER APPLICATIONS</b> : Telephony Telemetry- video distribution and            |  |  |  |  |  |  |  |
|             | military applications.                                                                     |  |  |  |  |  |  |  |
|             | TEXT BOOKS:                                                                                |  |  |  |  |  |  |  |
|             | 1. "Optical Communications", C. Gerd Keiser 3 <sup>rd</sup> Edition, Mc Graw-Hill-2000.    |  |  |  |  |  |  |  |
| Text Books  | 2. "Optical Fiber Communication", John M Senior, Pearson publications.                     |  |  |  |  |  |  |  |
| and         | REFERENCE BOOKS:                                                                           |  |  |  |  |  |  |  |
| Reference   | 1. Electronic Communications Systems-Williams Schweber, Prentice Hall, 1999.               |  |  |  |  |  |  |  |
| Books       | 2. Optical Fiber Communication Systems- C.P. Saud Bance, John Wiley 1980.                  |  |  |  |  |  |  |  |
| E Doggarage | 3. Modern Electronic Communication-G.M. Miller 6 <sup>th</sup> edition Prentice Hall 1999. |  |  |  |  |  |  |  |
| E-Resources | 1. http://nptel.ac.in/courses/117103063/1                                                  |  |  |  |  |  |  |  |
| 1           | 2. https://www.youtube.com/user/nptelhrd                                                   |  |  |  |  |  |  |  |

| Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |     |      |      |      |
|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                                                                                                   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1                                                                                               | 3   | 2   | 1   | -   | -   | -   | -   | -   | -   | -    | -    | 2    |
| CO2                                                                                               | 3   | 2   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | 2    |
| CO3                                                                                               | 3   | 3   | 2   | 1   | -   | -   | -   | -   | -   | -    | -    | 3    |
| CO4                                                                                               | 3   | 3   | 1   | 1   | -   | -   | -   | -   | -   | -    | -    | 3    |
| CO5                                                                                               | 3   | 3   | 1   | 1   | -   | 1   | 1   | -   | -   | 1    | ı    | 3    |
| CO6                                                                                               | 3   | 3   | 1   | 1   | -   | -   | -   | _   | -   | -    | -    | 3    |

## 19EC32P1-DIGITAL COMMUNICATION LAB

| Course Category: | Program Core                  | Credits:                    | 1.5       |
|------------------|-------------------------------|-----------------------------|-----------|
| Course Type:     | Practical                     | Lecture-Tutorial- Practice: | 0 - 0 - 3 |
| Prerequisite:    | Analog Communication, Digital | Sessional Evaluation:       | 40        |
|                  | Communication and Information | External Evaluation:        | 60        |
|                  | Theory & Coding.              | Total Marks:                | 100       |

|            | Students undergoing this course are expected to understand:                                                             |  |  |  |  |  |  |  |  |
|------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Course     | <ol> <li>Analog signal sampling and re-construction.</li> <li>Different modulation and demodulation schemes.</li> </ol> |  |  |  |  |  |  |  |  |
| Objectives | <ol> <li>The encoder and decoders of Linear Block Codes.</li> </ol>                                                     |  |  |  |  |  |  |  |  |
|            | 4. The Binary Cyclic Code encoder and decoder.                                                                          |  |  |  |  |  |  |  |  |
|            | Upon successful completion of the course, the students will be able to:                                                 |  |  |  |  |  |  |  |  |
|            | CO1 Modulate and demodulate a message Signal with a high frequency carrier using DM.                                    |  |  |  |  |  |  |  |  |
|            | CO2 Modulate and demodulate a message Signal with a high frequency carrier using PCM                                    |  |  |  |  |  |  |  |  |
| Course     | CO3 Understand signal sampling and re-construction                                                                      |  |  |  |  |  |  |  |  |
| Outcomes   | CO4 Understand time division multiplexing & de-multiplexing                                                             |  |  |  |  |  |  |  |  |
|            | CO5 Know the different shift keying methods.                                                                            |  |  |  |  |  |  |  |  |
|            | CO6 Understand the encoder and decoders of Linear Block Codes.                                                          |  |  |  |  |  |  |  |  |
|            | LIST OF EXPERIMENTS                                                                                                     |  |  |  |  |  |  |  |  |
|            | Verifying Sampling Theorem.                                                                                             |  |  |  |  |  |  |  |  |
|            | 2. Time Division Multiplexing and De-multiplexing.                                                                      |  |  |  |  |  |  |  |  |
|            | 3. Pulse Code Modulation and Demodulation.                                                                              |  |  |  |  |  |  |  |  |
| Course     | 4. Differential Pulse Code Modulation and Demodulation.                                                                 |  |  |  |  |  |  |  |  |
| Course     | 5. Delta Modulation and Demodulation.                                                                                   |  |  |  |  |  |  |  |  |
|            | 6. Amplitude Shift Keying Modulation and Demodulation.                                                                  |  |  |  |  |  |  |  |  |
|            | 7. Frequency Shift Keying Modulation and Demodulation.                                                                  |  |  |  |  |  |  |  |  |
|            | 8. Binary Phase Shift Keying Modulation and Demodulation.                                                               |  |  |  |  |  |  |  |  |
|            | 9. Differential Phase Shift Keying Modulation and Demodulation.                                                         |  |  |  |  |  |  |  |  |
|            | 10. Linear Block Code-Encoder and Decoder.                                                                              |  |  |  |  |  |  |  |  |
|            | 11. Binary Cyclic Code- Encoder and Decoder.                                                                            |  |  |  |  |  |  |  |  |
|            | 12. Companding.                                                                                                         |  |  |  |  |  |  |  |  |

#### 19EC32P2 – DIGITAL SIGNAL PROCESSING LAB

| Course Category: |                                                                                                                                                                                         | Program Core                                                       | Credits:                              | 1.5       |  |  |  |  |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------|-----------|--|--|--|--|--|--|
| Course Type:     |                                                                                                                                                                                         | Practical                                                          | Lecture-Tutorial- Practice:           | 0 - 0 - 3 |  |  |  |  |  |  |
| Prerequisite:    |                                                                                                                                                                                         | Signals and system, digital signal                                 | <b>Sessional Evaluation:</b>          | 40        |  |  |  |  |  |  |
|                  |                                                                                                                                                                                         | processing and digital image                                       | External Evaluation :<br>Total Marks: | 60        |  |  |  |  |  |  |
|                  |                                                                                                                                                                                         | processing.                                                        | 100                                   |           |  |  |  |  |  |  |
|                  | Stude                                                                                                                                                                                   | dents undergoing this course are expected to understand:           |                                       |           |  |  |  |  |  |  |
| Course           | 1.                                                                                                                                                                                      | 1. Basic operations varies filters and images.                     |                                       |           |  |  |  |  |  |  |
| Objectives       | 2. Verification of various systems.                                                                                                                                                     |                                                                    |                                       |           |  |  |  |  |  |  |
|                  | Upon                                                                                                                                                                                    | successful completion of the course,                               | the students will be able to:         |           |  |  |  |  |  |  |
|                  | CO1                                                                                                                                                                                     | Generate various filters using MAT l                               | ab.                                   |           |  |  |  |  |  |  |
| Course           | CO2                                                                                                                                                                                     | Find the Inverse z-transform using re                              | sidue method.                         |           |  |  |  |  |  |  |
| Outcomes         | CO3                                                                                                                                                                                     | Perform linear convolution and cross correlation of two sequences. |                                       |           |  |  |  |  |  |  |
|                  | CO4                                                                                                                                                                                     | Compute the DFT and IDFT of a giv                                  | en sequence.                          |           |  |  |  |  |  |  |
|                  | CO5                                                                                                                                                                                     | Perform linear convolution using DFT                               |                                       |           |  |  |  |  |  |  |
|                  | CO6                                                                                                                                                                                     | Design digital band pass and band sto                              | op filters.                           |           |  |  |  |  |  |  |
|                  | LIST OF SIGNAL PROCESSING EXPRIMENTS                                                                                                                                                    |                                                                    |                                       |           |  |  |  |  |  |  |
|                  | <ol> <li>Generation of discrete time signals like sine, cosine, exponential, square and sawtooth</li> <li>Perform linear convolution and cross correlation of two sequences.</li> </ol> |                                                                    |                                       |           |  |  |  |  |  |  |
|                  | 3. Constant co-efficient difference equation.                                                                                                                                           |                                                                    |                                       |           |  |  |  |  |  |  |
|                  | 4. Computation of the DTFT of a given sequence x (n).                                                                                                                                   |                                                                    |                                       |           |  |  |  |  |  |  |
| _                | 5. Computation of the DFT and IDFT of a given sequence.                                                                                                                                 |                                                                    |                                       |           |  |  |  |  |  |  |
| Course           | 6. Computation of the efficiency of FFT algorithm with the DFT algorithm.                                                                                                               |                                                                    |                                       |           |  |  |  |  |  |  |
| Content          | <ul><li>7. Linear convolution using DFT.</li><li>8. Inverse Z-transform using residue method.</li></ul>                                                                                 |                                                                    |                                       |           |  |  |  |  |  |  |
|                  | 9. Design Chebyshew digital low pass filter using bilinear transformation.                                                                                                              |                                                                    |                                       |           |  |  |  |  |  |  |
|                  | 10. Design a Butterworth digital low pass filter.                                                                                                                                       |                                                                    |                                       |           |  |  |  |  |  |  |
|                  | 11. Design FIR digital low pass filter.                                                                                                                                                 |                                                                    |                                       |           |  |  |  |  |  |  |
|                  | 12. Design digital band pass filter.                                                                                                                                                    |                                                                    |                                       |           |  |  |  |  |  |  |
|                  | 13. Design digital band stop filter.                                                                                                                                                    |                                                                    |                                       |           |  |  |  |  |  |  |
|                  |                                                                                                                                                                                         |                                                                    |                                       |           |  |  |  |  |  |  |
|                  |                                                                                                                                                                                         |                                                                    |                                       |           |  |  |  |  |  |  |

| S.No | COURSE CODE | ELECTIVE-II                            |
|------|-------------|----------------------------------------|
| 1.   | 19EC32E1    | MACHINE LEARNING                       |
| 2.   | 19EC32E2    | PRINCIPLES OF MODERN RADAR SYSTEMS     |
| 3.   | 19EC32E3    | ADAPTIVE SIGNAL PROCESSING             |
| 4.   | 19EC32E4    | TELECOMMUNICATION & SWITCHING NETWORKS |

# 19EC32E1 – MACHINE LEARNING

| Course category: | Program Elective              | Credits:                        | 3        |
|------------------|-------------------------------|---------------------------------|----------|
| Course Type:     | Theory                        | Lecture - Tutorial - Practical: | 3 - 0- 0 |
| Prerequisite:    | Probability Theory and Linear | <b>Sessional Evaluation:</b>    | 40       |
|                  | Algebra.                      | External Evaluation:            | 60       |
|                  | _                             | Total Marks:                    | 100      |

|            | Students undergoing this course are expected:                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|            |                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
|            | 1. To introduce fundamental concepts in machine learning and popular machine learning algorithms.                                                                                                                                                 |  |  |  |  |  |  |  |  |
| <b>C</b>   | 2. To become familiar with the fundamentals of Supervised Learning techniques                                                                                                                                                                     |  |  |  |  |  |  |  |  |
| Course     | 3. To understand & analyze various Unsupervised Learning techniques.                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| Objectives | 4. To acquire knowledge on principles and techniques of Artificial Neura                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|            | Networks.                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
|            | 5. To understand different types of Perceptron.                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
|            | 6. To have a profound understanding of Computational Learning Theory.                                                                                                                                                                             |  |  |  |  |  |  |  |  |
|            | Upon successful completion of the course, the students will be able to:                                                                                                                                                                           |  |  |  |  |  |  |  |  |
|            | CO1 Understand the fundamental principles, techniques and applications of Machine Learning.                                                                                                                                                       |  |  |  |  |  |  |  |  |
| Course     | CO2 Design and implement machine-learning solutions to classification, regression and clustering problems.                                                                                                                                        |  |  |  |  |  |  |  |  |
| Outcomes   | CO3 Evaluate and interpret the results of the Unsupervised Learning techniques.                                                                                                                                                                   |  |  |  |  |  |  |  |  |
|            | CO4 Design the neural network to meet the needs of control systems and pattern classification issues.                                                                                                                                             |  |  |  |  |  |  |  |  |
|            | CO5 Recognize and Implement various ways of selecting suitable model parameters for different Machine Learning techniques.                                                                                                                        |  |  |  |  |  |  |  |  |
|            | CO6 Gain the knowledge of Computational Learning Theory.                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|            | UNIT – I                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|            | MACHINE LEARNING: Introduction, Review of Probability Theory and Linear Algebra, Basic definitions of machine learning, types and applications of machine learning, hypothesis space and inductive bias, evaluation, cross-validation.  UNIT - II |  |  |  |  |  |  |  |  |
| Course     | <b>SUPERVISED LEARNING:</b> Introduction, Linear methods for classification, Linear methods for regression, Support Vector Machine, SVM- the dual formulation, SVM- the maximum margin with noise, Decision trees, over fitting.                  |  |  |  |  |  |  |  |  |
| Course     | UNIT – III  UNSUPERVISED LEARNING: Introduction Instance based learning: K. Negrest                                                                                                                                                               |  |  |  |  |  |  |  |  |
| Content    | UNSUPERVISED LEARNING: Introduction, Instance based learning: K- Nearest                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|            | neighbour, Feature selection, Feature Extraction, Collaborative filtering based                                                                                                                                                                   |  |  |  |  |  |  |  |  |
|            | recommendation, Bayesian learning, Naïve Bayes, Bayesian network, Kernel functions, Non-linear SVM with kernel function.                                                                                                                          |  |  |  |  |  |  |  |  |
|            | UNIT – IV                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
|            | <b>NEURAL NETWORKS:</b> Introduction, Biological neurons, Artificial neurons Mc.Culloch-Pitts model, Neuron Modelling for artificial neural systems, Feed forwar network, Feedback network, Types of neural networks.                             |  |  |  |  |  |  |  |  |

|             | UNIT – V                                                                                   |  |  |  |  |  |  |  |  |  |  |  |
|-------------|--------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
|             | <b>PERCEPTRON:</b> Introduction, Exclusive OR problem, Single layer perceptron             |  |  |  |  |  |  |  |  |  |  |  |
|             | network, Multilayer feed forward networks, Pattern classification, Delta learning rule for |  |  |  |  |  |  |  |  |  |  |  |
| Course      | multilayer perceptron, Error back propagation algorithm.                                   |  |  |  |  |  |  |  |  |  |  |  |
| Content     | UNIT - VI                                                                                  |  |  |  |  |  |  |  |  |  |  |  |
|             | COMPUTATIONAL LEARNING THEORY: Introduction, PAC learning model,                           |  |  |  |  |  |  |  |  |  |  |  |
|             | Sample complexity, VC Dimension, Ensemble learning, Introduction to Clustering, k-         |  |  |  |  |  |  |  |  |  |  |  |
|             | means clustering, adaptive hierarchical clustering.                                        |  |  |  |  |  |  |  |  |  |  |  |
|             | TEXT BOOKS:                                                                                |  |  |  |  |  |  |  |  |  |  |  |
|             | 1. Mitchell Tom, Machine Learning, McGraw Hill, 1997.                                      |  |  |  |  |  |  |  |  |  |  |  |
|             | 2. Christopher Bishop, Pattern Recognition and Machine Learning, Springer 2006.            |  |  |  |  |  |  |  |  |  |  |  |
| Text Books  | 3. Jacek M. Zurada, Introduction to Artificial Neural Systems, Jaico Publications.         |  |  |  |  |  |  |  |  |  |  |  |
| and         | REFERENCE BOOKS:                                                                           |  |  |  |  |  |  |  |  |  |  |  |
| Reference   | 1. Richard O. Duda, Peter E. Hart, David G. Stork. Pattern classification (2nd             |  |  |  |  |  |  |  |  |  |  |  |
| Books       | edition). Wiley, New York, 2001.                                                           |  |  |  |  |  |  |  |  |  |  |  |
|             | 2. Nikola K.Kasabov, Foundations of Neural Networks, Fuzzy Systems and Knowled             |  |  |  |  |  |  |  |  |  |  |  |
|             | Engineering (The MIT Press)                                                                |  |  |  |  |  |  |  |  |  |  |  |
| E-Resources | 1. https://onlinecourses.nptel.ac.in/noc18_cs40                                            |  |  |  |  |  |  |  |  |  |  |  |
|             | 2. http://nptel.ac.in/courses/108104049/13                                                 |  |  |  |  |  |  |  |  |  |  |  |

| Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |     |      |      |      |
|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                                                                                                   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1                                                                                               | 3   | 3   | 3   | 2   | -   | -   | -   | 1   | -   | -    | -    | 2    |
| CO2                                                                                               | 3   | 3   | 3   | 2   | -   | -   | -   | 1   | -   | -    | -    | 2    |
| CO3                                                                                               | 3   | 3   | 3   | 1   | -   | -   | -   | 1   | -   | -    | -    | 2    |
| CO4                                                                                               | 3   | 2   | 3   | 2   | -   | -   | -   | 1   | -   | -    | -    | 2    |
| CO5                                                                                               | 3   | 2   | 3   | 2   | -   | -   | -   | 2   | -   | -    | -    | 3    |
| CO6                                                                                               | 3   | 3   | 3   | 2   | -   | -   | -   | 2   | -   | -    | -    | 3    |

# 17EC32E2 – PRINCIPLES OF MODERN RADAR SYSTEMS

| Course category: | Program Elective                  | Credits:                        | 3        |
|------------------|-----------------------------------|---------------------------------|----------|
| Course Type:     | Theory                            | Lecture - Tutorial - Practical: | 3 - 0- 0 |
| Prerequisite:    | Analog and digital communication  | <b>Sessional Evaluation:</b>    | 40       |
| _                | systems, Microwave techniques and | <b>External Evaluation:</b>     | 60       |
|                  | Radiating systems.                | Total Marks:                    | 100      |

|                    | Students undergoing this course are expected to:                                                                                                                        |  |  |  |  |  |  |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|                    | Analyze the fundamentals of radar block diagram and range equation.                                                                                                     |  |  |  |  |  |  |  |  |
|                    | <ol> <li>Analyze the fundamentals of radar block diagram and range equation.</li> <li>Understand different components of radar system.</li> </ol>                       |  |  |  |  |  |  |  |  |
| Course             | 3. Know types of radar systems.                                                                                                                                         |  |  |  |  |  |  |  |  |
| Objectives         | 4. Illustrate Radar detection techniques.                                                                                                                               |  |  |  |  |  |  |  |  |
|                    | 5. Learn special radars.                                                                                                                                                |  |  |  |  |  |  |  |  |
|                    | 6. Understand fundamentals ECM and ECCM.                                                                                                                                |  |  |  |  |  |  |  |  |
|                    | Upon successful completion of the course, the students will be able to:                                                                                                 |  |  |  |  |  |  |  |  |
|                    | CO1 Understand the components of a radar system and their relationship to overall system and measure of performance.                                                    |  |  |  |  |  |  |  |  |
|                    | CO2 Analyze the performance of radar components.                                                                                                                        |  |  |  |  |  |  |  |  |
| Course<br>Outcomes | CO3 Familiarized in different radar systems.                                                                                                                            |  |  |  |  |  |  |  |  |
| Outcomes           | CO4 Develop skills in designing Radar systems in different noise environments.                                                                                          |  |  |  |  |  |  |  |  |
|                    | CO5 Demonstrate knowledge in special radars.                                                                                                                            |  |  |  |  |  |  |  |  |
|                    | CO6 Describe the fundamentals ECM and ECCM.                                                                                                                             |  |  |  |  |  |  |  |  |
|                    | UNIT-I                                                                                                                                                                  |  |  |  |  |  |  |  |  |
|                    | THE NATURE OF RADAR: The simple form of the Radar equation, Radar block                                                                                                 |  |  |  |  |  |  |  |  |
|                    | diagram and operation, Radar frequencies and Applications of Radar.  Minimum Detectable signal, Receiver noise, Probability Density Functions, Signal to                |  |  |  |  |  |  |  |  |
|                    | Noise Ratio, Integration of Radar pulses, Radar Cross Section of Targets, Cross section                                                                                 |  |  |  |  |  |  |  |  |
|                    | fluctuations, Pulse Repetition Frequency and Range Ambiguities.                                                                                                         |  |  |  |  |  |  |  |  |
|                    | UNIT-II                                                                                                                                                                 |  |  |  |  |  |  |  |  |
|                    | <b>RADAR COMPONENTS</b> : Klystron Power Amplifier, Travelling Wave Tube, Magnetron Oscillator, Cross Field Amplifier, Modulators, Mixers: Conversion Loss,             |  |  |  |  |  |  |  |  |
| Course             | Noise Figure, Balanced mixer, Image recovery mixer, Duplexers: Branch type, Balanced                                                                                    |  |  |  |  |  |  |  |  |
| Content            | type and Solid State Duplexers, limiters, Displays: CRT Display, A,B,C,D Scopes, PPI                                                                                    |  |  |  |  |  |  |  |  |
|                    | and RHI.                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                    | UNIT-III  PADAD SYSTEMS: Donnlor Effect Simple CW Roder EM CW Roder MTI Roder:                                                                                          |  |  |  |  |  |  |  |  |
|                    | <b>RADAR SYSTEMS</b> : Doppler Effect, Simple CW Radar, FM-CW Radar, MTI Radar: Delay line Cancellers, Blind speeds, Range Gated Doppler Filters, Limitations and types |  |  |  |  |  |  |  |  |
|                    | of MTI radars.                                                                                                                                                          |  |  |  |  |  |  |  |  |
|                    | TRACKING RADAR: Sequential Lobbing, Conical Scanning and Monopulse                                                                                                      |  |  |  |  |  |  |  |  |
|                    | Tracking, Tracking in Range.                                                                                                                                            |  |  |  |  |  |  |  |  |
|                    | UNIT- IV  RADAR DETECTION TECHNIQUES: Coherent & Non-Coherent Detection —                                                                                               |  |  |  |  |  |  |  |  |
|                    | Matched Filters-Different methods of Integration of Pulse Trains – Detection of                                                                                         |  |  |  |  |  |  |  |  |
|                    | Fluctuating Targets - Fluctuation laws - Diversity gain - Binary Integration of                                                                                         |  |  |  |  |  |  |  |  |
|                    | Fluctuation Targets - Cumulative Integration of Fluctuating Targets - Sequential                                                                                        |  |  |  |  |  |  |  |  |

|             | Detection with Rapid Confirmation – Constant False Alarm Rate Detection – Cell            |  |  |  |  |  |  |  |  |  |
|-------------|-------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|             | Averaging – Two Parameter Averaging & Non-Parametric Averaging.                           |  |  |  |  |  |  |  |  |  |
|             | UNIT-V                                                                                    |  |  |  |  |  |  |  |  |  |
|             | <b>SPECIAL RADARS:</b> Bi-Static Radar – Synthetic Aperture Radar – HF Over The           |  |  |  |  |  |  |  |  |  |
| Course      | Horizon Radar – Air Surveillance Radar– Height Finder & 3D radar.                         |  |  |  |  |  |  |  |  |  |
| Content     | UNIT-VI                                                                                   |  |  |  |  |  |  |  |  |  |
| 00110110    | RADAR ELECTRONIC COUNTER MEASURES (ECM) AND ELECTRONIC                                    |  |  |  |  |  |  |  |  |  |
|             | COUNTER-COUNTER MEASURES (ECCM): Noise Jamming of Surveillance                            |  |  |  |  |  |  |  |  |  |
|             | Radar – Detection Range in Noise Jamming – ECCM Provisions for Surveillance Radar         |  |  |  |  |  |  |  |  |  |
|             | - Objective of ECM.                                                                       |  |  |  |  |  |  |  |  |  |
|             | objective of Bolin.                                                                       |  |  |  |  |  |  |  |  |  |
|             | TEXT BOOKS:                                                                               |  |  |  |  |  |  |  |  |  |
|             | 1. David. K. Barton-"Modern Radar Systems"- Artech House INC 1988.                        |  |  |  |  |  |  |  |  |  |
|             | 2. Introduction to Radar Systems-Merrill. I. Skolnik, TMH, 2 <sup>nd</sup> Edition, 2007. |  |  |  |  |  |  |  |  |  |
|             | 2. Introduction to Radar Systems-Werrin. 1. Skolink, 11911, 2. Edition, 2007.             |  |  |  |  |  |  |  |  |  |
| Text Books  | 3. Radar: Principles, Technology and Applications-Byron Edde, Pearson Education,          |  |  |  |  |  |  |  |  |  |
| and         | 2004.                                                                                     |  |  |  |  |  |  |  |  |  |
| Reference   | REFERENCE BOOKS:                                                                          |  |  |  |  |  |  |  |  |  |
| Books       | 1. Microwave and Radar Engineering- M. Kulakarni, Umesh Publications, 4 <sup>th</sup>     |  |  |  |  |  |  |  |  |  |
| DOOKS       | Edition, 2012.                                                                            |  |  |  |  |  |  |  |  |  |
|             |                                                                                           |  |  |  |  |  |  |  |  |  |
|             | 2. Hamish. D. Meikle- "Modern Radar Systems" - Artech House INC 1988.                     |  |  |  |  |  |  |  |  |  |
|             | David. K. Barton-"Radar system Analysis & Modeling" - Artech House INC                    |  |  |  |  |  |  |  |  |  |
|             | 2003.                                                                                     |  |  |  |  |  |  |  |  |  |
| E-Resources | 1. https://www.ll.mit.edu/outreach/introduction-radar-systems                             |  |  |  |  |  |  |  |  |  |
|             | 2. http://lej4learning.com.pk/videos-introduction-to-radar-systems-mit/                   |  |  |  |  |  |  |  |  |  |

| Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |     |      |      |      |
|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                                                                                                   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1                                                                                               | 3   | 2   | 2   | 2   | -   | -   | -   | -   | -   | -    | -    | 2    |
| CO2                                                                                               | 3   | 2   | 2   | 2   | -   | -   | -   | -   | -   | -    | -    | 3    |
| CO3                                                                                               | 3   | 3   | 2   | 2   | -   | -   | -   | -   | -   | -    | -    | 2    |
| CO4                                                                                               | 3   | 3   | 2   | 1   | -   | -   | -   | -   | -   | -    | -    | 2    |
| CO5                                                                                               | 3   | 3   | 2   | 2   | -   | -   | -   | -   | -   | -    | -    | 2    |
| CO6                                                                                               | 3   | 3   | 2   | 1   | -   | -   | -   | -   | -   | -    | -    | 3    |

# 19EC32E3- ADAPTIVE SIGNAL PROCESSING

| Course Cate          | egory:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Program Elective                                                                       | Credits: 3                                                                                              |                 |  |  |  |  |  |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|--|--|
| Course               | Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Theory                                                                                 | Lecture -Tutorial-Practical:                                                                            | 3-0-0           |  |  |  |  |  |  |
| Prereq               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Signals & Systems Digital Signal Processing                                            | Sessional Evaluation:<br>External Evaluation:<br>Total Marks:                                           | 40<br>60<br>100 |  |  |  |  |  |  |
|                      | Stude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ents undergoing this course are expecte                                                | d to understand:                                                                                        |                 |  |  |  |  |  |  |
| Course<br>Objectives | <ol> <li>The Definitions, Characteristics, Applications of adaptive systems</li> <li>The Methods &amp; Ideas of Gradient Search methods, Gradient Searching         Algorithm &amp; its Solution</li> <li>The steepest descent algorithms, eigen values and vectors</li> <li>The LMS Adaptation algorithms, Stability &amp; Performance analysis of LMS         Algorithms</li> <li>The Application of RLS algorithm on Adaptive Equalization.</li> <li>The Variants of Kalman filtering, Extend Kalman filtering</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                        |                                                                                                         |                 |  |  |  |  |  |  |
|                      | Upon<br>CO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | successful completion of the course, Understand the concept of adaptive f application. |                                                                                                         | any real time   |  |  |  |  |  |  |
| Course               | CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Know how to get desired response from a filter and various searching methods.          |                                                                                                         |                 |  |  |  |  |  |  |
| Outcomes             | CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                        |                                                                                                         |                 |  |  |  |  |  |  |
|                      | CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                        |                                                                                                         |                 |  |  |  |  |  |  |
|                      | CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Apply RLS algorithm design an adaptive filter equalization and Kalman filtering.       |                                                                                                         |                 |  |  |  |  |  |  |
|                      | CO6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Develop an adaptive filter for target tracking using only DOA.                         |                                                                                                         |                 |  |  |  |  |  |  |
| Course<br>Content    | UNIT I  INTRODUCTION TO ADAPTIVE SYSTEMS: Definitions, Characteristics, Applications, Example of an Adaptive System. The Adaptive Linear Combiner - Description, Weight Vectors, Desired Response Performance function, Gradient & Mean Square Error.  UNIT II  DEVELOPMENT OF ADAPTIVE FILTER THEORY AND SEARCHING METHODS: Introduction to Filtering, Smoothing and Prediction, Linear Optimum Filtering, Problem statement, Principle of Orthogonality - Minimum Mean Square Error, Wiener- Hopf equations, Error Performance - Minimum Mean Square Error. Methods & Ideas of Gradient Search methods, Gradient Searching Algorithm & its Solution, Stability & Rate of convergence - Learning Curves.  UNIT III  STEEPEST DESCENT ALGORITHMS, EIGEN VALUES AND VECTORS: Gradient Search by Newton's Method, Method of Steepest Descent, Comparison of Learning Curves. Eigen Value Problem, Properties of Eigen values and Eigen vectors, Eigen Filters, Eigen Value computations. |                                                                                        |                                                                                                         |                 |  |  |  |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ALGORITHM & APPLICATIO                                                                 | UNIT IV ICATIONS: Overview - LMS Adaptation algorithms, s of LMS Algorithms - LMS Gradient & Stochastic |                 |  |  |  |  |  |  |

|                                         | algorithms, Convergence of LMS algorithm, Noise cancellation, Cancellation of Echoes in      |  |  |  |  |  |  |  |  |
|-----------------------------------------|----------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|                                         | long distance telephone circuits.                                                            |  |  |  |  |  |  |  |  |
|                                         | UNIT-V                                                                                       |  |  |  |  |  |  |  |  |
|                                         | RLS ALGORITHM: Matrix Inversion lemma, Exponentially weighted recursive least                |  |  |  |  |  |  |  |  |
| ~                                       | square algorithm, update recursion for the sum of weighted error squares, convergence        |  |  |  |  |  |  |  |  |
| Course                                  | analysis of RLS Algorithm, Application of RLS algorithm on Adaptive Equalization.            |  |  |  |  |  |  |  |  |
| Content                                 | UNIT-VI                                                                                      |  |  |  |  |  |  |  |  |
|                                         | KALMAN FILTERING: Statement of Kalman filtering problem, Filtering, Initial                  |  |  |  |  |  |  |  |  |
|                                         | conditions, Variants of Kalman filtering, Extend Kalman filtering, Introduction to Recursive |  |  |  |  |  |  |  |  |
|                                         | Mean Square Estimation Random variables, Target tracking using only DOA.                     |  |  |  |  |  |  |  |  |
|                                         | Wear Square Estimation Random variables, Target tracking using only 1907.                    |  |  |  |  |  |  |  |  |
|                                         | TEXT BOOKS:                                                                                  |  |  |  |  |  |  |  |  |
|                                         | 1. Adaptive signal processing- Bernard Widrow, Samuel D.Strearns, 2005, PE.                  |  |  |  |  |  |  |  |  |
|                                         | 2. Adaptive Filter Theory - Simon Haykin-, 4 <sup>th</sup> ed., 2002, PE Asia                |  |  |  |  |  |  |  |  |
| Text Books                              | REFERENCE BOOKS:                                                                             |  |  |  |  |  |  |  |  |
| and Reference                           | 1. Optimum signal processing: An introduction - Sophocles. J. Orfamadis, 2 ed., 1988,        |  |  |  |  |  |  |  |  |
| Books                                   | McGraw-Hill, New York                                                                        |  |  |  |  |  |  |  |  |
|                                         | 2. Adaptive signal processing-Theory and Applications, S.Thomas Alexander, 1986,             |  |  |  |  |  |  |  |  |
|                                         | Springer-Verilog.                                                                            |  |  |  |  |  |  |  |  |
| E-Resources                             | https://nptel.ac.in/courses/117105075/                                                       |  |  |  |  |  |  |  |  |
| L-Resources                             | https://hpter.de.ht/courses/11/1050/5/                                                       |  |  |  |  |  |  |  |  |
| i e e e e e e e e e e e e e e e e e e e |                                                                                              |  |  |  |  |  |  |  |  |

| Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |     |      |      |      |
|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                                                                                                   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1                                                                                               | 3   | 2   | 2   | 1   | -   | 1   | 1   | -   | 1   | 1    | 1    | 2    |
| CO2                                                                                               | 3   | 2   | 2   | 2   | -   | 1   | 1   | -   | 1   | 1    | 1    | 2    |
| CO3                                                                                               | 3   | 3   | 3   | 2   | -   | 1   | 1   | -   | ı   | ı    | 1    | 3    |
| CO4                                                                                               | 3   | 3   | 3   | 1   | -   | -   | -   | -   | -   | -    | -    | 3    |
| CO5                                                                                               | 3   | 3   | 3   | 1   | 1   | 1   | -   | -   | -   | -    | -    | 3    |
| CO6                                                                                               | 3   | 3   | 3   | 1   | 1   | 1   | 1   | _   | -   | 1    | -    | 3    |

# 19EC32E4 – TELECOMMUNICATION & SWITCHING NETWORKS

| Course category: | Program Elective             | Credits:                        | 3        |
|------------------|------------------------------|---------------------------------|----------|
| Course Type:     | Theory                       | Lecture - Tutorial - Practical: | 3 - 0- 0 |
| Prerequisite:    | Basics of Analog and Digital | Sessional Evaluation:           | 40       |
| _                | communication signals and    | External Evaluation:            | 60       |
|                  | Systems                      | Total Marks:                    | 100      |

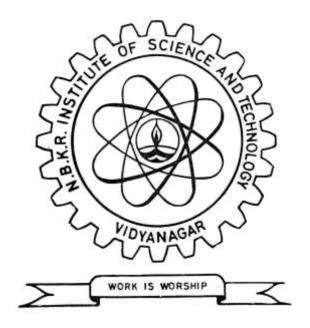
|                      | Students undergoing this course are expected:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course<br>Objectives | <ol> <li>To teach the basic concepts of analog and digital communication principles.</li> <li>To educate the students about the concepts and principles of optical fiber communications</li> <li>To get the knowledge and principles learnt to analyze, design, install and manage typical wired and wireless communication systems and networks</li> <li>To educate the students satellite communication systems, public switched telephone networks, digital transmission system standards.</li> <li>To get the knowledge about network planning and principle of digital Switching systems.</li> </ol>                                                                                                                                                                                                                                                                                                                              |
|                      | 6. To educate the students about tele traffic theory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                      | Upon successful completion of the course, the students will be able to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | CO1 Understand various multiplexers techniques like TDM, FDM, BPSK in different communication networks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Course               | CO2 Memorize SONET optical standards and describes frequency justification and utilization with different techniques.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Outcomes             | CO3 Describe network planning and principle of digital switching systems for proper network management.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | CO4 Understand the principles of network synchronization control and management with switching techniques.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      | CO5 Gain the knowledge and principles digital subscriber access, ISDN and Network Blocking.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                      | CO6 Understand the Public switched telephone networks, tele traffic theory, digital transmission system standards and Digital Subscriber Loops.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Course<br>Content    | MULTIPLEXING: Introduction, Transmission Systems, FDM Multiplexing And Modulation, Time Division Multiplexing, Digital Transmission and Multiplexing, Pulse Transmission and line coding, Binary n-zero substitution, Digital bi phase, differential encoding, Time Division Multiplex loops and rings.  UNIT-II  SONET Multiplexing Overview, SONET Frame Formats, SONET operations, Administration and maintenance, Payload framing and frequency justification ,Virtual tributaries, ds3 Payload mapping, E4Payload mapping, SONET optical standards, networks, SONET rings: unidirectional, path switched bidirectional line switched rings  UNIT-III  DIGITAL SWITCHING: Switching Functions, Space division Switching, Time Division Switching, Two dimensional Switching: STS Switching, TST Switching, No.4 ESS Toll Switch, Digital Cross Connect Systems, Digital Switching In Analog Environment, Elements of SS7signaling. |

|                 | UNIT-IV                                                                                 |  |  |  |  |  |  |
|-----------------|-----------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                 | NETWORK SYNCHRONIZATION CONTROL AND MANAGEMENT: Timing,                                 |  |  |  |  |  |  |
|                 | timing recovery, Phase locked loop, Clock instability, jitter measurements, Systematic  |  |  |  |  |  |  |
|                 | jitter, Timing inaccuracies: slips, Asynchronous Multiplexing, Network synchronization, |  |  |  |  |  |  |
|                 | U.S. Network synchronization, Network Control, Network Management                       |  |  |  |  |  |  |
|                 | UNIT-V                                                                                  |  |  |  |  |  |  |
|                 | <b>DIGITAL SUBSCRIBER ACCESS, ISDN:</b> ISDN Basic Rate Access Architecture,            |  |  |  |  |  |  |
| Course          | ISDN U interface, ISDN D channel protocol, High Data Rate Digital Subscriber Loops,     |  |  |  |  |  |  |
| Content         | Asymmetric Digital Subscriber Line, VDSL, Digital Loop Carrier Systems, Universal       |  |  |  |  |  |  |
| Content         | Digital Loop Carrier Systems, Integrated Digital Loop Carrier Systems, Next generation  |  |  |  |  |  |  |
|                 | Digital Loop Carrier, Fiber in the loop, Hybrid fiber coax systems, Voice band modems:  |  |  |  |  |  |  |
|                 | pcm modems, Local microwave distribution service, Digital satellite services            |  |  |  |  |  |  |
|                 | UNIT-VI                                                                                 |  |  |  |  |  |  |
|                 | TRAFFIC ANALYSIS: Traffic Characterization, Arrival Distribution, Holding Time          |  |  |  |  |  |  |
|                 | Distribution, Loss Systems, Network Blocking Probabilities, End To End Blocking         |  |  |  |  |  |  |
|                 | Probabilities, Overflow Traffic, Delay Systems, Exponential Service Times, Constant     |  |  |  |  |  |  |
|                 | Service Time, Finite Queues                                                             |  |  |  |  |  |  |
|                 | TEXT BOOKS:                                                                             |  |  |  |  |  |  |
|                 | 1. JE FLOOD, "Telecommunication Switching, Traffic and Networks"                        |  |  |  |  |  |  |
| Text Books      | 2. Telecommunication Switching systems and networks by Viswanathan.                     |  |  |  |  |  |  |
| and             | REFERENCE:                                                                              |  |  |  |  |  |  |
| Reference Books | 1. J.Bellamy,"digital telephony", john wiley, 2003, 3 <sup>rd</sup> edition             |  |  |  |  |  |  |
|                 | 2. Fundamentals of Telecommunication Networks_by T.N.Saawivi                            |  |  |  |  |  |  |
| E-Resources     | 1. http://www.nptel.ac.in.                                                              |  |  |  |  |  |  |
|                 | 2. http://www.ebookee.com/Telecommunication switching networks                          |  |  |  |  |  |  |

| Contribution o | Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |      |      |      |
|----------------|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                | PO1                                                                                               | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1            | 3                                                                                                 | 2   | 1   | 2   | 1   | -   | -   | -   | -   | -    | -    | 2    |
| CO2            | 3                                                                                                 | 2   | 2   | 2   | 2   | 1   | 1   | -   | -   | -    | -    | 2    |
| CO3            | 3                                                                                                 | 3   | 2   | 3   | 2   | -   | -   | -   | -   | -    | -    | 1    |
| CO4            | 3                                                                                                 | 3   | 1   | 3   | 1   | -   | -   | -   | -   | -    | -    | 2    |
| CO5            | 3                                                                                                 | 3   | 1   | 3   | 1   | -   | -   | -   | -   | -    | -    | 3    |
| CO6            | 3                                                                                                 | 3   | 1   | 3   | 1   | -   | -   | -   | -   | -    | -    | 3    |

# 19EC32MP – MINI PROJECT

| Course Category: | Program core                  | Credits:                        | 2        |
|------------------|-------------------------------|---------------------------------|----------|
| Course Type:     | Practical                     | Lecture - Tutorial - Practical: | 0 - 0- 4 |
| Prerequisite:    | Basic idea of Electronics and | Sessional Evaluation:           | 40       |
|                  | communication                 | External Evaluation:            | 60       |
|                  |                               | Total Marks:                    | 100      |


# 19EC32IS - INTERNSHIP

| Course Category: | Program core                  | Credits:                        | 2        |
|------------------|-------------------------------|---------------------------------|----------|
| Course Type:     | Practical                     | Lecture - Tutorial - Practical: | 0 - 0- 0 |
| Prerequisite:    | Basic idea of Electronics and | Sessional Evaluation:           | -        |
|                  | communication                 | External Evaluation:            | -        |
|                  |                               | Total Marks:                    | -        |

# **N.B.K.R. INSTITUTE OF SCIENCE & TECHNOLOGY**

(AUTONOMOUS)

COLLEGE WITH POTENTIAL FOR EXCELLENCE (CPE)
Affiliated to JNTUA, Anantapuramu
Re-Accredited by NAAC with 'A' Grade
B.Tech. Courses Accredited by NBA under TIER-I



# **SYLLABUS**B.TECH. DEGREE COURSE

IV B.TECH
I & II Semesters

### **ELECTRONICS AND COMMUNICATION ENGINEERING**

(With effect from the batch admitted in the academic year 2019-2020)

VIDYANAGAR - 524413 SPSR Nellore-Dist. Andhra Pradesh www.nbkrist.org

### **INSTITUTE:**

### Vision:

To emerge as a comprehensive Institute that provides quality technical education and research thereby building up a precious human resource for the industry and society.

### **Mission:**

- 1. To provide a learner-centered environment that challenges individuals to actively participate in the education process.
- 2. To empower the faculty to excel in teaching while engaging in research, creativity and public service.
- 3. To develop effective learning skills enabling students pick up critical thinking thus crafting them professionally fit and ethically strong.
- 4. To reach out industries, schools and public agencies to partner and share human and academic resources.

### VISION AND MISSION OF THE DEPARTMENT

### Vision:

To develop high quality engineers with sound technical knowledge, skills, ethics and morals in order to meet the global technological and industrial requirements in the area of Electronics and Communication Engineering.

### Mission:

- 1. To produce high quality graduates and post-graduates of Electronics and Communication Engineering with modern technical knowledge, professional skills and good attitudes in order to meet industry and society demands.
- 2. To develop graduates with an ability to work productively in a team with professional ethics and social responsibility.
- 3. To develop highly employable graduates and post graduates who can meet industrial requirements and bring innovations.
- 4. Moulding the students with foundation knowledge and skills to enable them to take up postgraduate programmes and research programmes at the premier institutes.

### **Programme Educational Objectives (PEOs):**

- 1. To provide the students with strong fundamental and advanced knowledge in mathematics, Science and Engineering with respect to Electronics and Communication Engineering discipline with an emphasis to solve Engineering problems.
- 2. To prepare the students through well designed curriculum to excel in bachelor degree programme in Electronics and Communication Engineering in order to engage in teaching or industrial or any technical profession and to pursue higher studies.

- 3. To train students with intensive and extensive engineering knowledge and skill so as to understand, analyze, design and create novel products and solutions in the field of Electronics and Communication Engineering.
- 4. To inculcate in students the professional and ethical attitude, effective communication skills, team spirit, multidisciplinary approach and ability to relate engineering issues to broader social context.
- 5. To provide students with an excellent academic environment to promote leadership qualities, character molding and lifelong learning as required for a successful professional career.

### **Program Outcomes (POs):**

**PO1:** Ability to acquire and apply knowledge of science and engineering fundamentals in problem solving.

**PO2:** Acquire in-depth technical competence in a specific information technology discipline.

**PO3:** Ability to undertake problem identification, formulation and providing optimum solution.

**PO4:** Ability to utilize systems approach to design and evaluate operational performance.

**PO5:** Understanding of the principles of inter-disciplinary domains for sustainable development.

**PO6:** Understanding of professional & ethical responsibilities and commitment to them.

**PO7:** Ability to communicate effectively, not only with engineers but also with the community at large.

**PO8**: Ability to Communicate effectively on complex engineering activities with the engineering community and with society at large.

**PO9**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

**PO10**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

**PO11**: Understanding of the social, cultural, global and environmental responsibilities as a professional engineer.

**PO12**: Recognizing the need to undertake life-long learning, and possess/acquire the capacity to do so.

### **NBKR INSTITUTE OF SCIENCE & TECHNOLOGY: VIDYANAGAR**

(AUTONOMOUS)

(AFFILIATED TO JNTU ANANTAPUR: ANANTHAPURAMU)

SPSR NELLORE DIST

### IV YEAR OF FOUR YEAR B.TECH DEGREE COURSE – I SEMESTER

### **ELECTRONICS AND COMMUNICATION ENGINEERING**

SCHEME OF INSTRUCTION AND EVALUATION

(With effect from the academic year 2019-2020)

(For the batch admitted in the academic year 2019-2020)

|      |                |                                          | Y  |                                                              | To allow although |     |          | Y      |               | *                            |                   |               |                                        | Lastonation          |               | Evaluation |     |  |  |   |    |     |  |  |  |
|------|----------------|------------------------------------------|----|--------------------------------------------------------------|-------------------|-----|----------|--------|---------------|------------------------------|-------------------|---------------|----------------------------------------|----------------------|---------------|------------|-----|--|--|---|----|-----|--|--|--|
| S.No | Course<br>Code | Course Title                             |    | Instruction Hours/Week Credits Sessional-I Marks Marks Marks |                   |     |          |        |               | Total Sessional<br>Marks(40) | End Sen<br>Examin |               | Maximum<br>Total Marks                 |                      |               |            |     |  |  |   |    |     |  |  |  |
|      | Code           | THEORY                                   | L  | Т                                                            | D/P               |     | Test\$-I | A#-I   | Max.<br>Marks | Test <sup>\$</sup> -II       | A#-II             | Max.<br>Marks |                                        | Duration<br>In Hours | Max.<br>Marks | 100        |     |  |  |   |    |     |  |  |  |
| 1    | 19SH4101       | Management Science**                     | 3  | 0                                                            | -                 | 3   | 34       | 6      | 40            | 34                           | 6                 | 40            | 0.8*Best of<br>two+0.2*                | two+0.2*             | 1             | ]          |     |  |  | 3 | 60 | 100 |  |  |  |
| 2    | 19EC4101       | Microwave Techniques                     | 2  | 2                                                            | -                 | 3   | 34       | 6      | 40            | 34                           | 6                 | 40            |                                        |                      | 3             | 60         | 100 |  |  |   |    |     |  |  |  |
| 3    | 19EC4102       | Embedded Systems & IOT                   | 2  | 2                                                            | -                 | 3   | 34       | 6      | 40            | 34                           | 6                 | 40            | least of two                           | 3                    | 60            | 100        |     |  |  |   |    |     |  |  |  |
| 4    | 19EC41EX       | Program Elective-III                     | 3  | 0                                                            | -                 | 3   | 34       | 6      | 40            | 34                           | 6                 | 40            |                                        | 3                    | 60            | 100        |     |  |  |   |    |     |  |  |  |
| 5    | 19XX410X       | Open Elective-I                          | 3  | 0                                                            | -                 | 3   | 34       | 6      | 40            | 34                           | 6                 | 40            |                                        | 3                    | 60            | 100        |     |  |  |   |    |     |  |  |  |
|      |                | PRACTICALS                               |    |                                                              |                   |     | PRAC     | TICALS |               |                              |                   |               | Daniel Danie                           |                      |               |            |     |  |  |   |    |     |  |  |  |
| 6    | 19EC41P1       | Microwave & Optical<br>Communication Lab | -  | -                                                            | 3                 | 1.5 | -        | -      | -             | 1                            | -                 | 40            | Day to Day<br>Evaluation and a<br>test | 3                    | 60            | 100        |     |  |  |   |    |     |  |  |  |
| 7    | 19EC41P2       | IOT Lab                                  | -  | -                                                            | 3                 | 1.5 | -        | -      | -             | •                            | -                 | 40            | (40 Marks)                             | 3                    | 60            | 100        |     |  |  |   |    |     |  |  |  |
|      |                | TOTAL                                    | 13 | 4                                                            | 06                | 18  | -        | -      | -             | -                            | -                 | 360           | -                                      | -                    | 540           | 900        |     |  |  |   |    |     |  |  |  |

<sup>\*\*</sup>Common to ECE, EEE, CSE, IT

<sup>\*</sup> Common to ECE, EEE

<sup>#</sup> A for Assignment (continuous evaluation)

<sup>\$</sup> Test (Descriptive & Objective) duration = 2 Hours

# 19SH4101 – MANAGEMENT SCIENCE

(Common to ECE, EEE and CSE)

| Course Category: | Humanities    | Credits:                    | 3     |
|------------------|---------------|-----------------------------|-------|
| Course Type:     | Theory        | Lecture-Tutorial-Practical: | 3-0-0 |
| Pre-requisite:   | Economics and | Sessional Evaluation:       | 40    |
|                  | accountancy   | Univ.Exam Evaluation:       | 60    |
|                  |               | Total Marks:                | 100   |

|                      | Students undergoing this course are expected:                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Course<br>Objectives | <ol> <li>To understand the disciplines of management science and manager's role in business and other decision-making</li> <li>To gain an overview of the process of developing and using quantitative techniques in decision making and planning.</li> <li>To aware of the ethical dilemmas faced by managers and the social responsibilities of business.</li> <li>To know the significance of strategic management in competitive and dynamic global economy</li> </ol> |  |  |  |  |  |  |  |  |
|                      | After completing the course the student will be able to:                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
|                      | CO1 Explain the concepts of management, ethical and social responsibilities and principles of Organization CO2 Evolution of Management Thought and hierarchy of layouts of plants.                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
| Course               | CO3 Apply work-study techniques for increased productivity in Corporate world.                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
| Outcomes             | CO4 Manage human resources efficiently and effectively with best HR practices with marketing management plans.                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
|                      | CO5 Develop marketing strategies based on product, price, place and promotion                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|                      | objectives with Project Cost Analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
|                      | CO6 Determine activities' times (early start, early finish, late start, late finish, total float, and free float) and schedule the project using the CPM and PERT.                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
|                      | UNIT – I INTRODUCTION TO MANAGEMENT: Concept of Management — Functions of Management, Evolution of Management Thought: Taylor's Scientific Management Theory, Fayal's Principles of Management- Maslow's theory of Hierarchy of Human Needs- Douglas McGregor's Theory X and Theory Y - Hertzberg Two Factor Theory of Motivation - Leadership Styles.                                                                                                                     |  |  |  |  |  |  |  |  |
| Course<br>Content    | <b>UNIT – II DESIGN OF ORGANIZATION:</b> principles of Organization —Organisation process-Types of organisation: line, line and staff organization, function, committee, matrix, virtual, cellular, team organization. Boundary less organization, inverted pyramid structure, lean and flat organization. Managerial objectives and social responsibilities.                                                                                                              |  |  |  |  |  |  |  |  |
|                      | UNIT-III  STRATEGIC MANAGEMENT: Corporate planning — Mission, Objectives, programmers, SWOT analysis — Strategy formulation and implementation.  MARKETING MANAGEMENT: Functions of Marketing, Marketing Mix, and Marketing Strategies based on Product Life Cycle, Channels of distribution.                                                                                                                                                                              |  |  |  |  |  |  |  |  |

| Course<br>Content                     | UNIT-IV HUMAN RESOURCES MANAGEMENT- Manpower planning — Personnel management — Basic functions of personnel management, Job Evaluation and Merit Rating — Incentive plans.  UNIT-V PRODUCTION AND OPERATIONS MANAGEMENT: Plant Location and Plant Layout concepts- methods of production (Job, Batch & Mass)-Production Planning and control. Work study- Basic procedure involved in Method Study -Work Measurement.  UNIT-VI PROJECT MANAGEMENT (PERT/ CPM): Network Analysis- Programme Evaluation and Review Technique (PERT), Critical Path Method (CPM), identifying critical path, probability of completing the project within given time, Project Cost Analysis, Project Crashing (simple problems). |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Text Books<br>&<br>Reference<br>Books | TEXT BOOKS:  1. Dr. T.P. Singh Er. Arvind Kumar "Applied management Science and Operations Research"  2. A.R.Aryasri "Management Science"  3. O.P.Kanna "Industrial Engineering and Management"  REFERENCE BOOKS:  1. C.B.Gupta "Business organisations and management"  2. T.R.Banga,S.C.Sharma "Industrial Engineering and Management (Including Production Management)"                                                                                                                                                                                                                                                                                                                                    |
| E-Resources                           | <ol> <li>http://nptel.ac.in/courses</li> <li>http://iete-elan.ac.in</li> <li>http://freevideolectures.com/university/iitm</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Contribution o | Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |      |      |      |
|----------------|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                | PO1                                                                                               | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1            |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO2            |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO3            |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO4            |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO5            |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO6            |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |

# 19EC4101 – MICROWAVE TECHNIQUES

| Course category: | Program core                     | Credits:                        | 3         |
|------------------|----------------------------------|---------------------------------|-----------|
| Course Type:     | Theory                           | Lecture - Tutorial - Practical: | 2 - 2 - 0 |
| Prerequisite:    | Electro Magnetic Fields & Waves, | <b>Sessional Evaluation:</b>    | 40        |
|                  | Antenna & wave Propagation.      | External Evaluation:            | 60        |
|                  |                                  | Total Marks:                    | 100       |

|            | Students undergoing this course are expected:                                                                                       |  |  |  |  |  |  |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|            | 1. To understand the operation of Klystron amplifier, Reflex Klystron oscillator,                                                   |  |  |  |  |  |  |  |
|            | Travelling Wave Tube amplifier and Magnetron oscillators.                                                                           |  |  |  |  |  |  |  |
|            | 2. To study the operation of different microwave semiconductor devices like Tunnel                                                  |  |  |  |  |  |  |  |
|            | diode, Gunn diode, IMPATT diode, Schottkey Barrier diode, PIN diode and                                                             |  |  |  |  |  |  |  |
| Course     | varactor diodes.                                                                                                                    |  |  |  |  |  |  |  |
| Objectives | 3. To understand different microwave components like Resonators, attenuators,                                                       |  |  |  |  |  |  |  |
|            | TEEs, Directional couplers, Isolators and S-parameters of networks.                                                                 |  |  |  |  |  |  |  |
|            | 4. To study the measurement of frequency, VSWR, impedance, S-parameter and                                                          |  |  |  |  |  |  |  |
|            | 'Q' of a cavity.  5. To study parabolic reflector antenna, Horn and Lens antennas.                                                  |  |  |  |  |  |  |  |
|            | 6. To study Hybrid MICs, strip lines, micro strip lines                                                                             |  |  |  |  |  |  |  |
|            |                                                                                                                                     |  |  |  |  |  |  |  |
|            | Upon successful completion of the course, the students will be able to:  Demonstrate the Magnetron and tunnel diode as oscillator.  |  |  |  |  |  |  |  |
|            | COI                                                                                                                                 |  |  |  |  |  |  |  |
|            | CO2 Derive the power efficiency in parametric amplifier and klystron amplifier.                                                     |  |  |  |  |  |  |  |
| Course     | CO3 Understand the measurement of impedance using Microwave TEEs.                                                                   |  |  |  |  |  |  |  |
| Outcomes   | Measure various parameters like power, VSWR at microwave frequencies with the help of various microwave components.                 |  |  |  |  |  |  |  |
|            | CO5 Design Parabolic antenna and explain MIC.                                                                                       |  |  |  |  |  |  |  |
|            | CO6 Understand the fabrication technique of MICs and radiation pattern of Horn Antenna.                                             |  |  |  |  |  |  |  |
|            |                                                                                                                                     |  |  |  |  |  |  |  |
|            | WICRO WAVE TUBES: Klystron Amplifier, Reflex Klystron Oscillator, Travelling                                                        |  |  |  |  |  |  |  |
|            | Wave Tube Amplifier and Magnetron Oscillator.                                                                                       |  |  |  |  |  |  |  |
|            | UNIT-II                                                                                                                             |  |  |  |  |  |  |  |
| Course     | MICROWAVE SEMOCONDUCTOR DEVICES: Tunnel Diode, Gunn Diode,                                                                          |  |  |  |  |  |  |  |
| Content    | IMPATT Diode, PIN Diode, SchottKey Barrier Diode, Varactor Diode and Parametric Amplifier, MASER.                                   |  |  |  |  |  |  |  |
|            | Ampinier, MASEK.                                                                                                                    |  |  |  |  |  |  |  |
|            | UNIT-III                                                                                                                            |  |  |  |  |  |  |  |
|            | MICROWAVE COMPONENTS: Waveguides, Cavity Resonators, Attenuators, TEEs,                                                             |  |  |  |  |  |  |  |
|            | Bends, Corners, Windows, Phase Shifters, Directional Couplers, Matching elements, Isolators, Circulators, S-Parameters of Networks. |  |  |  |  |  |  |  |
|            | asolators, enculators, of a talineters of Networks.                                                                                 |  |  |  |  |  |  |  |
|            |                                                                                                                                     |  |  |  |  |  |  |  |

| Course<br>Content  | MICROWAVE MEASUREMENTS: Measurement of Frequency, Power, VSWR, Impedance, Reflection Coefficient, Attenuation Constant and Dielectric Constant, Sparameters, 'Q'- of a Cavity.  UNIT-V MICROWAVE ANTENNAS: Parabolic Reflector Antenna, Passive Reflector Antenna, Helical antenna, Horn and Lens Antennas |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | UNIT-VI MICs: Fabrication of MICs, Advantages of MICs, Hybrid MICs, Strip Lines, and Microstrip Lines, Monolithic MICs                                                                                                                                                                                     |
| Text Books         | TEXT BOOKS:  1. Samuel Y Liao, "Microwave Devices and Circuits", Prentice Hall, 1999.  2. M. Kulkarni, "Microwave and Radar Engineering", Umesh Publications, 1998.  3. Annapurna Das and Sisir K. Das, "Microwave Engineering", TMH, 2000                                                                 |
| Reference<br>Books | <ol> <li>REFERENCE BOOKS:</li> <li>D. C. Dube, "Microwave Devices and Applications", Narosa Publications, 2011.</li> <li>David M. Pozar, "Microwave Engineering", IE, 1997.</li> <li>Robert E. Collin, "Foundations for Microwave Engineering", John Wiley and Sons, 2007</li> </ol>                       |
| E-Resources        | <ol> <li>http://nptel.ac.in/syllabus/117105029/</li> <li>https://www.youtube.com/user/nptelhrd</li> </ol>                                                                                                                                                                                                  |

| Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |     |      |      |      |
|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                                                                                                   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO2                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO3                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO4                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO5                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO6                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |

# 19EC4102 – EMBEDDED SYSTEMS & IOT

| Course category: | Program Elective                | Credits:                        | 3         |
|------------------|---------------------------------|---------------------------------|-----------|
| Course Type:     | Theory                          | Lecture - Tutorial - Practical: | 3 - 0 - 0 |
| Prerequisite:    | Microcontrollers and            | <b>Sessional Evaluation:</b>    | 40        |
| _                | Microprocessors, C-Programming. | External Evaluation:            | 60        |
|                  |                                 | Total Marks:                    | 100       |

|            | T                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|            | Students undergoing this course are expected to understand:                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|            | 1. The basic idea regarding the nature of embedded systems.                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| Course     | 2. The advantages of using Aurdino and MSP430 microcontrollers in Embedded                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| Objectives | and IoT applications.                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| Ü          | 3. The Basics of MSP430 controller.                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|            | 4. The skill in simple program writing for MSP430 and applications.                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|            | 5. The basics of IoT concepts.                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|            | 6. The different Wireless services to access/control IoT devices.                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|            | Upon successful completion of the course, the students will be able to:                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
|            | CO1 Understand the selection procedure of Processors in the Embedded domain.                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|            | CO2 Develop Embedded Systems on Arduino and MSP430.                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Course     | CO3 Know the internal architecture and organization of MSP430.                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| Outcomes   | CO4 Understand the interfacing techniques to MSP 430 and can design and implement programs on MSP430 controller.                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|            | CO5 Know the application areas of IoT.                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|            | CO6 Develop Wireless Technologies to access/control IoT devices.                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| Course     | UNIT-I INTRODUCTION TO EMBEDDED SYSTEMS: Introduction, Hardware and Software requirements, Processor selection, categories of embedded system, applications of embedded systems. Development Process: Development process of embedded systems, linkers and locators  UNIT – II INTRODUCTION TO AURDINO AND MSP430: ARDUINO: AVR Family with Arduino ATMega 328- Interfaces - Arduino IDE — |  |  |  |  |  |  |
| Content    | Programming – Interfacing LED- Interfacing LED and Switch with Arduino.  MSP430: Introduction, Features of MSP430, Architecture of MSP430, Exceptions,                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|            | UNIT – III  MSP430 I/O REGISTERS AND MODES: I/O ports pull up/down registers concepts, Interrupts and interrupt programming. Watchdog timer. System clocks. Low Power aspects of MSP430: low power modes, Active vs Standby current consumption, FRAM vs Flash for low power & reliability.                                                                                                |  |  |  |  |  |  |
|            | UNIT – IV  MSP430 INTERFACING: Timer & Peal Time Clock (PTC) PWM control timing                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|            | MSP430 INTERFACING: Timer & Real Time Clock (RTC), PWM control, timing generation and measurements. Analog interfacing and data acquisition: ADC and                                                                                                                                                                                                                                       |  |  |  |  |  |  |

|                                         | Comparator in MSP430, data transfer using DMA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course<br>Content                       | UNIT – V INTRODUCTION TO IOT: Definition & Characteristics of IoT, Physical design, Logical design, IoT Enabling Technologies, IoT Levels and Deployment Templates, IoT vs M2M.  UNIT-VI WIRELESS TECHNOLOGIES FOR IOT (LAYER 1 & 2):WiFi (IEEE 802.11), Bluetooth/Bluetooth Smart, ZigBee/ZigBeeSmart, UWB (IEEE 802.15.4).                                                                                                                                                                                                 |
| Text Books<br>and<br>Reference<br>Books | <ol> <li>Introduction to Embedded Systems - Shibu K.V, Mc Graw Hil.</li> <li>Manoel Carlos Ramon, "Intel® Galileo and Intel® Galileo Gen 2: API Features and Arduino Projects for Linux Programmers", Apress, 2014.</li> <li>MSP430 microcontroller basics. John H. Davies, Newnes Publication, I st Edition.</li> <li>Vijay Madisetti, ArshdeepBagha, "Internet of Things A Hands-On-Approach", 2014, ISBN:978-1-118-43062-0</li> </ol>                                                                                     |
|                                         | <ol> <li>REFERENCE BOOKS:         <ol> <li>Adrian McEwen, "Designing the Internet of Things", Wiley Publishers.</li> <li>Marco Schwartz, "Internet of Things with the Arduino Yun", Packt Publishing, 2014.</li> <li>Daniel Kellmereit, "The Silent Intelligence: The Internet of Things".</li> </ol> </li> <li>Peter Waher, 'Learning Internet of Things', Packt Publishing, 2015         <ol> <li>Editors OvidiuVermesan Peter Friess, 'Internet of Things – From Research and Innovation to Market</li> </ol> </li> </ol> |
| E-Resources                             | http://processors.wiki.ti.com/index.php/MSP430_LaunchPad_Low_Power_Mode     http://processors.wiki.ti.com/index.php/MSP430_16-     Bit_UltraLow_Power_MCU_Training     nptel.ac.in/courses                                                                                                                                                                                                                                                                                                                                   |

| Contribution of | Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |      |      |      |
|-----------------|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                 | PO1                                                                                               | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1             |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO2             |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO3             |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO4             |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO5             |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO6             |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |

# 19EC41P1-MICROWAVE & OPTICAL COMMUNICATION LAB

| Course Category: | Program Core         | Credits:                                       | 2         |
|------------------|----------------------|------------------------------------------------|-----------|
| Course Type:     | Practical            | Lecture-Tutorial- Practice:                    | 0 - 0 - 3 |
| Prerequisite:    | Microwave techniques | Sessional Evaluation:<br>External Evaluation : | 40<br>60  |
|                  |                      | Total Marks:                                   | 100       |

|            | Students undergoing this course are expected to understand:                                                                        |  |  |  |  |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|            | 1. The reflex klystron, it is used as amplifier and oscillator in radar stations and radio                                         |  |  |  |  |  |
| Course     | stations etc.                                                                                                                      |  |  |  |  |  |
| Objectives | 2. The wave-guide characteristics                                                                                                  |  |  |  |  |  |
| Ū          | 3. The antenna parameters                                                                                                          |  |  |  |  |  |
|            | 4. The unknown load impedance measurement using VSWR method.                                                                       |  |  |  |  |  |
|            | 5. The working of directional couplers.                                                                                            |  |  |  |  |  |
|            | Upon successful completion of the course, the students will be able to:                                                            |  |  |  |  |  |
|            | CO1 Study reflex klystron characteristics and understands how it can be used as an amplifier, oscillator in microwave applications |  |  |  |  |  |
| Course     | CO2 Calculate the power in the parts of direction couplers                                                                         |  |  |  |  |  |
| Outcomes   | CO3 Know the cut off, free space and guided wavelength of waveguide.                                                               |  |  |  |  |  |
|            | CO4 Know how to power can be mixed and split up phase reversal etc. using magic tee                                                |  |  |  |  |  |
|            | CO5 Measure Antenna Parameters like Gain , Aperture Area and the directivity                                                       |  |  |  |  |  |
|            | CO6 Know how to measure numerical aperture and bending losses of OFC                                                               |  |  |  |  |  |
|            | <u>LIST OF EXPERIMENTS</u>                                                                                                         |  |  |  |  |  |
|            | 1. Reflex klystron characteristics –I                                                                                              |  |  |  |  |  |
|            | 2. Reflex klystron characteristics –II                                                                                             |  |  |  |  |  |
| Course     | 3. Direction couplers                                                                                                              |  |  |  |  |  |
| Content    | 4. Wave guide parameters                                                                                                           |  |  |  |  |  |
|            | <ul><li>5. Characteristics of GUNN diode</li><li>6. Characteristics of MAGIC TEE</li></ul>                                         |  |  |  |  |  |
|            | 7. Antenna measurements                                                                                                            |  |  |  |  |  |
|            | 8. Measurement of V.S.W.R.                                                                                                         |  |  |  |  |  |
|            | 9. Measurement of impedance                                                                                                        |  |  |  |  |  |
|            | 10. Measurement of numerical aperture                                                                                              |  |  |  |  |  |
|            |                                                                                                                                    |  |  |  |  |  |

# **19EC41P2- IOT LAB**

| Course Category: | Program Core                           | Credits:                                                       | 2               |
|------------------|----------------------------------------|----------------------------------------------------------------|-----------------|
| Course Type:     | Practical                              | Lecture-Tutorial- Practice:                                    | 0 - 0 - 3       |
| Prerequisite:    | Micro controllers and embedded systems | Sessional Evaluation:<br>External Evaluation :<br>Total Marks: | 40<br>60<br>100 |

|                      | Stude                                                                                                                | nts undergoing this course are expected to understand:                                                    |  |  |  |  |  |  |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                      | 1.                                                                                                                   | Use Embedded C language to develop embedded applications.                                                 |  |  |  |  |  |  |  |
| Course<br>Objectives | 2.                                                                                                                   | 2. Apply, Construct and demonstrate various in-build interfaces/modules of Aurdino                        |  |  |  |  |  |  |  |
| Objectives           | 2                                                                                                                    | and MSP430 for specific applications.                                                                     |  |  |  |  |  |  |  |
|                      |                                                                                                                      | Apply Embedded C code for utilizing Low power modes of MSP430.                                            |  |  |  |  |  |  |  |
|                      | Upon successful completion of the course , the students will be able to:                                             |                                                                                                           |  |  |  |  |  |  |  |
|                      | CO1                                                                                                                  | Design the home appliances and toys using Microcontroller chips.                                          |  |  |  |  |  |  |  |
| Course               | CO2                                                                                                                  | Design Logic controller module and SIDU module.                                                           |  |  |  |  |  |  |  |
| Outcomes             | CO3                                                                                                                  | Design the high speed communication circuits using serial bus connection                                  |  |  |  |  |  |  |  |
|                      | CO4                                                                                                                  | Interfacing and programming GPIO ports in c using MSP430                                                  |  |  |  |  |  |  |  |
|                      | CO5                                                                                                                  | Understand the PWM generation using timer on MSP430 GPIO                                                  |  |  |  |  |  |  |  |
|                      | CO6                                                                                                                  | Know how to connect and communicate to cloud                                                              |  |  |  |  |  |  |  |
|                      | LIST OF EXPERIMENTS                                                                                                  |                                                                                                           |  |  |  |  |  |  |  |
|                      | 1 DA                                                                                                                 | CICLED DDOCD AND MING IN CLICING AUDDING                                                                  |  |  |  |  |  |  |  |
|                      |                                                                                                                      | SIC LED PROGRAMMING IN C USING AURDINO  1 Study and Install IDE of Arduino and different types of Arduino |  |  |  |  |  |  |  |
|                      | 1.1 Study and histait IDE of Ardumo and different types of Ardumo  1.2 Write program using Arduino IDE for Blink LED |                                                                                                           |  |  |  |  |  |  |  |
|                      | 1.3 Write Program for RGB LED using Arduino                                                                          |                                                                                                           |  |  |  |  |  |  |  |
|                      | 2. INTERFACING AND PROGRAMMING GPIO PORTS IN C USING MSP430 2.1: Blink LED                                           |                                                                                                           |  |  |  |  |  |  |  |
|                      | 2.2: Fade RGB LED (PWM)                                                                                              |                                                                                                           |  |  |  |  |  |  |  |
|                      | 2.3:Push Button (Input)                                                                                              |                                                                                                           |  |  |  |  |  |  |  |
| Course               | 3. INT                                                                                                               | ERFACING AND PROGRAMMING GPIO PORTS IN C USING MSP430                                                     |  |  |  |  |  |  |  |
| Content              |                                                                                                                      | 1: Multiple LED (Many Outputs)                                                                            |  |  |  |  |  |  |  |
|                      |                                                                                                                      | 2:Shift Register (Integrated Circuit) 3: Photoresistor (Light Sensor)                                     |  |  |  |  |  |  |  |
|                      | J.                                                                                                                   | 3. I notoresistor (Eight Bensor)                                                                          |  |  |  |  |  |  |  |
|                      |                                                                                                                      | TERFACING AND PROGRAMMING GPIO PORTS IN C USING MSP430                                                    |  |  |  |  |  |  |  |
|                      |                                                                                                                      | 1: Spin the Motor 2: Seven-Segment Display (Digital Display)                                              |  |  |  |  |  |  |  |
|                      |                                                                                                                      |                                                                                                           |  |  |  |  |  |  |  |
|                      |                                                                                                                      | SASIC WI-FI APPLICATION – COMMUNICATION BETWEEN TWO ENSOR NODES                                           |  |  |  |  |  |  |  |

### 6. INTERFACING POTENTIOMETER WITH MSP430

- 6.1: Alter the threshold to 75% of Vcc for the LED to turn on.
- 6.2: Modify the code to change the Reference Voltage from Vcc to 2.5V.

### 7. CONNECT AND COMMUNICATE TO CLOUD

- 7.1: Creating a simple HTML web server using MSP430 Launch Pad& CC3100 Wi-Fi Booster Pack
- 7.2: Create a Wi-Fi-connected IoT sensor that calls you when sensor values exceed a threshold

### 8. CONNECT AND COMMUNICATE TO CLOUD

- 8.1: Playing Music (Buzzer)
- 8.2: Potentiometer (Rotary Angle Sensor)

### 9. PWM GENERATION USING TIMER ON MSP430 GPIO

- 9.1: Observe the PWM waveform on a particular pin using CRO.
- 9.2: What is the maximum resolution of PWM circuitry in MSP430G2 Launch Pad?
- 9.3: Change the above code to create a PWM signal of 75% duty cycle on particular PWM pin.

# Course Content

# 10. PWM BASED SPEED CONTROL OF MOTOR CONTROLLED BY POTENTIOMETER CONNECTED TO MSP430 GPIO

- 10.1: Interface a Stepper motor with MSP-EXP430G2 Launch Pad to run it in a Predetermined uniform speed.
- 10.2: Describe the applications of PWM in a digital power supply control.
- 10.3: Create Switch case code from the example code to run the DC Motor in 3 set of Speeds.

### 11. A BASIC WI-FI APPLICATION

11.1: In the terminal output window, we have received a debug message "Pinging...!" Search in the code and change the message to "Pinging the Website". Repeat the experiment to observe this change in the Serial Window.

### 12. INTERRUPT PROGRAMMING EXAMPLES THROUGH GPIOS

- 12.1: Write the code to enable a Timer interrupt for the pin P1.1.
- 12.2: Write the code to turn on interrupts globally.

# S.No COURSE CODE ELECTIVE-III 1. 19EC41E1 CELLULAR MOBILE COMMUNICATION 2. 19EC41E2 VLSI DIGITAL SIGNAL PROCESSING 3. 19EC41E3 IC FABRICATION TECHNOLOGY 4. 19EC41E4 RADAR SIGNAL PROCESSING

# 19EC41E1-CELLULAR MOBILE COMMUNICATION

| Course Category: | Program Open Elective         | Credits:                     | 3     |
|------------------|-------------------------------|------------------------------|-------|
| Course Type:     | Theory                        | Lecture -Tutorial-Practical: | 2-2-0 |
| Prerequisite:    | Antenna and Wave Propagation, | Sessional Evaluation:        | 40    |
|                  | Radar Engineering             | External Evaluation:         | 60    |
|                  |                               | Total Marks:                 | 100   |

|                    | Stude                                                                                                                                                                                                                                                                                                                                                       | nts undergoing this course are expected to understand:                                                                            |  |  |  |  |  |  |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|                    |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                   |  |  |  |  |  |  |  |  |
|                    | <ol> <li>The basic Cellular system</li> <li>The elements of cellular radio system design.</li> </ol>                                                                                                                                                                                                                                                        |                                                                                                                                   |  |  |  |  |  |  |  |  |
|                    | 3.                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                   |  |  |  |  |  |  |  |  |
| Course             | 4.                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                   |  |  |  |  |  |  |  |  |
| Objectives         | 5.                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                   |  |  |  |  |  |  |  |  |
|                    | J.                                                                                                                                                                                                                                                                                                                                                          | evaluation of dropped call rate.                                                                                                  |  |  |  |  |  |  |  |  |
|                    | 6                                                                                                                                                                                                                                                                                                                                                           | The need for digital mobile telephony and studying various mobile systems like                                                    |  |  |  |  |  |  |  |  |
|                    | 0.                                                                                                                                                                                                                                                                                                                                                          | GSM & CDMA.                                                                                                                       |  |  |  |  |  |  |  |  |
|                    | Upon                                                                                                                                                                                                                                                                                                                                                        | successful completion of the course, the students will be able to:                                                                |  |  |  |  |  |  |  |  |
|                    | CO1                                                                                                                                                                                                                                                                                                                                                         | Understand cellular communication system with cell splitting, consideration of cellular system, cell-site antennas like elements. |  |  |  |  |  |  |  |  |
|                    | CO2                                                                                                                                                                                                                                                                                                                                                         | Design elements for Analog and Digital cellular systems.                                                                          |  |  |  |  |  |  |  |  |
| Course<br>Outcomes | CO3 Acquire knowledge about propagation mechanisms, Multipath fading, and c modeling and co-channel interference.                                                                                                                                                                                                                                           |                                                                                                                                   |  |  |  |  |  |  |  |  |
|                    | CO4                                                                                                                                                                                                                                                                                                                                                         | Know about different types of channel interferences with cell-site antenna heights and signals coverage cells                     |  |  |  |  |  |  |  |  |
|                    | CO5                                                                                                                                                                                                                                                                                                                                                         | Gain knowledge about Frequency management and Channel assignment and multiple access schemes                                      |  |  |  |  |  |  |  |  |
|                    | CO6                                                                                                                                                                                                                                                                                                                                                         | Acquire knowledge about the evolution of GSM, TDMA & CDMA technologies for proper Frequency spectrum utilization.                 |  |  |  |  |  |  |  |  |
|                    | TATED                                                                                                                                                                                                                                                                                                                                                       | UNIT-I                                                                                                                            |  |  |  |  |  |  |  |  |
|                    | <b>INTRODUCTION TO CELLULAR MOBILE SYSTEM:</b> A basic cellular system, performance criteria, uniqueness of mobile radio environment, operation of cellular systems, planning a cellular system, Analog and Digital cellular systems.                                                                                                                       |                                                                                                                                   |  |  |  |  |  |  |  |  |
|                    | UNIT-II                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                   |  |  |  |  |  |  |  |  |
| Course             | ELEN                                                                                                                                                                                                                                                                                                                                                        | MENTS OF CELLULAR RADIO SYSTEM DESIGN: General description of the                                                                 |  |  |  |  |  |  |  |  |
| Course<br>Content  | problem, concept of frequency reuse channels, channel interferences reduction factors,                                                                                                                                                                                                                                                                      |                                                                                                                                   |  |  |  |  |  |  |  |  |
|                    | desire                                                                                                                                                                                                                                                                                                                                                      | desired C/I from a normal case in an Omni-directional antenna system, cell splitting,                                             |  |  |  |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                             | consideration of cellular system, cell-site antennas & mobile antennas characteristics,                                           |  |  |  |  |  |  |  |  |
|                    | anteni                                                                                                                                                                                                                                                                                                                                                      | nas at cell-site, mobile antennas.                                                                                                |  |  |  |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                             | UNIT-III                                                                                                                          |  |  |  |  |  |  |  |  |
|                    | <b>CELL COVERAGE FOR SIGNAL &amp; TRAFFIC:</b> General introduction, obtaining the mobile point-to-point model, propagation over water or flat open area, foiling loss, propagation in near distance, long distance propagation, point-to-point prediction model characteristics, cell-site antenna heights and signals coverage cells, mobile propagation. |                                                                                                                                   |  |  |  |  |  |  |  |  |

|                                         | UNIT-IV INTERFERENCE: Introduction to co-channel interference, real time co-channel interference measurement, design of antenna system, diversity receiver, types of non-co-channel interference, interference between systems.                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Course<br>Content                       | TREQUENCY MANAGEMENT & CHANNEL ASSIGNMENT: Frequency spectrum utilization, setup channels, management & traffic channel assignment, Handoff & their characteristics, dropped call rates and their evaluations. Real-time co-channel interference measurement.  UNIT-VI                                                                                                                                        |  |  |  |  |  |  |  |  |  |
|                                         | <b>DIGITAL CELLULAR SYSTEM:</b> Why digital, digital mobile telephony, practical multiple access schemes, Global System for Mobile (GSM), TDMA & CDMA, miscellaneous mobile systems.                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |
| Text Books<br>and<br>Reference<br>Books | <ul> <li>TEXT BOOKS: <ol> <li>Lee. W. C. Y – "Mobile Cellular Telecommunication – Analog and Digital Systems", Mc Graw Hill.</li> <li>G.K. behere lopamudra das" Mobile communication" SciTech publications</li> </ol> </li> <li>REFERENCE BOOKS: <ol> <li>Principles of communication systems Taub &amp; shilling TMH</li> <li>Celullar mobile communications –Willium stallings –PHI</li> </ol> </li> </ul> |  |  |  |  |  |  |  |  |  |
| E-Resources                             | <ol> <li>www.iitg.ernet.in/scifac/qip/public_html/cd_cell/EC632.pdf</li> <li>www.morse.colorado.edu/~tlen5510/text/</li> </ol>                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |

| Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |     |      |      |      |
|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                                                                                                   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO2                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO3                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO4                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO5                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO6                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |

# 19EC41E2- VLSI DIGITAL SIGNAL PROCESSING

| Course Category: | Program core                  | Credits:                        | 3         |
|------------------|-------------------------------|---------------------------------|-----------|
| Course Type:     | Theory                        | Lecture - Tutorial - Practical: | 2 - 2 - 0 |
| Prerequisite:    | VLSI Design, Digital Signal   | Sessional Evaluation:           | 40        |
| _                | Processing algorithms, graph- | External Evaluation:            | 60        |
|                  | theoretic concepts, and       | Total Marks:                    | 100       |
|                  | combinatorial algorithms.     |                                 |           |

|                      | Students undergoing this course are expected to understand:                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Course<br>Objectives | <ol> <li>fundamentals of graph theory in VLSI signal processing</li> <li>transformations for high speed using pipelining, retiming, and parallel processing techniques</li> <li>area reduction using folding techniques</li> <li>mapping of algorithms on array structures, DSP systems, and FPGAs</li> <li>low Power Design Techniques</li> <li>VLSI systems for some typical signal processing applications</li> </ol>                                     |  |  |  |  |  |  |  |  |
|                      | Upon successful completion of the course, the students will be able to:                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
|                      | CO1 Understand VLSI design methodology for signal processing systems in different signal processing application.                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
| C.                   | CO2 Apply the concepts with VLSI algorithms for computing digital signal processing applications.                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
| Course<br>Outcomes   | CO3 Be familiar with architectures for DSP and its Properties.                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
|                      | CO4 Design Families of Architectures for specified algorithm complexity and speed constraints for Systolic Array Design                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
|                      | CO5 Design low power constrained systems with Power estimation approach.                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
|                      | CO6 Describe signal processing computation and its relevance to some specific applications with proper power management.                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
|                      | <b>INTRODUCTION FOR DSP ALGORITHMS:</b> VLSI Design flow, Mapping algorithms into Architectures: Graphical representation of DSP algorithms – signal flow graph (SFG), data flow graph (DFG), critical path, dependence graph (DG). Data path synthesis, control structures, Optimization at Logic Level and architectural Design, Loop bound and iteration bound, Algorithms for computing iteration bound, Iteration bound of Multi-rate data-flow graphs. |  |  |  |  |  |  |  |  |
| ~                    | UNIT-II                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
| Course<br>Content    | PARALLEL AND PIPELINE OF SIGNAL PROCESSING APPLICATION: Architecture for real time systems, latency and throughput related issues, clocking strategy, power conscious structures, array architectures; Pipelining processing of Digital filter, Parallel processing, Parallel and pipelining for Low power design, Optimization with regard to speed, area and power, asynchronous and low power system design, ASIC and ASISP design.                       |  |  |  |  |  |  |  |  |
|                      | WNIT-III  SYSTOLIC ARRAY ARCHITECTURE: Methodology of systolic array architecture, FIR based Systolic Array, Selection of Scheduling Vector, Matrix Multiplication and 2D Systolic Array Design, Systolic Design for Space Representations Containing Delays.                                                                                                                                                                                                |  |  |  |  |  |  |  |  |

|                  | UNIT-IV                                                                                                                                                                                                          |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | ARCHITECTURE OF DIFFERENT SIGNAL PROCESSING MODULES:                                                                                                                                                             |
|                  | Convolution technique, Folding /Unfolding Transformation, CORDIC architecture,                                                                                                                                   |
|                  | Retiming: Introduction, Definition and Properties, Solving System of Inequalities,                                                                                                                               |
| Course           | Retiming Techniques.                                                                                                                                                                                             |
| Content          | UNIT-V                                                                                                                                                                                                           |
|                  | <b>LOW POWER DESIGN:</b> Theoretical background, Scaling v/s power consumption, power analysis, Power reduction techniques, Power estimation approach.                                                           |
|                  | UNIT-VI                                                                                                                                                                                                          |
|                  | APPLICATION IN COMMUNICATION AND SIGNAL PROCESSING SYSTEM: Transformation architectures, source and channel coding structures, Motion Estimation and motion compensation for video, Speech processing algorithm. |
|                  |                                                                                                                                                                                                                  |
|                  | TEXT BOOKS:                                                                                                                                                                                                      |
| /D (D )          | 1. VLSI Digital Signal Processing Systems: Design and Implementation By K.K.                                                                                                                                     |
| Text Books       | Parhi, John Wiley & Sons, 1999                                                                                                                                                                                   |
| and<br>Reference | 2. Richard J, Higgins, Digital Signal Processing in VLSI, Prentice Hall                                                                                                                                          |
| Books            | REFERENCES BOOKS :                                                                                                                                                                                               |
| DOOKS            | 1. M.A. Bayoumi, VLSI Design Methodology for DSP Architectures, Kluwer,                                                                                                                                          |
|                  | 1994                                                                                                                                                                                                             |
|                  | 2. U. Meyer – Baese, Digital Signal Processing with FPGAs, Springer, 2004                                                                                                                                        |
| E-Resources      | 1. http://people.ece.umn.edu/users/parhi/SLIDES/                                                                                                                                                                 |

| Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |     |      |      |      |
|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                                                                                                   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO2                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO3                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO4                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO5                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO6                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |

# 19EC41E3 – IC FABRICATION TECHNOLOGY

| Course category:     | Program Elective                 | Credits:                        | 3         |
|----------------------|----------------------------------|---------------------------------|-----------|
| Course Type:         | Theory                           | Lecture - Tutorial - Practical: | 3 - 0 - 0 |
| <b>Prerequisite:</b> | Electronic Devices & Circuits,   | Sessional Evaluation:           | 40        |
|                      | Switching Theory & Logic Design, | External Evaluation:            | 60        |
|                      | Analog IC Applications,          | Total Marks:                    | 100       |
|                      | Digital Design, VLSI Design.     |                                 |           |

|                      | Studen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Students undergoing this course are expected to understand:                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Course<br>Objectives | <ol> <li>The fundamental process involved in IC fabrication and able to describe the CMOS and Bi-CMOS IC Fabrication Process</li> <li>The modelling of resistor and capacitor in IC fabrication considering the parasitic effects and design rules</li> <li>The gate structures, Network layout design and sequential machines</li> <li>The gain adequate knowledge on subsystems and physical design</li> <li>The floor planning, touting, distribution</li> <li>The automatic test pattern generator and BIST.</li> </ol> |                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|                      | CO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Understand the fundamental process involved in IC fabrication process and Model resistor and capacitor in IC fabrication and understand transistor parasitic, stick diagrams                                                                                                                                 |  |  |  |  |  |  |  |
| Course<br>Outcomes   | CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Describe the CMOS and BiCMOS IC Fabrication Process and SCMOS design rules.                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|                      | CO3 Understand the gate structures and sub systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|                      | CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Design sequential machines and 4-bit arithmetic processor.                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
|                      | CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gain adequate knowledge on floor planning and Testing and Testability                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|                      | CO6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Design channel distribution and BIST and ATPG                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|                      | growin<br>Metalli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UNIT-I AMENTALS OF IC FABRICATION PROCESS: Preparation of EGS, Crystal ag, Wafer preparation, Epitaxy, Oxidation, Photolithography, Diffusion, ization, CMOS fabrication-p-well process, n-well process, twin-tub process. Bis fabrication. IC design techniques-Hierarchical design and design abstraction. |  |  |  |  |  |  |  |
| Course<br>Content    | UNIT-II  DEVICES AND LAYOUT: Sheet resistance. Area capacitance. Delay unit τ. MOS Transistors - Structure of the transistor, Simple transistor model, Transistor parasitics, Wires and vias, Tub ties and latch up, Wire parasitics, Advanced characteristics, design rules- Fabrication errors, Scalable design rules, SCMOS design rules, Layout design and tools- Layouts for circuits, Stick diagrams, Hierarchical stick diagrams.                                                                                    |                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|                      | UNIT-III GATES, NETWORK AND SEQUENTIAL MACHINES: Static complementary gates- Gate structures, Basic gate layouts, delay, Power consumption, Speed- power product, parasitic, Wires and delay. Network layout design- Single row layout, Standard cell layout. Network delay- Fan-out, Path delay, Transistor sizing. Sequential machines-                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |

| UNIT-IV UBSYSTEMS: Subsystems- Pipelining, Data paths, 4-bit arithmetic processor as                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNIT-V LOOR PLANNING: Floor planning methods — Block placement and channel istribution, Global routing, power distribution, Clock distribution. Off-chip onnections- Packages, I/O Architecture, Pad design.  UNIT-VI ESTING AND TESTABILITY: System partitioning, Design for testability, Fault nodels. ATPG, Testing combinational logic, Testing sequential logic, Scan design echniques BIST. |
| 1. S.M. Sze, "VLSI Technology", Mc Graw-Hill Int. Edn. 2. Wayne Wolf, "Modern VLSI design", Pearson Education Asia.  EFFERENCE BOOKS: 1. Douglas A. Pucknell and Kamran Eshraghian, "Basic VLSI design", Prentice-Hall of India Pvt. Ltd. 2. "Introduction to VLSI Circuits and Systems" – John. P. Uyemura. John wiley, 2003. 3. "Digital Integrated Circuits" – John M.Rabaey, PHI,             |
| <ol> <li>www.iue.tuwien.ac.at/phd/ceric/node8.html</li> <li>www.eecs.berkeley.edu/~hu/ChenmingHu_ch3.pdfwww.nptel.ac.in/courses/1</li> </ol>                                                                                                                                                                                                                                                      |
| i                                                                                                                                                                                                                                                                                                                                                                                                 |

| Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |     |      |      |      |
|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                                                                                                   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO2                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO3                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO4                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO5                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO6                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |

# 19EC41E4 – RADAR SIGNAL PROCESSING

| Course category: | Program Elective                 | Credits:                        | 3         |
|------------------|----------------------------------|---------------------------------|-----------|
| Course Type:     | Theory                           | Lecture - Tutorial - Practical: | 3 - 0 - 0 |
| Prerequisite:    | Analog and digital communication | Sessional Evaluation:           | 40        |
| _                | systems, DSP, Basic Radar        | External Evaluation:            | 60        |
|                  | engineering.                     | Total Marks:                    | 100       |

|                   | Ctudos                                                                                                                                                                                                                                                                                 | uto un denocino this comuse que en esta de                                                                                              |  |  |  |  |  |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|                   | Students undergoing this course are expected:                                                                                                                                                                                                                                          |                                                                                                                                         |  |  |  |  |  |  |  |  |
|                   | 1. To learn the fundamentals of radar block diagram and range equation.                                                                                                                                                                                                                |                                                                                                                                         |  |  |  |  |  |  |  |  |
| Course            |                                                                                                                                                                                                                                                                                        | 2. To understand the matched filter receiver.                                                                                           |  |  |  |  |  |  |  |  |
| Objectives        | ;                                                                                                                                                                                                                                                                                      | 3. To understand detection criteria of radar signals in noise environment.                                                              |  |  |  |  |  |  |  |  |
|                   |                                                                                                                                                                                                                                                                                        | 4. To learn the Radar waveform design requirements.                                                                                     |  |  |  |  |  |  |  |  |
|                   | 5. To learn the Pulse compression techniques.                                                                                                                                                                                                                                          |                                                                                                                                         |  |  |  |  |  |  |  |  |
|                   | 1                                                                                                                                                                                                                                                                                      | 6. To understand fundamentals different phase coding techniques.                                                                        |  |  |  |  |  |  |  |  |
|                   | Upon                                                                                                                                                                                                                                                                                   | successful completion of the course, the students will be able to:                                                                      |  |  |  |  |  |  |  |  |
|                   | CO1                                                                                                                                                                                                                                                                                    | Understand the components of a radar system and their relationship to overall system and measure of performance with and without noise. |  |  |  |  |  |  |  |  |
|                   |                                                                                                                                                                                                                                                                                        | Analyze the radar performance and Frequency Response Characteristic of                                                                  |  |  |  |  |  |  |  |  |
| Course            | CO2                                                                                                                                                                                                                                                                                    | matched filter receiver with noise.                                                                                                     |  |  |  |  |  |  |  |  |
| Outcomes          | СОЗ                                                                                                                                                                                                                                                                                    | Develop skills in designing Radar systems in different noise environments by choosing proper Waveform Design Requirements.              |  |  |  |  |  |  |  |  |
|                   | CO4                                                                                                                                                                                                                                                                                    | Familiarized Detection Criteria of radar and ambiguity function and basic radar signals.                                                |  |  |  |  |  |  |  |  |
|                   | CO5                                                                                                                                                                                                                                                                                    | CO5 Demonstrate knowledge in radar pulse compression techniques with coctechniques.                                                     |  |  |  |  |  |  |  |  |
|                   | CO6                                                                                                                                                                                                                                                                                    | Describe the different phase coding techniques in Decoding the received Waveforms.                                                      |  |  |  |  |  |  |  |  |
|                   |                                                                                                                                                                                                                                                                                        | UNIT-I                                                                                                                                  |  |  |  |  |  |  |  |  |
|                   | RADA RRANGE EQUATION: Introduction— Radar Frequencies, Radar Block Diagram, Radar Equation, Information Available from Radar Echo. Review of Radar Range Performance— General Radar Range Equation, Radar Detection with Noise Jamming, Beacon and Repeater Equations, Bistatic Radar. |                                                                                                                                         |  |  |  |  |  |  |  |  |
|                   |                                                                                                                                                                                                                                                                                        | UNIT – II                                                                                                                               |  |  |  |  |  |  |  |  |
| Course<br>Content | MATCHED FILTER RECEIVER: Impulse Response, Frequency Response Characteristic and its Derivation, Matched Filter and Correlation Function, Correlation Detection and Cross-Correlation Receiver, Efficiency of Non-Matched Filters, Matched Filter for Non-White Noise.                 |                                                                                                                                         |  |  |  |  |  |  |  |  |
|                   | UNIT – III                                                                                                                                                                                                                                                                             |                                                                                                                                         |  |  |  |  |  |  |  |  |
|                   | DETECTION OF RADAR SIGNALS IN NOISE: Detection Criteria – Neyman-                                                                                                                                                                                                                      |                                                                                                                                         |  |  |  |  |  |  |  |  |
|                   | Pearson Observer, Likelihood-Ratio Receiver, Inverse Probability Receiver, Sequential                                                                                                                                                                                                  |                                                                                                                                         |  |  |  |  |  |  |  |  |
|                   | Observer, Detectors –Envelope Detector, Logarithmic Detector, I/Q Detector. Automatic Detection – CFAR Receiver, Cell Averaging CFAR Receiver, CFAR Loss, CFAR Uses                                                                                                                    |                                                                                                                                         |  |  |  |  |  |  |  |  |
|                   | in Radar. Radar Signal Management –Schematics, Component Parts, Resources and                                                                                                                                                                                                          |                                                                                                                                         |  |  |  |  |  |  |  |  |
|                   |                                                                                                                                                                                                                                                                                        | Constraints.                                                                                                                            |  |  |  |  |  |  |  |  |
|                   |                                                                                                                                                                                                                                                                                        | UNIT – IV                                                                                                                               |  |  |  |  |  |  |  |  |
|                   | WAV                                                                                                                                                                                                                                                                                    | EFORM SELECTION: Radar Ambiguity Function and Ambiguity Diagram –                                                                       |  |  |  |  |  |  |  |  |

|             | Principles and Properties; Specific Cases – Ideal Case, Single Pulse of Sine Wave,     |  |  |  |  |  |  |  |  |  |  |
|-------------|----------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
|             | Periodic Pulse Train, Single Linear FM Pulse, Noise like Waveforms. Waveform Design    |  |  |  |  |  |  |  |  |  |  |
|             | Requirements. Radar clutter- Introduction, surface clutter, Land clutter, Detection of |  |  |  |  |  |  |  |  |  |  |
|             | targets in Clutter.                                                                    |  |  |  |  |  |  |  |  |  |  |
|             | UNIT – V                                                                               |  |  |  |  |  |  |  |  |  |  |
|             | PULSE COMPRESSION IN RADAR SIGNALS: Introduction, Significance, Types.                 |  |  |  |  |  |  |  |  |  |  |
|             | Linear FM Pulse Compression – Block Diagram, Characteristics, Reduction of Time        |  |  |  |  |  |  |  |  |  |  |
|             | Side lobes, Stretch Techniques, Generation and Decoding of FM Waveforms – Block        |  |  |  |  |  |  |  |  |  |  |
| Course      | Schematic and Characteristics of Passive System, Digital Compression, SAW Pulse        |  |  |  |  |  |  |  |  |  |  |
| Content     | Compression.                                                                           |  |  |  |  |  |  |  |  |  |  |
|             | UNIT-VI                                                                                |  |  |  |  |  |  |  |  |  |  |
|             | PHASE CODING TECHNIQUES:                                                               |  |  |  |  |  |  |  |  |  |  |
|             | Phase Coding Techniques: Principles, Binary Phase Coding, Barker Codes, Maximal        |  |  |  |  |  |  |  |  |  |  |
|             | Length Sequences (MLS/LRS/PN), Block Diagram of a Phase Coded CW Radar.                |  |  |  |  |  |  |  |  |  |  |
|             | Poly Phase Codes: Frank Codes, Costas Codes, Non-Linear FM Pulse Compression,          |  |  |  |  |  |  |  |  |  |  |
|             | Doppler Tolerant PC Waveforms – Short Pulse, Linear Period Modulation (LPM/HFM),       |  |  |  |  |  |  |  |  |  |  |
|             | Side lobe Reduction for Phase Coded PC Signals, Complementary codes, Huffman           |  |  |  |  |  |  |  |  |  |  |
|             | codes, Limiting in Pulse Compression, Cross Correlation Properties, compatibility.     |  |  |  |  |  |  |  |  |  |  |
|             |                                                                                        |  |  |  |  |  |  |  |  |  |  |
|             | TEXT BOOKS:                                                                            |  |  |  |  |  |  |  |  |  |  |
|             | 1. M.I. Skolnik, "Introduction to Radar Systems", TMH, 3rd Edition, 2001. "            |  |  |  |  |  |  |  |  |  |  |
|             | 2. Fred E. Nathanson, "Radar Design Principles – Signal Processing and The             |  |  |  |  |  |  |  |  |  |  |
|             | Environment", McGraw Hill, Inc, 2nd Edition, 1991.                                     |  |  |  |  |  |  |  |  |  |  |
|             | 3. M.I. Skolnik, <i>Radar Handbook</i> , McGraw Hill, 2nd Edition, 1991.               |  |  |  |  |  |  |  |  |  |  |
| Text Books  | 3. Whit Skollik, Radar Handoook, Westaw Hill, 2nd Edition, 1991.                       |  |  |  |  |  |  |  |  |  |  |
| and         | REFERENCE BOOKS:                                                                       |  |  |  |  |  |  |  |  |  |  |
| Reference   |                                                                                        |  |  |  |  |  |  |  |  |  |  |
| Books       | 1. Peyton Z. Peebles Jr., Radar Principles, Wiley India Pvt. Ltd., 1998.               |  |  |  |  |  |  |  |  |  |  |
|             | 2. R. Nit berg, Radar Signal Processing and Adaptive Systems, Artech                   |  |  |  |  |  |  |  |  |  |  |
|             | House, 1999.                                                                           |  |  |  |  |  |  |  |  |  |  |
|             | 3. F.E. Nathanson, Radar Design Principles, <i>1st</i> Edition, McGraw Hill, 1969      |  |  |  |  |  |  |  |  |  |  |
|             | 3. 1.2. Nathanson, Radar Design Timespies, 1st Edition, Westaw Tim, 1909               |  |  |  |  |  |  |  |  |  |  |
|             | 2. https://www.ll.mit.edu/outreach/introduction-radar-systems                          |  |  |  |  |  |  |  |  |  |  |
| E-Resources | 3. https://ocw.mit.edu/resources/res-ll-001-introduction-to-radar-systems-             |  |  |  |  |  |  |  |  |  |  |
|             | spring-2007/                                                                           |  |  |  |  |  |  |  |  |  |  |
|             | 4. http://lej4learning.com.pk/videos-introduction-to-radar-systems-mit/                |  |  |  |  |  |  |  |  |  |  |
|             | 1 3 8                                                                                  |  |  |  |  |  |  |  |  |  |  |

| Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |     |      |      |      |
|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                                                                                                   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO2                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO3                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO4                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO5                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO6                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |

| S.No | COURSE CODE | OPEN ELECTIVES-I            |
|------|-------------|-----------------------------|
| 1.   | 19CS41O1    | PYTHON PROGRAMMING          |
| 2.   | 19EE41O1    | SMART GRID TECHNOLOGY       |
| 3.   | 19SH41O1    | NANO TECHNOLOGY             |
| 4.   | 19CS41O2    | DATA BASE MANAGEMENT SYSTEM |

# 19CS41O1 -PYTHON PROGRAMMING

| Course Category: | Open Elective                       | Credits:                     | 3     |
|------------------|-------------------------------------|------------------------------|-------|
| Course Type:     | Theory                              | Lecture -Tutorial-Practical: | 3-0-0 |
| Prerequisite:    | Require the fundamental concepts of | Sessional Evaluation:        | 40    |
|                  | computers and any programming       | External Evaluation:         | 60    |
|                  | basics                              | Total Marks:                 | 100   |

|                   | Students undergoing this course are expected:                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|                   | To introduce Object Oriented Programming using an easy to use language                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
| Course            | 2. To use iterators and generators.                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
| Objectives        | 3. To test objects and handle changing requirements.                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|                   | 4. To be exposed to programming over the web to develop various applications.                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
|                   | Upon successful completion of the course, the students will be able to:                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
|                   | CO1 Understand the concepts of object oriented programming in python.                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
| Course            | CO2 Study to compose a group of characters and utilization of strings into various applications                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
| Outcomes          | CO3 Use generators and iterators to develop different applications                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
|                   | CO4 Develop test cases and handle refactoring to identify its advantages.                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
|                   | CO5 Use serializing objects to program over the web.                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|                   | CO6 Lean how to create and utilize the advantages of packages                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
|                   | UNIT-I                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
|                   | INTRODUCTION: Function Declaration - Import - Objects - Indenting as Requirement - Exceptions - Unbound Variables - Case Sensitive - Scripts - Native Data Types - Booleans - Numbers - Lists -Tuples - Sets - Dictionaries - Comprehensions - List Comprehensions - Dictionary Comprehensions - Set Comprehensions.  UNIT-II  STRINGS: Strings - Unicode - Formatting - String Methods - Bytes - Encoding - Regular Expressions Verbose - Case Studies |  |  |  |  |  |  |  |  |
|                   | UNIT-III                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
| Course<br>Content | <b>CLASSES</b> : Closures - List of Functions - List of Patterns - File of Patterns - Generators - Defining Classes - Instantiating Classes - Instance Variables - Iterators - Iterators - Assert - Generator Expressions                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
|                   | UNIT-IV                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
|                   | <b>FILES</b> : Reading and Writing Text Files - Binary Files - Stream Objects - Standard Input, Output and Error.                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
|                   | UNIT-V                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
|                   | XML and SERILIZATION: XML - Atom Feed - Parsing HTML - Searching for Nodes - html - Generation - Serializing Objects - Pickle Files - Versions - Debugging - Serializing to JSON                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
|                   | UNIT-VI                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
|                   | PACKAGING PYTHON LIBRARIES: Directory Structure, Writing Your Setup Script - Classifying Your Package - Examples of Good Package Classifiers - Checking Your Setup Script for Errors - Creating a Source Distribution - Creating a Graphical Installer - Building Installable Packages for Other Operating Systems - Adding Your Software to the Python Package Index - The Many Possible Futures of Python Packaging.                                  |  |  |  |  |  |  |  |  |

|             | TEXT BOOKS:  1. Mark Pilgrim, "Dive into Python 3", Apress, 2009.  2. Allen Downey, Jeffrey Elkner, Chris Meyers, "How to Think Like a Computer |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Text Books  | Scientist - Learning with Python", Green Tea Press, 2002.                                                                                       |
| and         | REFERENCE BOOKS:                                                                                                                                |
| Reference   | 1. John V. Guttag, "Introduction to Computation and Programming using Python",                                                                  |
| Books       | Prentice Hall of India, 2014                                                                                                                    |
|             | 2. Mark Lutz, "Learning Python: Powerful Object-Oriented Programming", Fifth                                                                    |
|             | Edition, O'Reilly, Shroff Publishers and Distributors, 2013                                                                                     |
| E-Resources | 1. https://nptel.ac.in/courses                                                                                                                  |
|             | 2.https://freevideolectures.com/university/iitm                                                                                                 |

| Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |     |      |      |      |
|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                                                                                                   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO2                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO3                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO4                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO5                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO6                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |

# 19EE41O1-SMART GRID TECHNOLOGY

| Course Category: | Program Open Elective | Credits:                     | 3     |
|------------------|-----------------------|------------------------------|-------|
| Course Type:     | Theory                | Lecture -Tutorial-Practical: | 3-0-0 |
| Prerequisite:    |                       | Sessional Evaluation:        | 40    |
|                  | Nil                   | External Evaluation:         | 60    |
|                  |                       | Total Marks:                 | 100   |

|                    | Studen                                                                                                                                                                  | ats undergoing this course are expected to:                                                |  |  |  |  |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                    |                                                                                                                                                                         | its undergoing this course are expected to:                                                |  |  |  |  |  |  |
|                    | 1. Learn introduction to Smart Grid                                                                                                                                     |                                                                                            |  |  |  |  |  |  |
| Course             |                                                                                                                                                                         | Learn necessity of smart grid                                                              |  |  |  |  |  |  |
| Objectives         |                                                                                                                                                                         | Learn operation and construction of measuring the smart grid signals                       |  |  |  |  |  |  |
| 3                  |                                                                                                                                                                         | Learn automation technologies of smart grid                                                |  |  |  |  |  |  |
|                    |                                                                                                                                                                         | Learn Island, protection and applications of smart grid Learn Distributed Energy Resources |  |  |  |  |  |  |
|                    |                                                                                                                                                                         | completing the course the student will be able to                                          |  |  |  |  |  |  |
|                    | CO1                                                                                                                                                                     | Gain the knowledge on introduction to Smart Grid                                           |  |  |  |  |  |  |
|                    | CO2                                                                                                                                                                     | Gain the knowledge on necessity of smart grid                                              |  |  |  |  |  |  |
| Course<br>Outcomes |                                                                                                                                                                         | Know the operation and construction of measuring the smart grid signals.                   |  |  |  |  |  |  |
| outcomes           | CO4                                                                                                                                                                     | Understand the automation technologies of smart grid                                       |  |  |  |  |  |  |
|                    | CO5                                                                                                                                                                     | Gain knowledge on Island, protection and applications of smart grid                        |  |  |  |  |  |  |
|                    | CO6                                                                                                                                                                     | Understand the concepts on Distributed Energy Resources                                    |  |  |  |  |  |  |
|                    | INTED                                                                                                                                                                   | UNIT-I                                                                                     |  |  |  |  |  |  |
|                    | INTRODUCTION TO SMART GRID: Evolution of Electric Grid, Concept of Smart                                                                                                |                                                                                            |  |  |  |  |  |  |
|                    | Grid, Definitions, Need of Smart Grid, Functions of Smart Grid, Opportunities & Barriers                                                                                |                                                                                            |  |  |  |  |  |  |
|                    | of Smart Grid, Difference between conventional & smart grid, Concept of Resilient & Self-Healing Grid, Present development & International policies in Smart Grid. Case |                                                                                            |  |  |  |  |  |  |
|                    | study of Smart Grid, CDM opportunities in Smart Grid.                                                                                                                   |                                                                                            |  |  |  |  |  |  |
|                    | UNIT-II                                                                                                                                                                 |                                                                                            |  |  |  |  |  |  |
|                    | NECESSITY OF SMART GRID: The Smart Grid Enables the ElectriNetSM, Local                                                                                                 |                                                                                            |  |  |  |  |  |  |
|                    | Energy Networks, Electric Transportation, Low-Carbon Central Generation, the                                                                                            |                                                                                            |  |  |  |  |  |  |
|                    | Attributes of the Smart Grid- Need of a Smart Grid- Is the Smart Grid a "Green Grid"-                                                                                   |                                                                                            |  |  |  |  |  |  |
| Course             | Smart Grid Initiative for Power Distribution Utility in India.                                                                                                          |                                                                                            |  |  |  |  |  |  |
| Content            | UNIT –III                                                                                                                                                               |                                                                                            |  |  |  |  |  |  |
|                    |                                                                                                                                                                         | ING AND MEASUREMENT: Smart metering and demand-side integration,                           |  |  |  |  |  |  |
|                    |                                                                                                                                                                         | action, Smart metering, Evolution of electricity metering, Key Components of               |  |  |  |  |  |  |
|                    | smart metering, Smart meters: An overview of the hardware used Signal acquisition,                                                                                      |                                                                                            |  |  |  |  |  |  |
|                    | Signal conditioning, Analogue to digital conversion, Computation, Input/output, Communication, Communications infrastructure and protocols for smart metering,          |                                                                                            |  |  |  |  |  |  |
|                    | UNIT –IV                                                                                                                                                                |                                                                                            |  |  |  |  |  |  |
|                    | CONT                                                                                                                                                                    | TROL AND AUTOMATION TECHNOLOGIES :Home-area network,                                       |  |  |  |  |  |  |
|                    | neighb                                                                                                                                                                  | ourhood area network, Data concentrator, Meter data management system,                     |  |  |  |  |  |  |
|                    |                                                                                                                                                                         | ols for communications, Demand-side integration, Services provided by DSI,                 |  |  |  |  |  |  |
|                    | Implementations of DSI, Hardware support to DSI implementations, Flexibility delivered                                                                                  |                                                                                            |  |  |  |  |  |  |
|                    |                                                                                                                                                                         | osumers from the demand side, System support from DSI. Smart Appliances,                   |  |  |  |  |  |  |
|                    |                                                                                                                                                                         | atic Meter Reading (AMR), Outage. Management System (OMS), Plug in Hybrid                  |  |  |  |  |  |  |
|                    | Electric Vehicles (PHEV), Vehicle to Grid, Grid to Vehicle, Coordination of PHEV                                                                                        |                                                                                            |  |  |  |  |  |  |
|                    | cnargii                                                                                                                                                                 | ng and discharging cycle, Smart Sensors, Home & Building Automation, Phase                 |  |  |  |  |  |  |

| Course<br>Content              | Shifting Transformers.  UNIT –V  CONCEPT OF MICRO GRIDS: Concept of micro grid, need & applications of micro grid, formation of micro grid, issues of interconnection, protection & control of micro grid. Islanding, need and benefits, different methods of islanding detection.  UINT-VI  DISTRIBUTED ENERGY RESOURCES: Distributed Energy Resources: Small scale distributed generation, Distributed Generation Technology, Internal Combustion Engines, Gas Turbines, Combined Cycle Gas Turbines, Micro turbines, Fuel Cells, Solar Photovoltaic, Solar thermal, Wind power, Geothermal, - all sources as a DG. Advantages |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Content                        | and disadvantages of DG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Text Books<br>and<br>Reference | <ol> <li>TEXT BOOKS:         <ol> <li>"Integration of Green and Renewable Energy in Electric Power Systems", by Ali K., M.N. Marwali, Min Dai, -Wiley.</li> <li>"The Smart Grid: Enabling Energy Efficiency and Demand Response", by Clark W. Gellings, - CRC Press.</li> <li>"Smart Grid: Technology and Applications", by Janaka Ekanayake, N. Jenkins, K. Liyanage, J. Wu, Akihiko Yokoyama - Wiley.</li> </ol> </li> <li>REFERENCE BOOKS:</li> </ol>                                                                                                                                                                         |
| Books                          | <ol> <li>"Smart Grids" by Jean Claude Sabonnadiere, Nouredine Hadjsaid - Wiley Blackwell.</li> <li>"Securing the Smart Grid" by Tony Flick and Justin Morehouse- Elsevier Inc.</li> <li>"Smart Power: Climate Change, the Smart Grid, and the Future of Electric Utilities" by Peter S. Fox-Penner - Island Press.</li> <li>"SMART GRID Fundamentals of Design and Analysis "by James Momoh - IEEE press, A John Wiley &amp; Sons, Inc., Publication.</li> </ol>                                                                                                                                                                 |
| E-Resources                    | <ol> <li>http://nptel.ac.in/courses</li> <li>http://iete-elan.ac.in</li> <li>http://freevideolectures.com/university/iitm</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |     |      |      |      |
|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                                                                                                   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO2                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO3                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO4                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO5                                                                                               |     |     |     |     |     |     |     |     |     |      |      | -    |
| CO6                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |

# 19SH41O1-NANO TECHNOLOGY

| Course Category: | Program Open Elective    | Credits:                     | 3     |
|------------------|--------------------------|------------------------------|-------|
| Course Type:     | Theory                   | Lecture -Tutorial-Practical: | 3-0-0 |
| Prerequisite:    | Basics of semiconductors | Sessional Evaluation:        | 40    |
|                  |                          | External Evaluation:         | 60    |
|                  |                          | Total Marks:                 | 100   |

|                   | G, 1                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|                   | Students undergoing this course are expected to understand:                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
| Course            | 1. The basic concepts of semiconductor nano devices.                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
| Objectives        | 2.                                                                                                                                                                                                                                                                                                                                                           | Types of photonic and molecular materials Design of thermal and gas sensors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|                   |                                                                                                                                                                                                                                                                                                                                                              | Bio sensors and DNA based bio sensors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                   | 5.                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
|                   | 6.                                                                                                                                                                                                                                                                                                                                                           | Protein based biosensors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
|                   | Upon                                                                                                                                                                                                                                                                                                                                                         | successful completion of the course, the students will be able to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
|                   | CO1                                                                                                                                                                                                                                                                                                                                                          | Understand various types of nano devices and nano mechanics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
| Course            | CO2                                                                                                                                                                                                                                                                                                                                                          | Develop nano technology based LED,LASERetc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
| Outcomes          | CO3                                                                                                                                                                                                                                                                                                                                                          | Develop the Electroluminescent Organic materials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
|                   | CO4                                                                                                                                                                                                                                                                                                                                                          | Develop the different thermal sensors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                   | CO5                                                                                                                                                                                                                                                                                                                                                          | CO5 Evaluate the response various materials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|                   | CO6                                                                                                                                                                                                                                                                                                                                                          | Design different types of bio sensors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
| Course<br>Content | SEMI<br>Nano<br>Molec<br>Nano<br>ELEC<br>Cascac<br>Quant                                                                                                                                                                                                                                                                                                     | CONDUCTOR NANODEVICES -I: Single-Electron Devices; Nano scale FET — Resonant Tunnelling Transistor - Single-Electron Transistors; Single-Feron Dynamics; Nanorobotics and Nano manipulation  UNIT-II  ICONDUCTOR NANODEVICES -II: Mechanical Molecular Nano devices; computers: Theoretical Models; Optical Fibers for Nano devices; Photochemical cular Devices; DNA-Based Nano devices; Gas-Based Nano devices; Micro and mechanics.  UNIT-III  CTRONIC AND PHOTONIC MOLECULAR MATERIALS: Preparation — columinescent Organic materials - Laser Diodes - Quantum well lasers:-Quantum del lasers- Cascade surface-emitting photonic crystal laser- Quantum dotlasers-tum wire lasers:- White LEDs - LEDs based on nanowires - LEDs based on ubes- LEDs based on nanorods High Efficiency Materials for OLEDs- High |  |  |  |  |  |  |  |  |
|                   | Efficiency Materials for OLEDs - Quantum well infrared photo detectors.                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
|                   | тиві                                                                                                                                                                                                                                                                                                                                                         | UNIT-IV  PMAL SENSOPS: Thermal energy sensors temperature sensors heat sensors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
|                   | <b>THERMAL SENSORS:</b> Thermal energy sensors -temperature sensors, heat sensors-<br>Electromagnetic sensors electrical resistance sensors, electrical current sensors, electrical voltage sensors, electrical power sensors, magnetism sensors - Mechanical sensors - pressure sensors, gas and liquid flow sensors, position sensors - Chemical sensors - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |

|                                         | Optical and radiation sensors.                                                                                                                                                                                                                          |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course<br>Content                       | UNIT-V GAS SENSOR MATERIALS: Criteria for the choice of materials, Experimental aspects – materials, properties, measurement of gas sensing property, sensitivity; Discussion of sensors for various gases, Gas sensors based on semiconductor devices. |
|                                         | UNIT-VI BIOSENSORS: Principles- DNA based biosensors — Protein based biosensors — materials for biosensor applications- fabrication of biosensors—future potential.                                                                                     |
| Text Books<br>and<br>Reference<br>Books | TEXT BOOKS:  1. W. Ranier, —Nano Electronics and Information Technology  , Wiley, (2003).  2. K.E. Drexler, —Nano systems  , Wiley, (1992).  REFERENCE BOOKS:  1. M.C. Petty, —Introduction to Molecular Electronics  1995.                             |

| Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |     |      |      |      |
|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                                                                                                   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO2                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO3                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO4                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO5                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO6                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |

# 17CS41O2- DATA BASE MANAGEMENT SYSTEM

| Course category: | Open Elective                        | Credits:                        | 3         |
|------------------|--------------------------------------|---------------------------------|-----------|
| Course Type:     | Theory                               | Lecture - Tutorial - Practical: | 3 - 0 - 0 |
| Prerequisite:    | Basic foundations in mathematics     | <b>Sessional Evaluation:</b>    | 40        |
| _                | and preliminary fundamentals of data | <b>External Evaluation:</b>     | 60        |
|                  | and information                      | Total Marks:                    | 100       |

|                    | Students undergoing this course are expected to understand:                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|                    | 1. Understand the areas of databases and composition of queries using Structured                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
| Course             | Query Language 2. To study various database design models for building applications                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
| Objectives         | 3. Evaluate a business situation while designing a database system                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
|                    | Upon successful completion of the course, the students will be able to:                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
|                    | CO1 Master the basic concepts and their applicability                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
| <b>G</b>           | CO2 Understand Relational Model and the Relational Algebraic operations.                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
| Course<br>Outcomes | CO3 Learn ER model and its usage in applications.                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
|                    | CO4 Familiar with SQL to create simple databases                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|                    | CO5 Identify the basic issues of normalization and exposure on relational database design.                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                    | CO6 Acquire knowledge in Transaction Management and Recovery.                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
|                    | UNIT – I                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
|                    | INTRODUCTION: Database-System Applications, Purpose of Database Systems, View of Data, Database Languages, Relational Databases, Data Storage and Querying, Transaction Management, Database Architecture, Database Users and Administrators.  UNIT – II                                                                  |  |  |  |  |  |  |  |  |
| Course<br>Content  | <b>RELATIONAL MODEL</b> : Structure of Relational Databases, Fundamental Relational-Algebra Operations, Additional Relational-Algebra Operations, Extended Relational-Algebra Operations, Null Values, Modification of the Database. <b>UNIT – III</b>                                                                    |  |  |  |  |  |  |  |  |
|                    | <b>DATABASE DESIGN AND THE E-R MODEL</b> : Overview of the Design Process, The Entity-Relationship Model, Constraints, Entity-Relationship Diagrams, Entity-Relationship Design Issues, Weak Entity Sets, Extended E-R Features, Reduction to Relational Schemas, Other Aspects of Database Design. <b>UNIT – IV</b>      |  |  |  |  |  |  |  |  |
|                    | <b>SQL:</b> Data Definition, SQL Data Types and Schemas, Integrity Constraints, Basic Structure of SQL Queries, Set Operations, Aggregate Functions, Null Values, Nested Sub queries, Complex Queries, Views, Modification of the Database, Joined Relations. <b>UNIT – V</b>                                             |  |  |  |  |  |  |  |  |
|                    | <b>RELATIONAL DATABASE DESIGN:</b> Features of Good Relational Design, Atomic Domains and First Normal Form, Decomposition Using Functional Dependencies, Functional Dependency Theory, Algorithms for Functional Dependencies, Decomposition Using Multivalued Dependencies ,More Normal Form, Database-Design Process . |  |  |  |  |  |  |  |  |

|                   | UNIT – VI                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Course<br>Content | <b>TRANSACTION MANAGEMENT AND RECOVERY</b> : Lock Based and timestamp based Protocols, Multiple Granularity, Multiversion Schemes, Deadlock Handling, Weak Levels of Consistency, Recovery and Atomicity, recovery algorithm, Buffer Management, Remote Backup Systems. |  |  |  |  |  |  |  |
|                   | TEXT BOOKS:                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|                   | 1. Silberschatz, Korth, Sudarshan, "Database System Concepts", McGrawHill, 6 <sup>th</sup>                                                                                                                                                                              |  |  |  |  |  |  |  |
| (T) 4 D 1         | Edition, 2011.                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| Text Books        | REFERENCE BOOKS:                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| and               | 2. Ramez Elmasri and Shamkant Navathe, Durvasula V L N Somayajulu, Shyam K                                                                                                                                                                                              |  |  |  |  |  |  |  |
| Reference         | Gupta, "Fundamentals of Database Systems", Pearson Education, 2006.                                                                                                                                                                                                     |  |  |  |  |  |  |  |
| Books             | 3. Thomas Connolly, Carolyn Begg, "Database Systems – A Practical Approach to                                                                                                                                                                                           |  |  |  |  |  |  |  |
|                   | Design, Implementation and Management", Pearson Education, 3 <sup>rd</sup> Edition,                                                                                                                                                                                     |  |  |  |  |  |  |  |
|                   | 2002.                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
|                   | 4. Raghu ramakrishnan ,"Database Management Systems", Publisher: McGraw                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|                   | Hill, Third edition.                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| E-Resources       | 1. https://nptel.ac.in/courses                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|                   | 2. https://freevideolectures.com/university/iitm                                                                                                                                                                                                                        |  |  |  |  |  |  |  |

| Contribution of | Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |      |      |      |
|-----------------|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                 | PO1                                                                                               | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1             |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO2             |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO3             |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO4             |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO5             |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO6             |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |

### **NBKR INSTITUTE OF SCIENCE & TECHNOLOGY: VIDYANAGAR**

(AUTONOMOUS)

### (AFFILIATED TO JNTU ANANTAPUR: ANANTHAPURAMU)

### SPSR NELLORE DIST

# IV YEAR OF FOUR YEAR B.TECH DEGREE COURSE – II SEMESTER ELECTRONICS AND COMMUNICATION ENGINEERING

SCHEME OF INSTRUCTION AND EVALUATION (With effect from the academic year 2019-2020) (For the batch admitted in the academic year 2019-2020)

|      |                |                      | Instruction<br>Hours/Week |   |         | Evaluation           |                       |                       |               |                        |                              |                   |                                         |                        |               |     |
|------|----------------|----------------------|---------------------------|---|---------|----------------------|-----------------------|-----------------------|---------------|------------------------|------------------------------|-------------------|-----------------------------------------|------------------------|---------------|-----|
| S.No | Course<br>Code | Course Title         |                           |   | Credits | Sessional-I<br>Marks |                       | Sessional-II<br>Marks |               |                        | Total Sessional<br>Marks(40) | End Sen<br>Examin |                                         | Maximum<br>Total Marks |               |     |
|      | Code           | THEORY               | L                         | Т | D/P     |                      | Test <sup>\$</sup> -I | A#-I                  | Max.<br>Marks | Test <sup>\$</sup> -II | A#-II                        | Max.<br>Marks     | 0.0*5                                   | Duration<br>In Hours   | Max.<br>Marks | 100 |
| 1    | 19EC42EX       | Program Elective-III | 3                         | 0 | -       | 3                    | 34                    | 6                     | 40            | 34                     | 6                            | 40                | 0.8*Best of<br>two+0.2*<br>least of two | 3                      | 60            | 100 |
| 2    | 19XX42OX       | Open Elective-II     | 3                         | 0 | 1       | 3                    | 34                    | 6                     | 40            | 34                     | 6                            | 40                |                                         | 3                      | 60            | 100 |
|      |                | PRACTICALS           | CTICALS                   |   |         |                      |                       |                       |               |                        |                              |                   |                                         |                        |               |     |
| 3    | 19EC42PR       | PROJECT WORK         | -                         | - | -       | 11                   | -                     | -                     | -             | -                      | -                            | 80                | Assessment and<br>Seminar<br>(80 Marks) | 3                      | 120           | 200 |
| 4    | 19EC42MO       | MOOCs                | -                         | - | -       | 3                    | -                     | -                     | -             | -                      | -                            | -                 |                                         | -                      | -             | -   |
|      |                | TOTAL                | 6                         | 0 | -       | 20                   | -                     | -                     | -             | -                      | -                            | 160               | -                                       | -                      | 240           | 400 |

<sup>#</sup> A for Assignment (continuous evaluation)

<sup>\$</sup> Test (Descriptive & Objective) duration = 2 Hours

# S.No COURSE CODE ELECTIVE- VI 1. 19EC42E1 DIGITAL IMAGE PROCESSING 2. 19EC42E2 SATELLITE COMMUNICATION 3. 19EC42E3 ERROR CONTROL CODING 4. 19EC42E4 DIGITAL CONTROL SYSTEMS

# 19EC42E1-DIGITAL IMAGE PROCESSING

| Course Category: | Program Core                         | Credits:                    | 3     |
|------------------|--------------------------------------|-----------------------------|-------|
| Course Type:     | Theory                               | Lecture-Tutorial-Practical: | 2-2-0 |
| Prerequisite:    | Engineering Mathematics ,Signals and | Sessional Evaluation:       | 40    |
| _                | Systems, Digital Signal Processing   | External Evaluation:        | 60    |
|                  |                                      | Total Marks:                | 100   |

|                    | Students undergoing this course are expected:                                                                                                                                                                                        |  |  |  |  |  |  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                    | 1. To learn the fundamentals of digital image processing and the relationship                                                                                                                                                        |  |  |  |  |  |  |  |
|                    | between pixels.                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
| Course             | 2. To understand transformations used in digital image processing algorithms.                                                                                                                                                        |  |  |  |  |  |  |  |
| Objectives         | 3. To understand the spatial and frequency domain image processing                                                                                                                                                                   |  |  |  |  |  |  |  |
|                    | 4. To learn the restoration techniques used in image enhancement.                                                                                                                                                                    |  |  |  |  |  |  |  |
|                    | 5. To learn how to code and compress the images.                                                                                                                                                                                     |  |  |  |  |  |  |  |
|                    | 6. To understand fundamentals of color image processing.                                                                                                                                                                             |  |  |  |  |  |  |  |
|                    | After completing the course the student will be able to:                                                                                                                                                                             |  |  |  |  |  |  |  |
|                    | CO1 Describe how digital images are represented and how they are sampled and quantized and Define the image processing system and basic relations among pixels.                                                                      |  |  |  |  |  |  |  |
|                    | CO2 Analyze the need for image transforms, types and their properties.                                                                                                                                                               |  |  |  |  |  |  |  |
| Course<br>Outcomes | CO3 Study different techniques employed for the enhancement of images in both spatial and frequency domain.                                                                                                                          |  |  |  |  |  |  |  |
|                    | CO4 Explore causes for image degradation and various restoration techniques.                                                                                                                                                         |  |  |  |  |  |  |  |
|                    | CO5 Understand the techniques for image segmentation and Define different image coding techniques and compression models.                                                                                                            |  |  |  |  |  |  |  |
|                    | CO6 Describe the techniques of colour image processing.                                                                                                                                                                              |  |  |  |  |  |  |  |
|                    | UNIT-I DIGITAL IMAGE FUNDAMENTALS: Digital Image Representation – Digital Image Processing System – Visual Perception – Sampling and quantization – Basic Relationship between pixels – Imaging geometry.                            |  |  |  |  |  |  |  |
|                    | maging geometry.                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
| Course<br>Content  | UNIT – II  IMAGE TRANSFORMS: Discrete Fourier Transform – Properties of 2-D Fourier transform – 2-D Fast Fourier Transform – Walsh Transform – Hadamard Transform – D.C.T. – Haar Transform – Slant Transform – Hotelling Transform. |  |  |  |  |  |  |  |
|                    | UNIT – III  IMAGE ENHANCEMENT: Back ground enhancement by point processing – Histogram Processing – Spatial Filtering – Enhancement in frequency Domain – Image Smoothing – Image Sharpening.  UNIT – IV                             |  |  |  |  |  |  |  |
|                    | <b>IMAGE RESTORATION:</b> Degradation model – Algebraic approach to restoration – Inverse filtering – Least Mean Square filters – Constrained Least Mean Square restoration – Inverse Restoration.                                   |  |  |  |  |  |  |  |

|             | <b>IMAGE SEGMENTATION:</b> Detection of Discontinuities – Edge Linking –                  |
|-------------|-------------------------------------------------------------------------------------------|
|             | Boundary detection and Boundary Description - Thresholding - Region Oriented              |
|             | Segmentation.                                                                             |
|             | UNIT – V                                                                                  |
|             | IMAGE CODING & COMPRESSION: Fidelity Criteria – Encoding Process –                        |
|             | Transform Encoding – Redundancies and their removal methods – Image compression           |
| Course      | models and methods – Source coder and decoder – Error free compression – Lossy            |
| Content     | compression.                                                                              |
|             | UNIT-VI                                                                                   |
|             | COLOUR IMAGE PROCESSING: Colour Image Processing – Colour Model,                          |
|             | Pseudo colour image processing – Full colour image processing, Colour Image               |
|             | Filtering, Colour Image Segmentation                                                      |
|             |                                                                                           |
|             | TEXT BOOKS:                                                                               |
|             |                                                                                           |
|             | 1. "Digital Image Processing" – Rafael C. Gonzalez, Richard E. Woods, 3 <sup>rd</sup> Ed, |
|             | Pearson.                                                                                  |
| Text Books  | 2. "Fundamentals of Image Processing" – A. K. Jain, Prentice Hall India.                  |
| and         |                                                                                           |
| Reference   | REFERENCE BOOKS:                                                                          |
| Books       | 1. "Digital Image Processing" – William K. Pratt, John Wiley Publications                 |
|             | 2. "Digital Image Processing" – K. R. Castleman, Pearson Publications                     |
|             | 3. "Fundamentals of Electronic Image Processing" – Weeks Jr, SRIC/IEEE series,            |
|             | PHI.                                                                                      |
|             | 1 111.                                                                                    |
| E-Resources | 3. nptel.ac.in/courses/117105079/                                                         |
| 1.2 2 2.0   | 4. www.ee.columbia.edu/~xlx/courses/ee4830-sp08/notes/lect1-parta.pdf                     |
|             | 4. www.ee.columbia.edu/~xlx/courses/ee4830-sp08/notes/lect1-parta.pdf                     |

| Contribution o | Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |      |      |      |
|----------------|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                | PO1                                                                                               | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1            |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO2            |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO3            |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO4            |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO5            |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO6            |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |

# 19EC42E2 – SATELLITE COMMUNICATION

| Course category: | Program Elective              | Credits:                        | 3         |
|------------------|-------------------------------|---------------------------------|-----------|
| Course Type:     | Theory                        | Lecture - Tutorial - Practical: | 3 - 0 - 0 |
| Prerequisite:    | Antenna and Wave Propagation, | Sessional Evaluation:           | 40        |
| _                | Radar Engineering             | External Evaluation:            | 60        |
|                  |                               | Total Marks:                    | 100       |

|                   | I G . 1                                                                                                                                                                                                                                                 |                                                                                                                 |  |  |  |  |  |  |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                   |                                                                                                                                                                                                                                                         | nts undergoing this course are expected to:                                                                     |  |  |  |  |  |  |  |
|                   | 1.                                                                                                                                                                                                                                                      | Understand the origin, brief history, current state and future trends of Satellite                              |  |  |  |  |  |  |  |
|                   | Communications.                                                                                                                                                                                                                                         |                                                                                                                 |  |  |  |  |  |  |  |
|                   | 2.                                                                                                                                                                                                                                                      | Understand the principles, concepts and operation of satellite communication                                    |  |  |  |  |  |  |  |
| Course            | 3                                                                                                                                                                                                                                                       | systems.  Calculate and interpret key geometric and timing parameters for a variety of                          |  |  |  |  |  |  |  |
| <b>Objectives</b> | <i>J</i> .                                                                                                                                                                                                                                              | common satellite orbits.                                                                                        |  |  |  |  |  |  |  |
|                   | 4.                                                                                                                                                                                                                                                      | Understand different types of satellite subsystems.                                                             |  |  |  |  |  |  |  |
|                   |                                                                                                                                                                                                                                                         | Describe the concepts of signal propagation affects, link design, rain fading, link                             |  |  |  |  |  |  |  |
|                   |                                                                                                                                                                                                                                                         | availability and perform interference calculations.                                                             |  |  |  |  |  |  |  |
|                   | 6.                                                                                                                                                                                                                                                      | Understand different components of satellite Earth Stations.                                                    |  |  |  |  |  |  |  |
|                   | Upon                                                                                                                                                                                                                                                    | successful completion of the course, the students will be able to:                                              |  |  |  |  |  |  |  |
|                   | CO1                                                                                                                                                                                                                                                     | Understand history, current state and future trends of Satellite Communications.                                |  |  |  |  |  |  |  |
| Course            | CO2 Identify, formulate and solve engineering problems related to orbit satellite communication.                                                                                                                                                        |                                                                                                                 |  |  |  |  |  |  |  |
| Outcomes          | CO3 Know about working of different subsystems in the satellite.                                                                                                                                                                                        |                                                                                                                 |  |  |  |  |  |  |  |
|                   | CO4 Design satellite link budgets to account for channel losses, noise, and in satellite communications systems for specific communications required.                                                                                                   |                                                                                                                 |  |  |  |  |  |  |  |
|                   | CO5                                                                                                                                                                                                                                                     | Gain knowledge about different multiple access techniques.                                                      |  |  |  |  |  |  |  |
|                   | CO6                                                                                                                                                                                                                                                     | Acquire knowledge about of Earth Station components.                                                            |  |  |  |  |  |  |  |
|                   | UNIT-I                                                                                                                                                                                                                                                  |                                                                                                                 |  |  |  |  |  |  |  |
|                   | INTRODUCTION: The Origin of Satellite Communications, A brief history of Satellite Communications, Frequency allocations for Satellite Services, Applications, Current State of Satellite Communications and Future trends of Satellite Communications. |                                                                                                                 |  |  |  |  |  |  |  |
|                   |                                                                                                                                                                                                                                                         |                                                                                                                 |  |  |  |  |  |  |  |
| Course            | UNIT-II ORBITAL ASPECTS OF SATELLITE COMMUNICATION: Orbital Mechanics,                                                                                                                                                                                  |                                                                                                                 |  |  |  |  |  |  |  |
| Content           | Lock Angle determination, Orbital perturbations, Orbit determination, Launches and                                                                                                                                                                      |                                                                                                                 |  |  |  |  |  |  |  |
|                   | Launch Vehicles, Orbital effects in Communication Systems Performance.                                                                                                                                                                                  |                                                                                                                 |  |  |  |  |  |  |  |
|                   | UNIT-III                                                                                                                                                                                                                                                |                                                                                                                 |  |  |  |  |  |  |  |
|                   |                                                                                                                                                                                                                                                         | SATELLITE SUBSYSTEMS: Introduction, Attitude and Orbit Control System                                           |  |  |  |  |  |  |  |
|                   | (AOCS), Telemetry, Tracking, Command and Monitoring (TTC&M), Power Systems,                                                                                                                                                                             |                                                                                                                 |  |  |  |  |  |  |  |
|                   | Communication Subsystems, Satellite Antennas, Equipment reliability and Space                                                                                                                                                                           |                                                                                                                 |  |  |  |  |  |  |  |
| Qualification.    |                                                                                                                                                                                                                                                         |                                                                                                                 |  |  |  |  |  |  |  |
|                   | SATE                                                                                                                                                                                                                                                    | UNIT-IV ELLITE LINK DESIGN: Basic Transmission Theory, System Noise Temperature                                 |  |  |  |  |  |  |  |
|                   | and C                                                                                                                                                                                                                                                   | G/T ratio, Design of Down Link, Up Link design, Design of Satellite links for fied C/N, System Design examples. |  |  |  |  |  |  |  |

|                                         | UNIT-V                                                                                                                                                                                                                                                                             |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course                                  | MULTIPLE ACCESS: Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA), Frame Structure and Code Division Multiple Access (CDMA), Spread Spectrum Transmission and Reception.                                                                            |
| Content                                 | UNIT-VI                                                                                                                                                                                                                                                                            |
| Content                                 | <b>EARTH STATION:</b> Types of Earth Station, Earth Station Architecture, Earth Station                                                                                                                                                                                            |
|                                         | 7 =                                                                                                                                                                                                                                                                                |
|                                         | Design Considerations, Earth Station Testing, Earth Station Hardware and Satellite                                                                                                                                                                                                 |
|                                         | Tracking.                                                                                                                                                                                                                                                                          |
|                                         |                                                                                                                                                                                                                                                                                    |
| Text Books<br>and<br>Reference<br>Books | <ol> <li>TEXT BOOKS:</li> <li>"Satellite Communication" - Timothy Pratt, Charles Bostian and Jeremy Allnutt, WSE, Wiley Publications, 2<sup>nd</sup> Edition, 2003.</li> <li>"Satellite Communications" - Anil K.Maini and Varsha Agarwal, Wiley India Pvt. Ltd., 2011.</li> </ol> |
| DOOKS                                   | REFERENCE BOOKS:                                                                                                                                                                                                                                                                   |
|                                         | 1. "Satellite Communication"- D.C Agarwal, Khanna Publications,5 <sup>th</sup> edition                                                                                                                                                                                             |
|                                         | 2. "Satellite Communications"- Dennis Roddy, McGraw Hill, 4th Edition, 2009.                                                                                                                                                                                                       |
| E-Resources                             | 1. http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-851-satellite-engineering-fall-2003/lecture-notes/                                                                                                                                                                   |

| Contribution o | Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |      |      |      |
|----------------|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                | PO1                                                                                               | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1            |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO2            |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO3            |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO4            |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO5            |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO6            |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |

# 19EC42E3- ERROR CONTROL CODING

| Course Category: | Program Elective          | Credits:                     | 3     |
|------------------|---------------------------|------------------------------|-------|
| Course Type:     | Theory                    | Lecture -Tutorial-Practical: | 3-0-0 |
| Prerequisite:    | Knowledge of Probability, | Sessional Evaluation:        | 40    |
|                  | Matrices, Modulation.     | External Evaluation:         | 60    |
|                  |                           | Total Marks:                 | 100   |

|                      | Students undergoing this course are expected to understand:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Course<br>Objectives | Know some aspects of mutual information, channels, coding, in particular to source coding, linear block codes, cyclic codes, convolutional coding and error control in data storage systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
|                      | Upon successful completion of the course, the students will be able to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
|                      | CO1 Acquire knowledge about various information sources, Fixed Length and Variable Length Coding.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
|                      | CO2 Develop skills in obtaining the Entropy and finding the Efficiency of source codes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
| Course<br>Outcomes   | CO3 Attain skills in creating various Hamming Codes, Syndrome decoding and parity check matrices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
|                      | CO4 Acquire knowledge in Error correction using syndrome vector and C Redundancy Check (CRC).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
|                      | CO5 Apply appropriate coding methods such as Golay Codes- BCH code and Error control for computer main processor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
|                      | CO6 Develop skills for the Error control in IBM 3850 main storage system and able to compare the performance of Convolutional codes and Block codes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
| Course<br>Content    | INFORMATION AND CODING: Definition of Information- sources-types - mathematical models-information content of discrete memory less source- information content of a symbol-Entropy-Information Rate-Discrete Memory less Channels-Types of channels-Mutual information-over view of error control coding techniques-classification of codes.  UNIT – II  SOURCE CODING: Fixed Length and Variable Length Coding, properties of Prefix codes, Shannon-Fanon Coding, Huffman code, Huffman code applied for pair of Symbols, Efficiency Calculations, Lempel-Ziv Codes  UNIT – III  LINEAR BLOCK CODES: Structure of linear block code- Hamming Codes-Error detection and correction capabilities of Hamming code-Encoder of (7, 4) Hamming code-Syndrome decoding-Error correction using syndrome vector. |  |  |  |  |  |  |  |  |
|                      | UNIT – IV CYCLIC CODES: Definition- Generator polynomial for cyclic code-systematic and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |

|                                         | Non-systematic code words-Generator and parity check matrices of cyclic codes-Encoder for (n, k) cyclic code. Syndrome decoding –Cyclic Redundancy Check (CRC).                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course<br>Content                       | UNIT – V  CONVOLUTIONAL CODES: Golay Codes-Bose Chaudhri Hocquenghem (BCH) codes-Encoder for Convolutional code-Graphical representation for Convolutional encoding-Decoding methods- Viterbi algorithm-performance comparison of Convolutional codes and Block codes. Application of Viterbi and Sequential Decoding.  UNIT – VI  ERROR CONTROL IN DATA STORAGE SYSTEMS: Error control for computer main processor- Error control for magnetic tapes-syndrome computation- Error control in IBM 3850 main storage system. |
| Text Books<br>and<br>Reference<br>Books | <ol> <li>TEXT BOOKS:         <ol> <li>Communication Systems – Dr.Sanjay Sharma-S.K. Kataria &amp;sons-New Delhi.</li> <li>Shu lin and Daniel J. Costello, Jr. "Error Control Coding – Fundamentals and Applications", Prentice Hall Inc.</li> </ol> </li> <li>REFERENCE BOOKS:         <ol> <li>Digital Communications-John G.Proakis, Masoud Salehi-Mc Graw Hill-5e</li> <li>Bernard Sklar,"Digital Communications Fundamental and Application", Pearson Education, Asia.</li> </ol> </li> </ol>                          |
|                                         | <ol> <li>B.P.Lathi,Zhi Ding-Modern Digitl and Analog communication systems-4/e - Oxford university press-2016</li> <li>Simon Haykin- Communication systems-4/e,Wiley India,2011</li> </ol>                                                                                                                                                                                                                                                                                                                                 |

| Contribution of | Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |      |      |      |
|-----------------|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                 | PO1                                                                                               | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1             |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO2             |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO3             |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO4             |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO5             |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO6             |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |

### 19EC42E4-DIGITAL CONTROL SYSTEMS

| Course Cate       | egory:                                                                                                                                                               | Program Open Elective                                                                     | Credits:                              | 3             |  |  |  |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------|---------------|--|--|--|--|--|--|
| Course            | Type:                                                                                                                                                                | Theory                                                                                    | Lecture -Tutorial-Practical:          | 3-0-0         |  |  |  |  |  |  |
| Prereq            |                                                                                                                                                                      | Signals and Systems,                                                                      | Sessional Evaluation:                 | 40            |  |  |  |  |  |  |
|                   |                                                                                                                                                                      | Linear Control Systems, Digital                                                           | External Evaluation:                  | 60            |  |  |  |  |  |  |
|                   |                                                                                                                                                                      | Design                                                                                    | Total Marks:                          | 100           |  |  |  |  |  |  |
|                   | Stude                                                                                                                                                                | nts undergoing this course are expecte                                                    | d to understand:                      |               |  |  |  |  |  |  |
|                   | 1.                                                                                                                                                                   | 1. The Principles and techniques of A/D and D/A conversions and basics                    |                                       |               |  |  |  |  |  |  |
| Course            |                                                                                                                                                                      | Transform.                                                                                |                                       |               |  |  |  |  |  |  |
| <b>Objectives</b> | 2.                                                                                                                                                                   | <i>j j E</i>                                                                              |                                       |               |  |  |  |  |  |  |
| Objectives        | 3.                                                                                                                                                                   |                                                                                           |                                       |               |  |  |  |  |  |  |
|                   | 4.                                                                                                                                                                   | <b>2</b> /                                                                                |                                       |               |  |  |  |  |  |  |
|                   | 5.                                                                                                                                                                   | 5                                                                                         |                                       |               |  |  |  |  |  |  |
|                   | 6.                                                                                                                                                                   | The design of feedback controller                                                         |                                       |               |  |  |  |  |  |  |
|                   | Upon                                                                                                                                                                 | successful completion of the course,                                                      |                                       | <del>.</del>  |  |  |  |  |  |  |
|                   | CO1                                                                                                                                                                  | Obtain dynamic responses of linear                                                        |                                       |               |  |  |  |  |  |  |
|                   |                                                                                                                                                                      | root-locus and bode plots, and apply                                                      | y Nyquist criterion in the context of | of controller |  |  |  |  |  |  |
|                   |                                                                                                                                                                      | design.  Translate a set of performance species                                           | finations given in words to a formal  | l description |  |  |  |  |  |  |
|                   | CO2                                                                                                                                                                  | of a design problem, and then design                                                      | <u> </u>                              | -             |  |  |  |  |  |  |
|                   |                                                                                                                                                                      | tools, followed by simulation and ve                                                      |                                       | ising design  |  |  |  |  |  |  |
| Course            | ~~~                                                                                                                                                                  | Know the techniques for relaxing the                                                      |                                       | ontroller for |  |  |  |  |  |  |
| Outcomes          | CO3                                                                                                                                                                  | achieving closed-loop specifications                                                      |                                       |               |  |  |  |  |  |  |
|                   |                                                                                                                                                                      | domain.                                                                                   |                                       | 1             |  |  |  |  |  |  |
|                   | CO4                                                                                                                                                                  | Debug their controller design                                                             |                                       |               |  |  |  |  |  |  |
|                   | CO5                                                                                                                                                                  | Design digital controllers, assess the                                                    |                                       |               |  |  |  |  |  |  |
|                   |                                                                                                                                                                      | and decide whether their initial desig                                                    |                                       |               |  |  |  |  |  |  |
|                   | CO6                                                                                                                                                                  | Obtain dynamic responses of linear                                                        |                                       |               |  |  |  |  |  |  |
|                   |                                                                                                                                                                      | root-locus and bode plots, and applidesign.                                               | y Nyquist criterion in the context of | of controller |  |  |  |  |  |  |
|                   |                                                                                                                                                                      |                                                                                           | VIT – I                               |               |  |  |  |  |  |  |
|                   | INTR                                                                                                                                                                 | <b>RODUCTION:</b> Examples of Data con                                                    |                                       | version and   |  |  |  |  |  |  |
|                   |                                                                                                                                                                      | og to Digital conversion, sample and h                                                    |                                       |               |  |  |  |  |  |  |
|                   |                                                                                                                                                                      | ions, pulse response, Z – transforms,                                                     | <u> </u>                              |               |  |  |  |  |  |  |
|                   | transforms, Modified Z- Transforms.                                                                                                                                  |                                                                                           |                                       |               |  |  |  |  |  |  |
|                   | UNIT-II                                                                                                                                                              |                                                                                           |                                       |               |  |  |  |  |  |  |
| Course            | SIGNAL PROCESSING AND DIGITAL CONTROL: Z-Transform method for                                                                                                        |                                                                                           |                                       |               |  |  |  |  |  |  |
| Content           | differ                                                                                                                                                               | difference equations; Pulse transforms function, block diagram analysis of sampled – data |                                       |               |  |  |  |  |  |  |
|                   | systems, mapping between s-plane and z-plane.                                                                                                                        |                                                                                           |                                       |               |  |  |  |  |  |  |
|                   |                                                                                                                                                                      | III                                                                                       | TIT III                               |               |  |  |  |  |  |  |
|                   | UNIT-III  State Space Depresentation of discrete time systems. Dules Transfer Function                                                                               |                                                                                           |                                       |               |  |  |  |  |  |  |
|                   | State Space Representation of discrete time systems, Pulse Transfer Function N solving discrete time state space equations, State transition matrix and its Property |                                                                                           |                                       |               |  |  |  |  |  |  |
|                   |                                                                                                                                                                      |                                                                                           |                                       | -             |  |  |  |  |  |  |
|                   | Methods for Computation of State Transition Matrix, Discretization of continuou state – space equations.                                                             |                                                                                           |                                       |               |  |  |  |  |  |  |
|                   |                                                                                                                                                                      | ± ±                                                                                       | IT – IV                               |               |  |  |  |  |  |  |
|                   | STAT                                                                                                                                                                 | TE VARIABLE ANALYSIS: Conce                                                               |                                       | bility, Tests |  |  |  |  |  |  |
|                   |                                                                                                                                                                      | ontrollability and Observability. Dual                                                    | ÷                                     | -             |  |  |  |  |  |  |

|               | Controllability and Observability conditions for Pulse Transfer Function. Mapping       |
|---------------|-----------------------------------------------------------------------------------------|
|               | between the S-Plane and the Z-Plane – Primary strips and Complementary Strips –         |
|               | Constant frequency loci, Constant damping ratio loci, Stability Analysis of closed loop |
|               | systems in the Z-Plane. Jury stability test – Stability Analysis by use of the Bilinear |
|               | Transformation and Routh Stability criterion.                                           |
|               | UNIT – V                                                                                |
|               | <b>DESIGN OF DIGITAL CONTROLLER:</b> Transient & steady – State response Analysis       |
| Course        | – Design based on the frequency response method – Bilinear Transformation & Design      |
| Content       | procedure in the w-plane, Lead, Lag & Lead Lag compensators & digital PID controllers.  |
|               | UNIT – VI                                                                               |
|               | POLE PLACEMENT DESIGN AND STATE OBSERVERS: Design of state feedback                     |
|               | controller through pole placement – Necessary and sufficient conditions, Ackerman's     |
|               | formula. State Observers–Full order and Reduced order observers.                        |
|               |                                                                                         |
|               | TEXT BOOKS:                                                                             |
| Text Books    | 1. Discrete-Time Control systems - K. Ogata, Pearson Education/PHI, 2nd Edition.        |
| and Reference | 2. Digital Control Systems, Kuo, Oxford University Press, 2nd Edition, 2003.            |
| Books         |                                                                                         |
|               | REFERENCES BOOKS:                                                                       |
|               | 1. Digital Control and State Variable Methods by M. Gopal, TMH                          |
| E-Resources   | 1. nptel.ac.in/syllabus/108103008/                                                      |
|               | 2. http://ocw.mit.edu/courses/mechanical-engineering/2-171-analysis-and-design-of-      |
|               | digital-control-systems-fall-2006/                                                      |

| Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |     |      |      |      |
|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                                                                                                   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO2                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO3                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO4                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO5                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO6                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |

# S.No COURSE CODE COURSE OPEN ELECTIVE- III 1. 19CS42O1 JAVA PROGRAMMING 2. 19CE42O1 DISASTER MANAGEMENT AND MITIGATION 3. 19ME42O1 INTRODUCTION TO ROBOTICS 4. 19EE42O1 GREEN ENERGY SOURCES

# 19CS42O1 –JAVA PROGRAMMING

| Course Catego        | ory: Open Elec                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ive                                                        | Credits:                                                                                                                                    | 3             |  |  |  |  |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|--|--|
| Course T             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            | Lecture -Tutorial-Practical:                                                                                                                | 3-0-0         |  |  |  |  |
| Prerequi             | any pro                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e fundamental concepts of gramming and basic               | Sessional Evaluation:<br>External Evaluation:                                                                                               | 40<br>60      |  |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | capabilities                                               | Total Marks:                                                                                                                                | 100           |  |  |  |  |
| Course<br>Objectives | <ol> <li>Students undergoing this course are expected:</li> <li>To learn the fundamentals of building blocks and supporting exposure.</li> <li>To study the development of programs using procedural programmingmethodologies</li> <li>To identify various software development techniques that imposes ahierarchical structure on the design of the programs.</li> <li>To learn the principles of object-oriented programming (OOP) techniques based on</li> </ol> |                                                            |                                                                                                                                             |               |  |  |  |  |
|                      | classes a<br>5. To explo                                                                                                                                                                                                                                                                                                                                                                                                                                            | nd objects.                                                | grated DevelopmentEnvironment (                                                                                                             |               |  |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | completion of the course,                                  |                                                                                                                                             |               |  |  |  |  |
|                      | CO1 Understa                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ndthe basics of Java includi                               | ng package concepts.                                                                                                                        |               |  |  |  |  |
| Course               | CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                                                         | ting interfaces to develop simple pr                                                                                                        | C             |  |  |  |  |
| Outcomes             | improve                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ment in various applications                               |                                                                                                                                             |               |  |  |  |  |
|                      | design a                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nd development                                             | uding applet class and implement                                                                                                            | the same on   |  |  |  |  |
|                      | CO5 Examine                                                                                                                                                                                                                                                                                                                                                                                                                                                         | the role of event handling r                               | nechanisms and its applicability                                                                                                            |               |  |  |  |  |
|                      | CO6 Study vi                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                            | outtons which are used to develop                                                                                                           | p smart user  |  |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            | NIT-I                                                                                                                                       |               |  |  |  |  |
|                      | Buzzwords, A I classes, Operato                                                                                                                                                                                                                                                                                                                                                                                                                                     | First Simple Program, Data<br>rs, Control Statements, Clas | tted Programming Byte Code C<br>Types, Variables And Arrays, prim<br>sses And Methods, Inheritance.<br>ges, Access Protection, Importing Pa | itive wrapper |  |  |  |  |
|                      | UNIT-II                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |                                                                                                                                             |               |  |  |  |  |
| Course<br>Content    | INPUT/OUTPUT: The Java I/O Classes And Interface, File, Standard Streams – System. In, System. Out, System. Err - Their Purpose And Usage, The Byte Streams - Input Stream, Output Stream, File Input Stream, File Output Stream, Print Stream, The Character Streams – Reader, Writer, File Reader, File Writer, Buffered Reader, Buffered Writer, Print writer, Serialization – Use Of Object Input Stream And Object Output Stream.                              |                                                            |                                                                                                                                             |               |  |  |  |  |
|                      | UNIT-III  EXCEPTION HANDLING: Exception Handling Fundamentals, Exception Types, Using Try And Catch, Multiple Catch Clauses, Nested Try Statements, Throw, Throws, Finally Creating Own Exception Subclass.                                                                                                                                                                                                                                                         |                                                            |                                                                                                                                             |               |  |  |  |  |
|                      | Jdbc: The Java Database Conne                                                                                                                                                                                                                                                                                                                                                                                                                                       | ectivity, Jdbc                                             |                                                                                                                                             |               |  |  |  |  |

|                                      | UNIT-IV  MULTITHREADED PROGRAMMING: The Java Thread Model, Creating Thread, Creating Multiple Threads, Synchronization, Interthread Communication.  THE APPLET CLASS: Applet Fundamentals, Applet Basics, Applet Architecture, An                                                                                                                                                                                                   |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | Applet Skeleton, Simple Applet Display Methods, Requesting Repainting, Passing Parameters To Applets.  UNIT-V  EVENT HANDLING: Two Event Handling Mechanisms, The Event Delegation Modes, Event Classes (ActionEvent, AdjustmentEvent, MouseEvent, WindowEvent, KeyEvent, TextEvent) Sources Of Events, Event Listener Interface (ActionListener,                                                                                   |
|                                      | AdjustmentListener, MouseListener, ouseMotionListener, Keylisten, WindowListener, TextListener), Adapter Classes, Inner Classes.  UNIT-VI  INTRODUCTION TO AWT: Working With Windows, Controls, Layout Managers, Awt Classes, Window Fundamentals, Working With Frame Windows, Creating a Frame window From Applet, Controls, Labels, Using Buttons, Understanding Layout Managers, Menu Bars And Menus, Dialog Boxes, File Dialog; |
| Text Books<br>and Reference<br>Books | TEXT BOOKS:  1. Java 7 the Complete Reference, 7th Edition Herbert Schildt.  REFERENCE BOOKS:  1. Steven Holzner, "Java 2 Programming Black Book", DreamTech, reprint: 2005.  2. Pratik Patel &KarlMoss, "Java database programming with JDBC" DreamTech,                                                                                                                                                                           |
| E-Resources                          | New Delhi, second edition, 2000.  1. https://nptel.ac.in/courses 2. https://freevideolectures.com/university/iitm                                                                                                                                                                                                                                                                                                                   |

| Contribution o | Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |      |      |      |
|----------------|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                | PO1                                                                                               | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1            |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO2            |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO3            |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO4            |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO5            |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO6            |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |

# 19CE42O1-DISASTER MANAGEMENT AND MITIGATION

| Course cate          | gory:                                                                      | Program Open Elective                                                                                                                                                             | Credits:                                                                                                                                                                                                                                                                                                   | 3                                                                                                                          |
|----------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Course T             | Гуре:                                                                      | Theory                                                                                                                                                                            | Lecture - Tutorial - Practical:                                                                                                                                                                                                                                                                            | 3 - 0 - 0                                                                                                                  |
| Prerequ              | isite:                                                                     | Environmental science                                                                                                                                                             | Sessional Evaluation :<br>External Evaluation:<br>Total Marks:                                                                                                                                                                                                                                             | 40<br>60<br>100                                                                                                            |
|                      | Stude                                                                      | ents undergoing this course are expect                                                                                                                                            | ed to understand:                                                                                                                                                                                                                                                                                          |                                                                                                                            |
| Course<br>Objectives | 2                                                                          | . The approaches of pre-disaster, pos                                                                                                                                             | ogenous hazards and gives a suital<br>saster mitigation methods and some<br>s, cyclones.<br>pulation explosion                                                                                                                                                                                             | -                                                                                                                          |
|                      | Upor                                                                       | successful completion of the course,                                                                                                                                              | the students will be able to:                                                                                                                                                                                                                                                                              |                                                                                                                            |
|                      | CO1                                                                        | Understand Hazards and disasters as mitigation                                                                                                                                    | nd different approaches to disaster a                                                                                                                                                                                                                                                                      | nd their                                                                                                                   |
| Course               | CO2                                                                        | Explore the types of disasters, exogo                                                                                                                                             | enous disasters and their effects                                                                                                                                                                                                                                                                          |                                                                                                                            |
| Outcomes             | CO3                                                                        | Explore the Endogenous disasters as                                                                                                                                               | nd their effects                                                                                                                                                                                                                                                                                           |                                                                                                                            |
|                      | CO4                                                                        | Know the man induced disasters and                                                                                                                                                | d their effects                                                                                                                                                                                                                                                                                            |                                                                                                                            |
|                      | CO5                                                                        | Understand the Disaster management                                                                                                                                                | nt through engineering applications                                                                                                                                                                                                                                                                        |                                                                                                                            |
|                      | CO6                                                                        | Understand the disasters in national                                                                                                                                              | and international level.                                                                                                                                                                                                                                                                                   |                                                                                                                            |
| Course               | Envir<br>Envir<br>huma<br>Hum<br>TYP<br>Disas                              | IRONMENTAL HAZARDS & DIsconmental Disasters and Environmental Conmental stress & Environmental Dan Ecology - Landscape Approach - an ecology & its application in geogra          | ntal stress. Concept of Environme Disasters. Different approaches & Ecosystem Approach - Perception aphical researches.  NIT-II  LARDS & DISASTERS: Natural ers                                                                                                                                            | ntal Hazards,<br>relation with<br>on approach -<br>hazards and                                                             |
| Content              | Plane<br>Endo<br>Disas<br>erupt<br>earth<br>mitig<br>Exog<br>disas<br>& Lo | etary Hazards- Endogenous egenous Hazards - Volcanic Eruption sters - Causes and distribution of Volcanic Earthquake Hazards/ disasters quakes - Hazardous effects of earthquake. | Hazards - Exogenous  a, Earthquakes, Landslides; Volca  colcanoes - Environmental impact  a - Causes of Earthquakes - De  rthquakes - Human adjustment,  NIT -III  ent events- Cumulative atmosph  ghtning - Hailstorms Cyclones: Trop  cyclones & local storms - causes  ion)Cumulative atmospheric hazar | Hazards anic Hazards/ as of volcanic istribution of perception &  eric hazards/ pical cyclones distribution ds/ disasters; |

|                   | measures ( Human adjustment, perception & mitigation); Droughts:- Impacts of droughts-Drought control measures; Extra Planetary Hazards/ Disasters                                                                                                                                                                                                                                                                                                                                           |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | UNIT –IV  Soil Erosion- Mechanics & forms of Soil Erosion- Factors & causes of Soil Erosion- Conservation measures of Soil Erosion. Chemical hazards/ disasters - Release of toxic chemicals, nuclear explosion- Sedimentation processes. Sedimentation processes: - Global Sedimentation problems- Regional Sedimentation problems- Sedimentation & Environmental problems- Corrective measures of Erosion & Sedimentation. Biological hazards/ disasters: - Population Explosion.  UNIT –V |
|                   | Emerging approaches in Disaster Management- Three Stages  1. Pre- disaster stage (preparedness)                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | 2. Emergency Stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Course<br>Content | 3. Post Disaster stage-Rehabilitation  UNIT – VI                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Content           | Case study of - Bhuj earthquake, Gujarat 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | Indian Ocean earthquake and Tsunami, 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                   | Chernobyl disaster, Ukraine 1986                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                   | Bhopal Gas tragedy, 1984                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | Kerala Floods, 2018.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | TEXT BOOKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                   | 1. Disaster Management by Rajib Shah, Universities Press, India, 2003                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                   | <ol> <li>Disaster Science and Management by Tushar Bhattacharya, TMH Publications.</li> <li>Disaster Mitigation: Experiences And Reflections by PardeepSahni</li> </ol>                                                                                                                                                                                                                                                                                                                      |
|                   | 4. Natural Hazards & Disasters by Donald Hyndman & David Hyndman – Cengage                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | Learning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Text Books and    | REFERENCES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Reference         | 1. The Environment as Hazards by Kates, B.I & White, G.F, Oxford Publishers, New                                                                                                                                                                                                                                                                                                                                                                                                             |
| Books             | York, 1978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | 2. Disaster Management by R.B. Singh (Ed), Rawat Publication, New Delhi, 2000                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | 3. Disaster Management by H.K. Gupta (Ed), Universiters Press, India, 2003                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | 4. Space Technologyfor Disaster Mitigation in India (INCED) by R.B. Singh,, University of Tokyo,1994.                                                                                                                                                                                                                                                                                                                                                                                        |
| E-Resources       | 1.nptel.ac.in/courses/117105079/                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Contribution o | Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |      |      |      |
|----------------|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                | PO1                                                                                               | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1            |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO2            |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO3            |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO4            |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO5            |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |
| CO6            |                                                                                                   |     |     |     |     |     |     |     |     |      |      |      |

# 19ME42O1-INTRODUCTION TO ROBOTICS

| Course catego                          | ory: P                                                       | rogram Open Elective                                                                                                                                                                                                                                                                 | Credits:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                               |  |  |  |  |
|----------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|--|--|--|
| Course Ty                              | pe: T                                                        | heory                                                                                                                                                                                                                                                                                | Lecture - Tutorial - Practical:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 - 0 - 0                                                                                       |  |  |  |  |
| Prerequis                              | M<br>C                                                       | Physics, Differential Equations, Matrices and basic Geometry. Computer Simulation skills using MATLAB                                                                                                                                                                                | Sessional Evaluation:<br>External Evaluation:<br>Total Marks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40<br>60<br>100                                                                                 |  |  |  |  |
|                                        | Stude                                                        | nts undergoing this course are expe                                                                                                                                                                                                                                                  | ected to understand:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                 |  |  |  |  |
| Course<br>Objectives                   |                                                              |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |  |  |  |  |
|                                        | Upon                                                         | successful completion of the cours                                                                                                                                                                                                                                                   | se, the students will be able to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                 |  |  |  |  |
|                                        | CO1                                                          | Understand robotics in today and                                                                                                                                                                                                                                                     | future and robot configuration and s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ubsystems                                                                                       |  |  |  |  |
| Course                                 | CO2                                                          | Gain knowledge about Control sy                                                                                                                                                                                                                                                      | ystems for motion control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                 |  |  |  |  |
| Outcomes                               | CO3                                                          | Understand about sensors and ma                                                                                                                                                                                                                                                      | achine vision.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                 |  |  |  |  |
| CO4 Relate kinematics for robot motion |                                                              |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |  |  |  |  |
|                                        | CO5                                                          | Design and implement programm                                                                                                                                                                                                                                                        | ning for robot systems by using progr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ramming.                                                                                        |  |  |  |  |
|                                        | CO6                                                          | Gain knowledge about Industrial                                                                                                                                                                                                                                                      | robots applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                 |  |  |  |  |
|                                        | of free                                                      |                                                                                                                                                                                                                                                                                      | UNIT –I robot, types of joints, types of const ee/work volume. Robot. Specification eal, magnetic, pneumatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 |  |  |  |  |
| Course<br>Content                      | pneum MOT transfe electric SENS pressu MAC machi applic KINE | matic, Electric- DC, AC, Servo, sterion CONTROL SYSTEMS: for function, open loop, feed-for ic motor.  SORS: Introduction, characteristicate, torque, proximity, micro switch the VISION: Introduction to Maine vision, Image processing are eations  EMATICS OF ROBOTS: Introduction | Introduction, basic components are ward and closed-loop. Microproces UNIT-III s. Types - Position, velocity, accelerates, touch and tactile, range finders. Machine Vision, the sensing and digit and analysis- training the vision substituted analysis training the vision substituted and inverse kinematics of 21 forward and 21 fo | nd terminology essor control of ration, force and izing function in system. Robotics mechanisms |  |  |  |  |

|                   | T                                                                                                                                                                                                                                                                                                                    |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course<br>Content | UNIT-V ROBOT PROGRAMMING: Methods of robot programming- A robot program as a path in space Motion interpolation wait signal and delay commands branching ROBOT LANGUAGES: Introduction-Generation of Robot Programming Languages- robot language Structure –operating systems –Robot language elements and functions |
|                   | UNIT-VI ROBOT APPLICATIONS: manufacturing-material transfer and machine loading and unloading .Processing operations-welding-other processing operations, assembly and Inspection-robotic assembly, parts presentation methods. Inspection Automation                                                                |
| T. 4 D. 1         | <ul> <li>TEXT BOOKS:</li> <li>1. Industrial Robotics 2e by MP Groover McGraw-Hill Education (SIE)</li> <li>2. Introduction To Robotics: Analysis, Control, Applications, 2<sup>nd</sup> Edition Saeed B Niku Wiley</li> </ul>                                                                                        |
| Text Books and    | REFERENCE BOOKS:                                                                                                                                                                                                                                                                                                     |
| Reference         | 1. Introduction to Robotics by Subir Kumar Saha Tata McGraw-Hill Education.                                                                                                                                                                                                                                          |
| Books             | <ol> <li>Robotics: Fundamental Concepts And Analysis by Ashitava Ghosal oxford university press</li> <li>Craig John J, Introduction to Robotics: Mechanics and Control, 3rd Edition, Prentice-Hall, 2005</li> <li>P. Corke. Robotics, Vision and Control. Springer Verlag, 2011.</li> </ol>                          |
| E-Resources       | <ol> <li>http://nptel.ac.in/courses</li> <li>http://freevideolectures.com/university/iitm</li> </ol>                                                                                                                                                                                                                 |

| Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |     |      |      |      |
|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                                                                                                   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1                                                                                               | 3   | 3   | 2   | -   | -   | 1   | 1   | -   | -   | -    | 1    | 2    |
| CO2                                                                                               | 3   | 3   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | 2    |
| CO3                                                                                               | 3   | 3   | 3   | -   | -   | -   | -   | -   | -   | -    | -    | 2    |
| CO4                                                                                               | 3   | 3   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | 2    |
| CO5                                                                                               | 3   | 3   | 2   | -   | -   | -   | -   | _   | -   | -    | -    | 2    |
| CO6                                                                                               | 3   | 3   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | 2    |

# 19EE42O1-GREEN ENERGY SOURCES

| Course category: | Open Elective | Credits:                        | 3         |
|------------------|---------------|---------------------------------|-----------|
| Course Type:     | Theory        | Lecture - Tutorial - Practical: | 3 - 0 - 0 |
| Prerequisite:    | Nil           | Sessional Evaluation:           | 40        |
|                  |               | External Evaluation:            | 60        |
|                  |               | Total Marks:                    | 100       |

|                      | Students undergoing this course are expected to understand:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Course<br>Objectives | <ol> <li>The basic concepts of the energy scenario.</li> <li>The operation, construction and design of various components of hydro power plant.</li> <li>The working principle of PV cell and applications of solar energy.</li> <li>The concepts of wind power generation.</li> <li>The concepts of Biomass energy.</li> </ol>                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|                      | 6. The concepts of Fuel cell and Geothermal systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
|                      | Upon successful completion of the course, the students will be able to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
|                      | CO1 Understand the basic concepts of the energy scenario.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
| Course               | CO2 Gain the knowledge of operation, construction and design of various components of hydro power plant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
| Outcomes             | CO3 Understand the working principle of PV cell and applications of solar energy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
|                      | CO4 Gain the knowledge on wind power generation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
|                      | CO5 Gain the knowledge on Biomass energy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                      | CO6 Gain the knowledge on Fuel cell and Geothermal systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| Course               | UNIT-I GLOBAL AND NATIONAL ENERGY SCENARIO: Over view of conventional & renewable energy sources, need & development of renewable energy sources, types of renewable energy systems, Future of Energy use, Global and Indian Energy scenario, Renewable and Non renewable Energy sources, Energy for sustainable development, Potential of renewable energy sources, renewable electricity and key elements, Global climate change, CO2 reduction potential of renewable energy- concept of Hybrid systems.  UNIT-II                                                                                                                                                     |  |  |  |  |  |  |  |  |
| Course<br>Content    | HYDRO-ELECTRIC POWER PLANTS: Introduction, Selection of site for Hydro – electric Power plants, classification of Hydro – electric plants, Layout of Hydro Electric Power plant, working principle, Description of main components, water power equation, types of turbines - Pelton, Fransis & Kaplan turbines, Pumped storage plant, Advantages and disadvantages of hydro power plant - Hydro power plants in India.  UNIT –III  SOLAR ENERGY: Introduction, solar radiation, solar energy collectors, Flat plate collectors, concentrating collectors, solar thermal power plant, working principle of photo voltaic cell, solar energy storage, solar applications. |  |  |  |  |  |  |  |  |
|                      | UNIT –IV WIND ENERGY: Introduction, power in the wind mills, site selection considerations for installing wind mill, Construction details of the wind mill (Wind Turbine Gear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |

| System), working principle of wind mill, variation of power output with wind speed,     |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Betz criterion, Applications.                                                           |  |  |  |  |  |  |  |  |  |
| UNIT –V                                                                                 |  |  |  |  |  |  |  |  |  |
| <b>BIOMASS</b> : Biomass Energy: Fuel classification – Pyrolysis – Direct combustion    |  |  |  |  |  |  |  |  |  |
| – Different digesters and sizing.                                                       |  |  |  |  |  |  |  |  |  |
| UNIT –VI                                                                                |  |  |  |  |  |  |  |  |  |
| FUEL CELL: Classification – Efficiency – V-I characteristics.                           |  |  |  |  |  |  |  |  |  |
| <b>GEOTHERMAL</b> : Classification – Dry rock and acquifer – Energy analysis.           |  |  |  |  |  |  |  |  |  |
| OZO I I ZIZI ZI                                              |  |  |  |  |  |  |  |  |  |
| TEXT BOOKS:                                                                             |  |  |  |  |  |  |  |  |  |
| 1. "Acourse in power systems", by J.B.Guptha, S.K.Kataria&sons, Eleventh                |  |  |  |  |  |  |  |  |  |
| edition, Reprint-2014.                                                                  |  |  |  |  |  |  |  |  |  |
| · •                                                                                     |  |  |  |  |  |  |  |  |  |
| 2. "Generation of Electrical Energy"- by B.R Gupta-S.Chand Publications,6 <sup>th</sup> |  |  |  |  |  |  |  |  |  |
| Edition, Reprint-2014.                                                                  |  |  |  |  |  |  |  |  |  |
| 3. Renewable Energy Resources, John Twidell and Tony Weir, Taylor and Francis -         |  |  |  |  |  |  |  |  |  |
| second edition, 2013.                                                                   |  |  |  |  |  |  |  |  |  |
| REFERENCE BOOKS:                                                                        |  |  |  |  |  |  |  |  |  |
| 1. Renewable Energy- Edited by Godfrey Boyle-oxford University, press, 3rd              |  |  |  |  |  |  |  |  |  |
| edition, 2013.                                                                          |  |  |  |  |  |  |  |  |  |
| 2. Renewable Energy Technologies /Ramesh & Kumar /Narosa.                               |  |  |  |  |  |  |  |  |  |
| 3. Renewable energy technologies – A practical guide for beginners – Chetong            |  |  |  |  |  |  |  |  |  |
| Singh Solanki, PHI.                                                                     |  |  |  |  |  |  |  |  |  |
| 4. Non-conventional energy source –B.H. Khan- TMH-2nd edition.                          |  |  |  |  |  |  |  |  |  |
| 1. http://nptel.ac.in/courses                                                           |  |  |  |  |  |  |  |  |  |
| 2. http://iete-elan.ac.in                                                               |  |  |  |  |  |  |  |  |  |
| 3. http://freevideolectures.com/university/iitm                                         |  |  |  |  |  |  |  |  |  |
|                                                                                         |  |  |  |  |  |  |  |  |  |

| Contribution of Course Outcomes towards achievement of Program Outcomes (3-High, 2-Medium, 1-Low) |     |     |     |     |     |     |     |     |     |      |      |      |
|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                                                                                                   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO2                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO3                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO4                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO5                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |
| CO6                                                                                               |     |     |     |     |     |     |     |     |     |      |      |      |