
N.B.K.R. INSTITUTE OF SCIENCE & TECHNOLOGY

(AUTONOMOUS) COLLEGE WITH POTENTIAL FOR EXCELLENCE (CPE) Affiliated to JNTUA, Ananthapuramu Re-Accredited by NAAC with 'A' Grade B.Tech. Courses Accredited by NBA under TIER-I

SYLLABUS B.TECH. DEGREE COURSE

I & II B.TECH. CIVIL ENGINEERING

(With effect from the batch admitted in the academic year 2019-2020) & B.Tech (Lateral entry scheme)

(for the batches admitted from the academic year 2020-21)

VIDYANAGAR - 524413 SPSR Nellore-Dist., Andhra Pradesh www.nbkrist.org

VISION AND MISSION OF THE INSTITUTE

Vision

• To emerge as a comprehensive Institute that provides quality technical education and research thereby building up precious human resource for the industry and society.

Mission

- To provide a learner-centered environment that challenges individuals to actively participate in the education process.
- To empower the faculty to excel in teaching while engaging in research, creativity and public service.
- To develop effective skills enabling learners to pick up critical thinking thus crafting them to be professionally fit and ethically strong.
- To reach out industries, schools and public agencies to partner and share human and academic resources.

VISION AND MISSION OF THE CIVIL ENGINEERING DEPARTMENT

Vision

• To promote excellence in civil engineering education, enrich research and provide quality professional service to the society in all areas of civil engineering.

Mission

- To provide a learner-centered environment for students to gain comprehensive knowledge in civil engineering.
- To provide a learning experience that fosters an aptitude for research.
- To provide graduates with contemporary skills and tools required to excel in civil engineering profession or alternate fields. To produce graduates to serve within the constraints of complex needs of the society with high integrity.

PROGRAMME EDUCATIONAL OBJECTIVES OF THE DEPARTMENT

- **PEO 1** : Graduates will be proficient in the fundamental knowledge of basic science, engineering science including mathematical and computational skills appropriate for civil engineering.
- **PEO 2** : Graduates will be successful practicing engineers in civil engineering and allied fields or alternate careers using their technical knowledge, teamwork, communication skills and leadership qualities.
- **PEO 3** : Graduates will be innovative problem solvers within the realistic constraints of economic, environmental, social, political, health, safety and sustainability impacts and serve the society as responsible professionals with integrity.
- **PEO 4** : Graduates will engage in lifelong learning within the profession or through higher studies.

PROGRAMME OUTCOMES OF THE DEPARTMENT

The programme outcomes are the skills and knowledge which the graduates have at the time of graduation:

- a. An ability to apply knowledge of mathematics, science and engineering.
- b. An ability to design and conduct experiments, as well as to analyze and interpret data.
- c. An ability to design an engineering system, component or process.
- d. An ability to identify, formulate and solve engineering problems.
- e. An ability to use the techniques, skills and modern engineering tools necessary for engineering practice.
- f. Knowledge of contemporary issues.
- g. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental and societal context.
- h. An understanding of professional and ethical responsibility.
- i. An ability to function on multi-disciplinary teams.
- j. An ability to communicate effectively.
- k. To embark on a career as an entrepreneur or civil engineering project manager/ consultant thereby playing a very important role in society.
- Recognition of the need to be successful in competitive examinations, and an ability to engage in lifelong learning.

N.B.K.R. INSTITUTE OF SCIENCE &TECHNOLOGY :: VIDYANAGAR (AUTONOMOUS)

CIVIL ENGINEERING

SCHEME OF INSTRUCTION AND EVALUATION

(With effect from the batch admitted in the academic year 2019-2020) I YEAR OF FOUR YEAR B.TECH. DEGREE COURSE – I SEMESTER

											Evalua	tion				
S.NO. Course Code		Course Title	Durse Title Cont Hou Wea		s/	Credits	Sessional Test-I		Sessional Test-II		Total Sessional Marks (Max. 40)	Semester End Examination		Max.		
	THEORY	L	Т	ГР		Test-I (2 hrs.)	Assignm ent-I	Max. Marks	Test-II (2 hrs.)	Assign ment-II	Max Marks		Durati on In Hours	Max Mar ks	Total Marks	
1	19SH1101	Functional English	2	0	0	2	34	6	40	34	6	40	0.9/D at the m	3	60	100
2	19SH1103	Engineering Chemistry	2	1	0	3	34	6	40	34	6	40	0.8(Better of two sessional	3	60	100
3	19SH1104	Engineering Mathematics -I	3	1	0	4	34	6	40	34	6	40	tests)	3	60	100
4	19CS1101	Programming for Problem Solving	3	0	0	3	34	6	40	34	6	40	+ 0.2(Other)	3	60	100
5	19EE1103	Elements Of Electrical And Electronics Engineering	2	1	0	3	34	6	40	34	6	40		3	60	100
		PRACTICALS														
1	19SH11P3	Engineering Chemistry Laboratory	0	0	3	1.5	-	-	-	-	-	-		3	60	100
2	19CS11P1	Programming for Problem Solving Laboratory	0	0	3	1.5	-	-	-	-	-	-	Day-to-day Evaluation	3	60	100
3	19ME11P1	Computer Aided Engineering Drawing Laboratory-1	0	0	6	3	-	-	-	-	-	-	and a test (40 marks)	3	60	100
		TOTAL				21										

19SH1101 - FUNCTIONAL ENGLISH (Common to all Branches)

(Common to all Branches) (New Regulations w.e.f. 2019-2020) I B.TECH. - I Semester

Course Category:	Basic Sciences	Credits:	2
Course Type:	Theory	Lecture-Tutorial-Practical:	2-0-0
Pre-requisite:	Basic Level of LSRW Skills	Sessional Evaluation: External Exam Evaluation: Total Marks:	

	Studer	nts undergoing this course are expected:					
Course Objectives	 To develop basic writing skills in English. To learn writing paragraphs effectively with unity and coherence To achieve specific linguistic and communicative competence. To acquire relevant skills and use them effectively in realistic working context. To learn writing simple and analytical essays. To inculcate the habit of reading. 						
	On suc	ccessful completion of this course, the students will be able to:					
	CO1	Improve syntactical knowledge and use of phrases and clauses in sentences and encourage their appropriate use in writing.					
	CO2	Obtain effective writing skills in practicing different types of formal letters.					
Course	CO3	Attain both public speaking skills and writing skills by practicing drafting of speeches					
Outcomes	CO4	Acquire data interpretation and summarizing skills					
	CO5	Acquire effective strategies for good writing and demonstrate the same in summarizing, writing well-organized essays, record and report the useful information.					
	CO6	Focus on appropriate reading strategies for comprehension of various academic texts and authentic materials.					

	UNIT I									
	UNIT-I Writing: Paragraph Writing: Sentence Structures: use of phrases and clauses in sentences- importance of proper punctuation- The Five Parts: introducing the topic, logical order, creating coherence, unity and summarizing the main idea. Grammar: Parts of Speech: Nouns, Pronouns, Verbs, Adjectives and Adverbs; Nouns: Countable and Uncountable, Singular and Plural; Pronoun-Agreement; Subject-Verb Agreement.									
	UNIT-II									
	Writing: Letter Writing: Parts of a Letter - Formats of Letters- Types of Letters- Formal letter Writing (enquiry, complaints, seeking permission, seeking internship etc.) Grammar: Use of Articles and Zero Article, Prepositions, basic sentence structures; simple question form - wh-questions; word order in sentences UNIT-III									
	Writing: Drafting of Public Speech: Ideas / Content Generation, Structure									
	Grammar: Tenses- Active Voice & Passive Voice; Conditional Sentences									
	UNIT-IV									
Course Content	Writing: Information transfer; comprehend, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables. Grammar: Degrees of Comparison; Question Tags, Non-finite Verbs (infinitives, gerunds & participles)									
	UNIT-V									
	Writing: Essay Writing: Writing structured essays on specific topics- Introducing, analyzing and arguing an issue-creating coherence-Usage of proper punctuation- importance of conclusion Grammar: Direct and Indirect Speech, Modifiers									
	τινιτέρ χει									
	UNIT-VI Reading: Comprehension: Different Reading Strategies- Skimming-Scanning-Inferring, Predicting and Responding to Content - Guessing from context and vocabulary extension. Grammar: Common Errors: Identifying and correcting common errors in grammar and usage (articles, prepositions, tenses, parallelism, subject verb agreement, pronoun agreement etc.)									
	REFERENCE BOOKS: Bailey, Stephen. <i>Academic writing: A handbook for international students</i> . Routledge, 2014. Chase, Becky Tarver. <i>Pathways: Listening, Speaking and Critical Thinking</i> . Heinley ELT; 2nd Edition, 2018. Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational. Hewings, Martin. <i>Cambridge Academic English (B2)</i> . CUP, 2012. Murphy, Raymond. <i>English Grammar in Use</i> , 4 th ed, CUP									

19SH1103 - ENGINEERING CHEMISTRY

(New Regulations w.e.f. 2019-2020) I B.Tech. – I Semester (MECH and CIVIL)

Course (Category:	Basic science	Credits	3						
Cou	rse Type:	Theory	Lecture-Tutorial-Practical:	3-0-0						
Pre-	requisite:	Fundamental concepts of	Sessional Evaluation:	40						
		Chemistry	External Exam Evaluation:	60						
			Total Marks:	100						
		o familiarize engineering chemistry ar								
		b impart the concept of soft and hard vote train the students on the principle	_							
Course Objectives		blymers, surface chemistry, and cemer		iiiisti y,						
Objectives	P									
	On succes	ssful completion of this course student	will be able to:							
	CO1	Explain the principles of reverse osm								
	CO2	Apply Nernst equation for calculating								
Course Outcomes		CO3 Differentiate between thermoplastics and thermosetting plastics								
Outcomes	CO4 Explaincalorific values, octane number, refining of petroleum and cracking of oils									
	CO5 Explainthe setting and hardening of cement and concrete phase									
	<u> </u>		-							
	CO6	Explain the synthesis of colloids wit	n examples							
		UNIT -	_1							
	WATER TECHNOLOGY: Introduction –Hardness of water, Estimation of hardness									
	of water by EDTA Method - Boiler troubles - scale and sludge, Priming and foaming,									
	caustic embrittlement, Boiler corrosion, Industrial water treatment -Lime-soda, zeolite									
	and ion-exchange processes - desalination of brackish water, reverse osmosis (RO) and									
Course	electro dialysis.									
content										
		UNIT – II								
ELECTI		ROCHEMISTRY AND CORROS	ION: Electrodes – concepts, re	ference						
	electrodes	s (Calomel electrode and glass e	electrode) electrochemical cell,	Nernst						
	equation,	cell potential calculations, numerical	problems.							
	Primary c	cells – Zinc-air battery, Fuel cells, hydrogen-oxygen– working of the cells.								
	Secondar	condary cells – lead acid and lithium ion batteries- working of the batteries including								

cell reactions.

Corrosion: Introduction to corrosion, types of corrosion, theories of corrosion, Factors affecting the corrosion, prevention methods of corrosion- Metallic coatings(electroplating) and Cathodic protection

UNIT-III

POLYMERS: Introduction to polymers, Polymerisation and Types of polymerisation. Plastomers -Thermoplastics and Thermo-setting plastics- Preparation, properties and applications of PVC, Bakelite, Urea-Formaldehyde and Nylons.

Elastomers – Preparation, properties and applications of Buna N, Thiokol and Silicon rubber

$\mathbf{UNIT} - \mathbf{IV}$

FUEL TECHNOLOGY: Introduction – Chemical fuels, classification, characteristics of good fuel, calorific value, determination of calorific value (Bomb and Boy's gas calorimeters), numerical problems based on calorific value, Analysis of coal.

Liquid Fuels -Refining of petroleum, knocking and anti-knock agents, Octane and Cetane values.

Gaseous Fuels-Flue gas analysis by Orsat's apparatus.

$\mathbf{UNIT} - \mathbf{V}$

ADVANCED ENGINEERING MATERIALS:

Refractories- Classification, Properties, Factors affecting the refractory materials and Applications

Lubricants- Classification, Functions of lubricants, Mechanism, Properties of lubricating oils and Applications

Building materials- Portland Cement, constituents, phases and reactivity of clinker, Setting and Hardening of cement.

UNIT-VI

SURFACE CHEMISTRY AND APPLICATIONS: Introduction to surface chemistry, colloids, synthesis of colloids (any two methods with examples), Properties of colloids, stabilization of colloids, coagulation of colloids, adsorption isotherm, BET equation (no derivation) applications of colloids.

Text	 TEXT BOOKS: 1. Jain and Jain, Engineering Chemistry, 16/e, DhanpatRai, 2013. 2. Peter Atkins, Julio de Paula and James Keeler, Atkins' Physical Chemistry, 10/e, Oxford University Press, 2010.
Books &	REFERENCE BOOKS:
References	1. K N Jayaveera, G V Subba Reddy and C Rama Chandraiah, Engineering
	Chemistry 1/e McGraw Hill Education (India) Pvt Ltd, New Delhi 2016
	2. Dr. S.S. Dara and Dr S.S Umare, A Text book of Engineering Chemistry, 1 st
	Edition, Chand & Company Ltd., 2000.
	3. K SeshaMaheswaramma and MridulaChugh, Engineering Chemistry Pearson
	India Education Services Pvt. Ltd
	4. D. J. Shaw, Introduction to Colloids and Surface Chemistry, Butterworth-
	Heineman, 1992.

<u> 19SH1104 - ENGINEERING MATHEMATICS – I</u>

(New regulations with effect from 2019 -20)

(Common to All Branches)

Course Cate		Basic Sciences	Credits:	4				
Course Type	:	Theory	Lecture-Tutorial-Practical:	3-1-0				
Pre – requisi	ite:	Intermediate	Sessional Evaluation:	40				
		Mathematics	External Evaluation:	60				
	1		Total Marks:	100				
Course Objectives:	 To make the student learn about The concepts of Newton's law of cooling, Law of natural growth and decay. Solutions of higher order linear differential equations with RHS of the different types. The concepts of first shifting theorem, change of scale property, Laplace transformation of multiplied by t and division by t and transformation o derivatives and integrals. The concepts of Inverse Laplace transform and their applications. The solution of system of linear equations by matrices. Taylor's and Maclaurin's series, Maxima and Minima of the functions of two and three variables. 							
Course Outcomes:	CO1 CO2	applications.	ving first order differential equat					
0	CO3	Acquire basic knowledg	e in Laplace transforms and their app	lications.				
	CO4	Develop analytical skill using the Laplace transfe	s in solving the ordinary differential orm technique.	equations by				
	CO5	Develop the use of mat for practical applications	rix algebra techniques that is needed s.	by engineers				
	CO6	•	ng the Taylor's and Maclaurin's serie ions of two and three variables.	s and maxima				
	degree	-	UNIT - I ions : Differential equations of first o oulli – Applications to Newton's law					

Course									
Content:	UNIT - II								
	Higher Order Differential Equations: Homogeneous linear differential equations								
	of second and higher order with constant coefficients with R.H.S. of the type e^{ax} ,								
	$\sin ax \operatorname{or} \cos ax, x^n, e^{ax} \operatorname{V} \operatorname{and} x^n v(x).$								
	UNIT - III								
	Laplace Transformation: Laplace transformations of standard functions – Region of convergence – First shifting theorem – Change of scale property – Laplace transformation of multiple by t and division by $t - T$ ransformation of derivatives and integrals.								
	UNIT - IV								
	 Inverse Laplace Transformation: Inverse Laplace transform – Method of partifications – Shifting property – Inverse Laplace transform of multiple by s and division by s – Inverse Laplace transform of derivatives and integrals Convolution theorem – Application to solutions of ordinary differential equations. UNIT - V 								
	Matrices: Rank of Matrix by Echelon form – System of homogenous and non homogenous linear equations – Cayley Hamilton theorem (without proof)-Eige values and Eigen vectors and their properties. UNIT - VI								
	Differential Calculus: Taylor's and Maclaurin's series of single variable – Maxima and minima of function of two variables – Lagrangian method of multipliers with three variables only.								
	1. Higher Engineering Mathematics – B.S.Grewal, Khanna Publishers, New Delhi.								
Textbooks:	 Engineering Mathematics – B.V. Ramana, Tata McGraw-Hill Education Pvt. Ltd, New Delhi. 								
	1. Higher Engineering Mathematics – H.K. Dass, Er. Rajnish Verma, S.Chand Publication, New Delhi.								
References:	2. Advanced Engineering Mathematics – N.P. Bali & M. Goyal, Lakshmi Publishers, New Delhi.								
	3. Advanced Engineering Mathematics – Erwin Kreyszig, Wiley, India								

<u>19CS1101 - PROGRAMMING FOR PROBLEM SOLVING</u> (Common to all branches)

Course Category:	Program Core			Credits:	3
Course Type:	Theory			Lecture – Tutorial – Practical:	3-0-0
Prerequisite:	Knowledge fundamentals mathematics	on and	computer basic	Sessional Evaluation: Univ. Exam Evaluation: Total Marks:	40 60 100

Course Objectives	 To learn the basic building blocks of C language. Usage of C constructs (arrays, structures, pointers and file management) to develop various programs To create better awareness how effectively utilize the concepts of C for application development
ι	Upon the successful completion of the course, the students will be able to:
	CO1 Learn the fundamentals of programming development, structure of C and basic data types
Course	CO2 Find the usage of operators in expression evaluation and construction of I/O Statements.
0 4000 1100	CO3 Acquire knowledge on various control structures to develop simple programs
	CO4 Explore the concept of arrays, strings and its effective utilization
	CO5 Understand the concepts of Pointers and Functions for exploring the dynamic memory usage
•	CO6 Explore the basics of Structures, Unions, File operations and supporting implementations
	<u>UNIT – I</u> INTRODUCTION: Algorithms, Flow charts, Program development steps. FUNDAMENTALS OF C: History, Structure of a C program, Programming rules and execution.Character set, Delimiters, C keywords, Identifiers, Constants, Variables, Rules for defining Variables, Data types, Declaration and Initialization of Variables.
Content 1 1 1	UNIT – II OPERATORS AND EXPRESSIONS: Introduction, Operator Precedence and Associativity, Operator Types INPUT AND OUTPUT IN C: Formatted and Unformatted functions, Commonly used library functions. <u>UNIT – III</u> DECISION STATEMENTS: Introduction, Types of If statements, switch statement, break, continue, goto. ITERATIVE STATEMENTS: while, do-while and for loops.

	<u>UNIT – IV</u> ARRAYS: Definitions, Initialization, Characteristics of an array, Array Categories. STRINGS: Declaration and Initialization of strings, String handling functions. STORAGE CLASSES: Automatic, External, Static and Register Variables.							
	<u>UNIT – V</u> POINTERS: Fundamentals, Declaration and initialization of Pointers, Arithmetic Operations, Pointers and Arrays. FUNCTIONS: Definition, Function Prototypes, Types of functions, Call by Value and Call by Reference, Recursion.							
	<u>UNIT – VI</u> STRUCTURES: Definition, Declaration and Initialization of Structures. UNIONS: Definition, Declaration and Initialization of Union. FILES: Introduction, File Types, Basic operations on Files, File I/O, Command Line Arguments.							
Text Books and References	 TEXT BOOK(S): Programming with ANSI & TURBO C by Ashok N.Kamthane, Pearson Education 2007 REFERENCE BOOKS: A Book on C by Al Kelley/Ira Pohl, Fourth Edition, Addison-Wesley.1999 Let Us C by<u>YashavantKanetkar</u>, BPB Publications. Programming in ANSI C by Balaguruswamy 6th Edition, Tata McGraw Hill Education, 2012. 							
E-Resources	 <u>https://nptel.ac.in/courses</u> <u>https://freevideolectures.com/university/iitm</u> 							

<u>19EE1103-ELEMENTS OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (Civil Engineering)

Course Category	Professional core	Credits	3
Course Type	Theory	Lecture - Tutorial-Practical	2-1-0
	1. Basics of Mathematics	Sessional Evaluation	40
Pre-requisite	2. Basics of Electricity	External Exam Evaluation	60
		Total Marks	100

	To make the student learn about						
	1. The basic concepts of DC circuits.						
Course	2. The basic concepts of AC circuits						
Objectives	3. The operations of AC Generator and Induction motor.						
Objectives	4. Construction and working principle of the transformers.						
	5. The fundamentals of electrical safety and wiring.						
	6. The transducers and electric welding						
	After completing the course the student will be able to						
	CO1 Comprehend the fundamental concepts of DC circuits.						
	CO2 Understand the fundamental concepts of AC circuits.						
Course Outcomes	CO3 Know the operations of AC Generator and Induction motor.						
Outcomes	CO4 Acquire the knowledge about the transformers.						
	CO5 Understand the fundamentals of electrical safety and wiring system.						
	CO6 Understand about different transducers and methods of welding.						
	UNIT-I						
	Fundamentals of DC Circuits: Introduction to DC circuits, Active and passive						
	elements, Voltage - Current relations for resistor, Inductor and Capacitor,						
	Kirchhoff's laws-simple problems.						
	UNIT-II						
	Fundamentals of AC Circuits: Generation of sinusoidal voltage, Average and PMS values Form Factor and peak factors for sinusoidal waveforms. Analysis of						
	RMS values, Form Factor and peak factors for sinusoidal waveforms, Analysis of						
Course	R, L, C circuits with sinusoidal source, j notation, Concept of Impedance,						
Content	introduction to three phase system and Comparison between three phase and single						
	phase system.						
	UNIT-III						
	AC Generator: Working principle, Construction and applications of alternators						
	Induction motor: Classification of Induction motors, Working principle,						
	Construction and applications of capacitor start and capacitor start & run motors						
	(descriptive only)						

	UNIT-IV Single Phase Transformers: Principle and operation of a transformer, Construction, EMF equation,Losses and efficiency of transformer, Three phase transformer connections (descriptive only)
	UNIT-V Electrical Safety and Wiring: Importance of electrical safety, Introduction to Personal protective equipment (PPE), Types of wiring, Wiring accessories, Staircase and fluorescent lamp connections, Earthing, Pipe and plate earthing, Types of conductors used in wiring.
	UNIT-VI Transducers: Resistance temperature detector (RTD), Thermocouple, Strain gauge, Piezo electric transducer. Electric welding: Introduction, resistance welding and arc welding techniques
Textbooks & Reference Books	 TEXT BOOKS: 1. "Basic Electrical Engineering", by Dash.S.S, Subramani.C and Vijayakumar.K First edition, Vijay Nicole Imprints Pvt.Ltd, 2013. 2. "Basic Electrical and Electronics Engineering", by R.Muthusubramanian and S.Salivahanan, First Edition ,Tata McGraw Hill. 3. "Basic Electrical Engineering", by Metha.V.K, Rohit Metha, Fifth edition, Chand. S & Co, 2016. REFERENCE BOOKS: 1. "Basic Electrical Engineering", by Kothari .D.P and Nagrath.I.J, Second edition, Tata McGraw - Hill, 2009. 2. "Basic Electrical and Electronics Engineering", by Bhattacharya.S.K, First Edition, Pearson Education, Reprint 2015. 3. "A Text book on Power System Engineering", by A. Chakrabarti, M.L. Soni, P.V.Gupta, U.S. Bhatnagar and Dr. A Chakrabarti, DhanpathRai & Company Pvt Ltd, 2009.
E-Resources	 http://nptel.ac.in/courses. http://iete-elan.ac.in. http://freevideolectures.com/university/iitm.

<u>19SH11P3 - ENGINEERING CHEMISTRY LABORATORY</u> (New Regulations w.e.f. 2019-2020) I B.Tech. – I Semester (MECH and CIVIL)

Course Category:	Basic science	Credits:	1.5
Course Type:	Practical	Lecture-Tutorial-Practical:	0-0-3
Pre- requisite:	Fundamental concepts of Chemistry	Sessional Evaluation: External Exam Evaluation: Total Marks:	

	The m	nain objective is to provide students to learn about experimental techniques in									
Course	chemi	stry with knowledge in theoretical aspects so that they can excel in that									
Objectives	particular field.										
	CO1 Determine the cell constant and conductance of solutions										
Course											
Outcomes	CO2	prepare advanced polymer materials									
	Minin	num of 8 experiments to be completed out of the following:									
		LIST OF EXPERIMENTS									
	1.	Determination of total hardness of water by EDTA method									
	2.	Determination of total alkalinity of water									
Course	3.	Estimation of chlorides using potassium chromate indicator									
Content	4. Determination of cell constant and conductance of solutions										
	5.	Conductometric titration of strong acid Vs strong base									
	6.	Conductometric titration of weak acid Vs strong base									
	7.	Determination of pH of unknown solution									
	8.	Potentiometry - determination of redox potentials and emfs									
	9.	Determination of Strength of an acid in Pb-Acid battery									
	10	. Preparation of a polymer									
	11	. Determination of viscosity of oils with Redwood viscometer									
	12	. Adsorption of acetic acid by charcoal									
		TBOOKS:									
	1.	Vogel's text books of quantitative chemical analysis, Mendham et all, person									
Text Books		publications.									
		Chemistry lab manual – KN Jayaveera, Subbareddy & Chandrasekher.									
	3.	Instrumental methods of chemical analysis – Chatwal & Anand Himalaya									
		publications.									

<u>19CS11P1 - PROGRAMMING FOR PROBLEM SOLVING LABORATORY</u> (Common to all Branches)

Course Category:	Program Core	Credits:	1.5
Course Type:	Practical	Lecture-Tutorial-Practical:	0-0-3
	Basic mathematical knowledge to	Sessional Evaluation:	40
Pre-requisite:	solve problems and computer	External Exam Evaluation:	60
	fundamentals	Total Marks:	100

Course Objective(s)	To learn the C programming constructs and its implementation.							
Course	Upon successful completion of the course, the students will be able to Solve problems							
Outcome(s)	using C programming concepts							
	Minimum of 8 experiments to be completed out of the following:							
	LIST OF EXPERIMENTS							
	 To evaluate expressions. To implement if constructs. 							
Course	3. To implement Switch statement.							
Content	4. To implement all iterative statements.							
Content	5. To implement Arrays.							
	6. To implement operations on Strings without using Library functions.							
	7. To implement arithmetic operations using pointers.							
	8. Implement both recursive and non-recursive functions.							
	9. To implement parameter passing techniques.							
	10. To implement Structures.							
	11. To implement basic File operations.							
	TEXT BOOK(S):							
Text Books	1. Programming with ANSI & TURBO C by Ashok N.Kamthane, Pearson Education 2007							
	REFERENCE BOOKS:							
	1. A Book on C by Al Kelley/Ira Pohl, Fourth Edition, Addison-Wesley.1999							
	2. Let Us C by Yashavant Kanetkar, BPB Publications.							
	3. Programming in ANSI C by Balaguruswamy6th Edition, Tata McGraw Hill							
	Education,2012.							
E-	https://nptel.ac.in/courses							
Resources								

19ME11P1-COMPUTER AIDED ENGINEERING DRAWING LABORATORY-1

(Common to ME and Civil)

I B.Tech I Semester

(With effect from 2019-20)

Course Category	Engineering Science	Credits	3
Course type	Practical	Lecture- Tutorial-Practical	0-0-6
Prerequisite	Geometrical Construction	Sessional Evaluation:	40
_		External Exam Evaluation:	60
		Total Marks:	100
		External Exam Duration:	3 hrs.

Course	Marks	Exan	nination and Evaluation	Scheme of examination
		Seme	ster end Examination	60 marks are allotted for the drawing
	60	for 3	hours duration in the	examination during semester end.
		CAD	Laboratory	
			Day-to-Day evaluation	Marks are evaluated based on average
		20	during the practice.	performance of student in day-to-day
Computer			during the practice.	exercises and finalized for 20 marks
Aided				Two drawing examinations are
Engineering				conducted for 20 marks. 80% of better
Drawing	40			one and 20% of the other are added and
		20	Description	finalized for 20 marks. Drawing
		20	Drawing examination	examination-I: Shall be conducted just before I mid-term examinations.
				Drawing examination-II: Shall be
				conducted just before II mid-term
				examinations.
	Students ar	e made t	o understand / learn	examinations.
	To er	hable th	e students with various con	ncepts like dimensioning, construction of
Course	conic	section	ns, polygons, cycloids and	involutes.
Objectives		-		anding of AutoCAD fundamentals.
			e knowledge of AutoCAD) for the projections of points, lines and
	solids			
			out sections and developme	
-		_	the visualization skills with	
			course, the student will be	
				nethods of engineering drawings
Course		Sketch and soli	-	ems on projection of points, lines, planes
Outcomes			strate orthographic and Iso	metric principles
				edge of engineering drawing in modern
		CAD to		edge of engineering drawing in modeli
			015.	

Course Content	 INTRODUCTION TO CAD SOFTWARE: Introduction: Importance of Computer Aided Drawing, software tool environment, drawing size and scale, main menu, tool bar and menus, co-ordinate system, drafting settings. Creation and Editing: Points, Lines, Poly lines, Polygons, Splines, circle, ellipse, text, move, copy, off-set, pan, mirror, rotate, trim, extend, break, chamfer, fillet, curves, block, layers, line representations, dimensioning and hatching. GEOMETRICAL CONSTRUCTIONS, AND CONIC SECTIONS: Importance of Drawing, Drawing Instruments, Sheet layout, BIS Conventions, Types of lines, Lettering, and dimensioning methods. Geometrical Constructions: Regular Polygons. Conic Sections: Introduction, Construction of Ellipse, Parabola and Hyperbola using Eccentricity method and Rectangular/ Oblong methods, Rectangular hyperbola. SPECIAL CURVES: Construction of Cycloidal curves – Cycloid, Epi-cycloid and Hypo- cycloid. Involutes – Involutes of circle and polygons. PROJECTIONS OF POINTS AND LINES: 						
	 PROJECTIONS OF POINTS AND LINES: Projections of Points: Principles of projections, Planes of projection, Points in four quadrants. Projections of Lines: Line inclined to both the principal planes (first angle projection only). 						
	PROJECTIONS OF PLANES: Projections of Planes: Plane (triangle, square, rectangle, pentagon, hexagon and circular) inclined to both the principal planes.						
	PROJECTIONS OF SOLIDS: Projections of Solids: Solids such as Prisms, Pyramids, Cylinders and Cones inclined to one plane.						
Textbooks	 Engineering Drawing, N.D. Bhat / Charotar Publishing House, Gujarat, 53rd edition, 2014. AutoCAD 2013 For Engineers and Designers, Sham Tickoo, Dream tech Press, 2013. 						
Reference books	 Fress, 2013. Engineering Drawing And Graphics + Autocad, Venugopal K, New Age International Pvt. Ltd.New Delhi, 2007. Engineering Graphics with Auto CAD, D.M. Kulkarni, A.P. Rastogi and A.K. Sarkar, PHI Learning Private Limited, Revised Edition, August 2010. Engineering Drawing and Graphics Using Autocad, T Jeyapoovan, Vikas Publishing House, 3rd Edition, 2010. A Textbook on Engineering Drawing, P. Kannaiah, K. L. Narayana, K. Venkata Reddy, Radiant Publishing House, 2012. 						

N.B.K.R. INSTITUTE OF SCIENCE & TECHNOLOGY :: VIDYANAGAR

(AUTONOMOUS)

CIVIL ENGINEERING

SCHEME OF INSTRUCTION AND EVALUATION

(With effect from the batch admitted in the academic year 2019-2020)

I YEAR OF FOUR YEAR B.TECH. DEGREE COURSE – II SEMESTER

							Evaluation									
S.NO. Course	S.NO. Course Code	Course Title	H	onta Iour: Weel	s/	Credits		Sessional Test-I			Sessional Test-II		Total Sessional Marks (Max. 40)	Seme En Examir	d	Max. Total
		THEORY	L	Т	Р		Test-I (2 hrs.)	Assignm ent-I	Max. Marks	Test-II (2 hrs.)	Assign ment-II	Max Marks		Durati on In Hours	Max Mar ks	Marks
1	19SH1201	Professional English	2	0	0	2	34	6	40	34	6	40	0.8(Better	3	60	100
2	19SH1202	Engineering Physics	2	1	0	3	34	6	40	34	6	40	of two sessional	3	60	100
3	19SH1204	Engineering Mathematics –II	3	1	0	4	34	6	40	34	6	40	tests) + 0.2(Other)	3	60	100
4	19CE1201	Engineering Mechanics	2	1	0	3	34	6	40	34	6	40	0.2(Outer)	3	60	100
5	19CE1202	Building Materials &Construction	3	0	0	3	34	6	40	34	6	40		3	60	100
		PRACTICALS			<u> </u>		•				•					•
1	19SH12P1	English Language Laboratory	0	0	2	1	-	-	-	-	-	-		3	60	100
2	19SH12P2	Engineering Physics Laboratory	0	0	3	1.5	-	-	-	-	-	-	Day-to-day	3	60	100
3	19ME12P2	Computer Aided Engineering Drawing Laboratory-II	0	0	3	1.5	-	-	-	-	-	-	Evaluation and a test (40 marks)	3	60	100
4	19ME12P3	Engineering Workshop	0	0	2	1	-	-	-	-	-	-		3	60	100
		TOTAL				20										

19SH1201 - PROFESSIONAL ENGLISH (Common to all Branches) (New Regulations w.e.f. 2019-2020) I B.TECH- II Semester

Course Category:	Basic Sciences	Credits:	2
Course Type:	Theory	Lecture-Tutorial-Practical:	2-0-0
Pre-requisite:	Basic Level of LSRW skills	Sessional Evaluation: External Exam Evaluation: Total Marks:	60

Course Objectives	Students undergoing this course are expected :										
		1. To develop their basic professional writing skills in English									
	2.	2. To achieve specific linguistic and verbal competence									
	3.	To acquire relevant skills and function efficiently in a realistic professional working environment									
	4.	To inculcate the habit of reading & writing									
	5.	To learn writing analytical essays.									
	6.	To acquire verbal proficiency.									
Course Outcomes	On suc	On successful completion of this course, the students will be able to:									
	CO1	Write effective descriptions on scientific/technical topics									
	CO2	Draft effective business e-mails.									
	CO3	Present perspective of an issue and analyze an argument.									
	CO4	Write proposals and project reports for professional contexts									
	CO5	Practice different techniques of note making and note taking.									
	CO6	Write effective book reviews on technical & non-technical books. Equip themselves with verbal proficiency.									

	<u>UNIT –I</u>
	WRITING: Descriptions: Descriptions on scientific/ technical in nature-writing introduction - defining – classifying - describing technical features –the structure of an automobile/gadget/product or the process - instruction or installation manuals.
	VERBAL: Verbal reasoning- Analogies, Homophones & Homonyms
	<u>UNIT-II</u>
	WRITING: E-mail Communication- Etiquette – Format- Writing Effective Business Email VERBAL: Idioms and Phrases, One-word substitutes
	<u>UNIT-III</u>
	ANALYTICAL WRITING: Presenting perspective of an issue- Compare & Contrast, Cause and Effect, Analyze an argument VERBAL: Affixes-prefix and suffix, root words, derivatives
Course	<u>UNIT-IV</u>
Content	TECHNICAL WRITING: Writing Proposals: Significance, Structure, Style and Writing of Project Reports. VERBAL: Synonyms and Antonyms
	<u>UNIT-V</u>
	WRITING: Introduction to different kinds of materials: Technical & Non-technical- Note Taking and Note Making- Identification of important points and precise the content VERBAL : Words often confused
	<u>UNIT-VI</u>
	BOOK REVIEWS : Review of a Technical and Non-Technical - A brief written analysis including summary and appreciation VERBAL: Sentence Completion
	REFERENCES: 1. A Textbook of English for Engineers and Technologists (combined edVol. 1&2) Orient Black Swan 2010. 2. Word Power Made Easy by Norman Lewis 3. A Communicative Grammar of English by Geoffrey Leech 4. Effective Technical Communication, M. Ashraf Rizvi, Tata McGraw- Hill, 2011.

19SH1202 - ENGINEERING PHYSICS

I B.Tech. II – Semester

(Common to CIVIL&MECHANICAL Branches)

(New regulation w.e.f. 2019 – 2020)

Course Category:	Basic Science	Credits:	3
Course Type:	Theory	Lecture-Tutorial-Practical:	3-0-0
Pre-requisite:	Fundamental concepts of Physics	Sessional Evaluation:	40
		External Exam Evaluation:	60
		Total Marks:	100

	CO6	Basic ideas about optical fibers and nanomaterials with their uses in various fields of Science & Technology.	
	CO5	Understand & analyse different kinds of oscillatory motions.	
	CO4	Understand the concept of polarization magnetization and also applications of dielectric magnetic materials in various disciplines.	
Course Outcomes	CO3	To know the concepts of electron theory of solids and properties of semiconductor materials by projecting the view of energy bands.	
	CO2	Able to understand the basic concepts of quantum physics applicable to solids.	
	CO1	Understand the phenomena of wave optics, principles of lasers and its applications.	
	Upon	successful completion of the course, the student will be able to:	
Course Objectives	 Students undergoing this course are expected to To acquire knowledge of interference, diffraction and principles of laser applied in Engineering Field. Apply principles of Quantum Mechanics to various atomic phenomena. Explain and provide the knowledge about semiconductors and their use in electronic devices. To gain knowledge about dielectrics & magnetic materials focusing on their applications. Analyze various harmonic motions and understand concept of resonance. To understand importance and role of optical fibers and nanomaterials in Civil & Mechanical engineering 		

Course	UNIT-I
Content	Wave optics and Lasers
	Wave Optics : Introduction (Interference of light) – Superposition of waves
	interference by division of wave front (Young's double slit experiment) & by division of
	amplitude (Newton rings) - Fraunhoffer diffraction due to single slit, double slit
	Diffraction grating and its resolving power,
	Lasers :Spontaneous& simulated emission - Population inversion - Types of Lasers
	Solid state lasers (Ruby), Gas lasers (He-Ne) - Properties of laser beam
	monochromacity, coherence, directionality & brightness - Applications of lasers i
	science, engineering & medicine.
	<u>UNIT-II</u>
	Principles of Quantum mechanics: Black body radiation – Laws of explaining the
	energy distribution- Planks quantum theory of black body radiation – Stefan-Boltzman
	Wein's displacement & Rayleigh Jean's law - Photon & its properties.
	Wave and particle duality – de Broglie hypothesis – Properties of matter waves – d
	Broglie wave length – Heisenberg uncertainty principle – Schrodinger time independent
	wave equation – Physical significance of wave function - Particle in a one dimensional
	potential box.
	<u>UNIT-III</u>
	Electron theory and Semiconductors
	Electron theory: Free electron theory (classical &quantum : postulates, success
	drawbacks) - Fermi–Dirac distribution function & its temperaturedependence – Kronig
	Penny model (non mathematical treatment) – Concept of band – Classification of solid
	into conductors , semiconductors & insulators.
	Semiconductors: Intrinsic & extrinsic semiconductors (qualitative) – Fermi level i
	extrinsic semiconductors – Conductivity in semiconductors :Drift & diffusion – Einstei
	relation – Hall effect & its applications.
	<u>UNIT-IV</u> Dielectric and Magnetic properties
	Dielectric Properties: Basic definitions – Electronic, ionic (quantitative)& orientation
	(qualitative) polarizations – Internal field in solid dielectrics – Clausius- Mossot
	relation.
	Magnetic Materials: Introduction – Basic definitions – Origin of magnetic moment
	Classification in to dia, para, ferro, anti ferro&ferri magnetic materials – Hysteresis
	Soft & hard magnetic materials - Applications of magnetic materials.
	TINTE X
	<u>UNIT-V</u> Waves & Oscillations: Review of simple harmonic motion - Free vibrations
	Torsional pendulum – Damped harmonic motion: over damped, critically damped an
	lightly damped oscillations.
	Forced oscillations & resonance - Sharpness of resonance and Q-factor – Electrica
	analogy for an oscillator.

	UNIT VI Optical fibers and Physics of Nanomaterials Optical fibers: Introduction – Construction and working principle of optical fiber – Acceptance angle –Numerical Aperture – Types of optical fibers – Block diagram of optical fiber communication system – Applications of optical fibers. Physics of Nanomaterials: Introduction – Significance of nanoscale – Types of nanomaterials – Properties of nanomaterials: physical, mechanical, magnetic and optical – Synthesis of nanomaterials: top-down-Ball milling, bottom up – Chemical vapour deposition – Applications of nanomaterials.
Textbooks & Reference Books	 TEXTBOOKS: 1.Engineering Physics by Gaur and Gupta, Dhanpatrai Publications 2. Engineering Physics by Palanisamy, Scitech. 3. Engineering Physics by K.Thyagarajan, McGraw Hill. REFERENCE BOOKS: 1. Engineering Physics by Maninaidu, Pearson. 2. Unified Physics Vol. 1 (Mechanics and Waves & Oscillations), Jai Prakashnath& co., Meerut.

19SH1204 - ENGINEERING MATHEMATICS - II

I.B.TECH. II-SEMESTER

(New regulations with effect from 2019-20)

(Common to All Branches)

Course Category:		Basic Sciences	Credits:	4	
Course Type:		Theory	Lecture-Tutorial-Practical:	3-1-0	
Pre – requisite:		Intermediate Mathematics	Sessional Evaluation: External Evaluation: Total Marks:	40 60 100	
	To make	the student learn about			
Course	 The concepts of double integrals and its applications. The basic concepts of triple integrals and its applications, Beta and Gamma functions. 				
Objectives:			operators, Solenoidal and Irrotationa	al vectors.	
	4. The basic concepts of vector integration and their applications.5. To express a function in Fourier series in an interval.				
	6. The concepts of Fourier transform. After completing the course the student will be able to				
	CO1 Apply double integration techniques in evaluating areas bounded by region.				
	CO2	CO2 Understand effectively in analyzing the Triple integrals, Beta and Gamm functions			
	CO3	CO3 Interpret the physical meaning of different operators such as Gradie Divergence and Curl.			
Course Outcomes:	CO4	Apply Green's, Stokes and Divergence theorems in evaluation of double and triple integrals.			
	CO5	Develop analytical skills in solving the problems involving Fourier Series		urier Series.	
	CO6 Understand effectively Fourier Sine and Cosine integral, Fourier Cosine transforms.		rier Sine and		
			UNIT - I		
	Double I	ntegrals: Double integrals –	Change of order of integration – Cha	ange to polar	
	coordinat	es – Area by double integration	on.		

	UNIT - II
	Tripple Integrals and Special functions: Evaluation of triple integrals – Volume by
	triple integral - Beta and Gamma functions and their properties - Relation between
	Beta and Gamma functions.
	UNIT - III
	Vector Differentiation: Scalar and vector point functions – Vector differential
	operator – Gradient, Divergence and Curl – Solenoidal and Irrotational vectors.
Course	UNIT - IV
Content:	Vector Integration: Line integral-circulation-workdone – Surface integrals -flux –
	Volume integral - Vector integral theorems - Green's theorem, Stoke's theorem and
	Gauss-divergence theorem (without proof).
	UNIT-V
	Fourier Series: Determination of Fourier coefficients (without proof) – Fourier series
	- Even and odd functions - Change of intervals.
	UNIT-VI
	Fourier Transforms: Fourier Integral Theorem (Without proof) – Fourier Sine and
	Cosine integrals — Fourier Transforms – Fourier Sine and Cosine transforms.
Textbooks:	1. Higher Engineering Mathematics - B.S.Grewal, Khanna Publishers, New Delhi.
	2. Engineering Mathematics - B.V. Ramana, Tata McGraw-Hill Education Pvt. Ltd,
	New Delhi.
Reference:	1. Higher Engineering Mathematics - H.K. Dass, Er. Rajnish Verma, S.Chand
	Publication, New Delhi.
	2. Advanced Engineering Mathematics - N.P. Bali & M. Goyal, Lakshmi Publishers,
	New Delhi.
	3. Advanced Engineering Mathematics - Erwin Kreyszig, Wiley, India

19CE1201 - ENGINEERING MECHANICS

(Civil Engineering) (New Regulations w. e. f. 2019-2020) I B.TECH – II Semester

Course category:	Engineering Science course	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	2-1-0
Prerequisite:	Engineering Physics, Engineering Mathematics	Sessional Evaluation : End Exam. Evaluation: Total Marks:	40 60 100

Course	1.	To analyse the system of forces acting in a plane in different conditions.	
Objectives	2.	To calculate unknown force components under the action of frictional forces.	
	3.	To explain the properties of surfaces by calculating centroid, moment of inertia	
		and other related concepts.	
		To evaluate motion characteristics of body subjected to given force.	
	5.	To analyse the system of forces using D Alembert principle and Work-Energy	
		equations.	
	6.	To analyze the components of forces in trusses and learn about mechanical vibrations	
Course Outcomes	CO1	Determine the components of forces in rectangular and non-rectangular coordinates.	
	CO2	Determine the support reactions on structures and analyze systems that include frictional forces.	
	CO3	Locate the centroid of an area, calculate the second moment and principal second moment of an area	
	CO4	Calculate the motion characteristics of a body subjected to a given force system	
	CO5	Determine the resultant forces using moment of momentum principle, D Alembert principle and Work-Energy equations.	
	CO6	Determine resultant forces in trusses and frequency and amplitude for a given system.	
	UNIT-I		
	STAT	ICS: Introduction – Units and Dimensions – Law of mechanics – Vectors –	
		rial representation of forces and moments –Vector operations – Coplanar and rrent forces –Resolution and composition of forces – Equilibrium of a particle –	
		alent systems of forces –Principle of transmissibility – Single equivalent force and	
	-		
	Free body diagram – Types of supports and their reactions –Equilibrium of rigid bodies in two dimensions.		
	two u	UNIT – II	
		$\mathbf{U}\mathbf{N}\mathbf{I}\mathbf{I}=\mathbf{I}\mathbf{I}$	
	FRIC	TION : Types of friction – Laws of friction – Limiting friction – Cone of limiting	
		n - Static and dynamic frictions – Motion of bodies – Wedge, Screw jack and	
	differe	ential jack.	

Course Content	UNIT – III CENTROID AND CENTRE OF GRAVITY: Centroids of simple figures – Centroids of composite figures - Centre of gravity of bodies – Area moment of inertia - Parallel axis theorems and perpendicular axis theorems – Moment of inertia of composite figures. MASS MOMENT OF INERTIA: Moment of inertia of simple solids – Moment of inertia of composite masses (Simple problems only) UNIT – IV DYNAMICS-1: Displacement – Velocity and acceleration and their relationship – Relative motion – Curvilinear motion – Newton's law of motion. UNIT – V DYNAMICS-2: Basic terms – General principles in dynamics - Types of motion – instantaneous centre of rotation in plane motion (simple problems) - Work energy equation – D Alembert's Principle and its uses – kinetics of rigid body rotation. UNIT – VI ANALYSIS OF PLANE TRUSSES: Assumptions – rigid and non-rigid trusses – Simple truss, analysis by method of joints, method of sections and tension coefficient method. MECHANICAL VIBRATIONS: Basic terminology – Free and forced vibrations – resonance and its effects – degree of freedom – Derivation of frequency and amplitude of free vibrations without damping and single degree of freedom system (simple problems) – Types of pendulum – Use of simple and compound pendulum.	
Textbooks & Reference books	1. Engineering Mechanics by A. K. Tayal.	
	 REFERENCE BOOKS: 1. Engineering Mechanics by J.L. Meriam and L. G. Kraige 2. Engineering Mechanics by Irving. H. Shames & G. Krishna Mohana Rao. 3. Engineering Mechanics and statistics by P.B.Beer& E. R. Johnston. 	

<u>19CE1202-BUILDING MATERIALS AND CONSTRUCTION</u> (Civil Engineering)

(Civil Engineering) (New Regulations w. e. f. 2019-2020) I B.TECH – II Semester

Course category:	Engineering Science	Credits:	3
	course		
Course Type:	Theory	Lecture - Tutorial - Practical:	3-0-0
Prerequisite:	None	Sessional Evaluation :	40
		End Exam. Evaluation:	60
		Total Marks:	100

Course	1.	To know the significance of various building materials used in construction		
Objectives		industry.		
	2.	To explain the materials used in concrete and different types of mortars and their applications.		
	3.			
	4.			
	5.	To explain types of roofs and roof coverings and temporary works used in		
		buildings		
	6.	To learn about types of wall finishes and thermal and acoustic insulating materials in buildings.		
Course	CO1	Gain an in-depth knowledge on types of building materials used in construction.		
Outcomes	CO2	Gain an in-depth knowledge on components of concrete and mortars.		
	CO3	Understand various types of buildings and masonry.		
	CO4	Understand various types of building components and their construction		
		practices.		
	CO5	Understand the various types of roofs and temporary works in construction.		
	CO6	Know various roof coverings and special treatments for thermal and acoustic		
		insulation materials.		
		UNIT – I		
	INTR	CODUCTION TO BUILDING MATERIALS:		
	Stone	: Dressing of stones- Artificial stones and applications-Wood: classification of		
	timbe	r- characteristics of good timber- ply wood- types and uses- Modern building		
	mater	ials- Bricks: Manufacturing process- testing of bricks- Ceramic products:		
	Manufacturing process- Glass: Functions of glass in buildings- manufacturing process-			
Course	special glass- Advantages and disadvantages- Building materials for low cost housing-			
Content	Utilisation of waste for alternative building materials- Sustainable materials in			
	constr	ruction- National Standards		
	1			

UNIT- II

CEMENT CONCRETE AND MORTARS: Constituents of Cement Concrete

Cement: Manufacturing process- types of cement- Portland cement- hydration of cement- tests of cement- National standards

Aggregate: Introduction- Classification of aggregate- Characteristics- National standards

Water: Quality of mixing water

Building Mortars

Introduction- Classification (Cement mortar, lime mortar, lime-cement mortar, special mortar) - Characteristics of good mortar- grouting- guniting.

UNIT- III

MASONRY CONSTRUCTION: Introduction to Building Components

Types of buildings- Components of buildings- Types and uses of shallow and deep foundations

Stone masonry: Technical terms –Joints – Types – Random (un-coarsed) rubble –Coarsed rubble –Dry rubble masonry – Ashlar masonry–Ashlar fine – chamfered fine – Supervision.

Brick masonry: Technical terms – bonds in brick work- English bond – single & double Flemish bond –Defects – Comparison of Brick masonry and stone masonry.

Cavity walls: Brick cavity walls- position of cavity at foundation, roof and opening levels

UNIT- IV

BUILDING COMPONENTS:

Lintels and arches: Lintels: types- construction- Arches: Technical terms- types (brick arches, rough, axed stone arches, flat and semi circular arches)

Doors: Location- Technical terms – Types – Suitability

Windows: Location – Types – Suitability – Fixtures and fastenings

Stairs and Stair cases: technical terms- Requirements of good stair – classificationelevators and escalators

Floorings

Introduction- Requirements of a good floor- types of floorings: cement concrete (regular and precast)- mosaic- tiled- marble- timber

UNIT- V

ROOFS AND FORM WORK: Roofs and Roof coverings

Technical terms- classification (pitched roofs and flat roofs)- advantages and disadvantages- Roof coverings: A.C sheets and G.I sheets

	Temporary works					
	Form work: Introduction- Stripping of formwork- timbering in trenches- types of					
	Scaffolding- shoring and underpinning.					
	UNIT– VI					
	WALL FINISHES AND SPECIAL TREATMENTS:					
	Wall finishes					
	Plastering: objectives of plastering- requirements of good plaster- types of mortars for					
	plastering- tools using in plastering - types of pointing					
	Thermal Insulation					
	Introduction- thermal properties and selection of the insulating materials- classification					
	of thermal insulating materials - methods of thermal insulation					
	Acoustical Construction					
	Introduction- Characteristics of audible sound- behaviour of sound in enclosure-					
	reflection of sound- Reverberation and absorption- types of acoustic materials					
	TEXTBOOKS:					
Textbooks &	1. Engineering Materials by S.C Rangwala.					
Reference	2. Building construction by Dr. B. C. Punmia.					
Books	3. A Text Book of Building Construction and Construction Materials 4th Edition					
	by T. D. Ahuja, G. S. Birdie.					
	REFERENCES:					
	1. Building construction by S. C. Rangwala.					
	2. Building and Construction Materials : Testing and Quality Control 1st Edition					
	by M. L. Gambhir, NehaJamwal.					
	3. Indian Standard Institution, National Building Code of India, ISI, 1984, New Delhi.					

19SH12P1 - ENGLISH LANGUAGE LABORATORY (Common to CE, ME) (New Regulations w. e. f. 2019-2020) I B.TECH- II Semester

Course Category:	Basic Sciences	Credits:	1
Course Type:	Practical	Lecture-Tutorial-Practical:	0-0-2
Pre-requisite:	Basic Level of LSRW skills	Sessional Evaluation: External Exam Evaluation: Total Marks:	60

٦

Course Objectives	The main objective is to prepare the students to improve their communicative ability in English with emphasis on LSRW skills and enable them to communicate effectively in different socio- cultural and professional contexts.
Course Outcomes	These activities practiced in the laboratory are helpful in comprehending the important language aspects which are useful for the real life situations. These are also helpful in enhancing the language competency and communicative level of students.
Course Content	 LIST OF ACTIVITIES Listening for Identifying key terms, understanding concepts Listening for specific information Listening for global comprehension and summarizing Listening to short audio texts and answering a series of questions. Common Everyday Conversations: Asking and answering general questions on familiar topics such as home, family, work, studies and interests) Expressions in various situations Making requests and seeking permissions Interrupting and apologizing Role plays / Situational dialogues

3. Communication at Work Place:
Introducing oneself and others
Ice breaking activity and JAM Session
• Greetings
Taking leave
4. Group Discussion
• Discussion in pairs/ small groups on specific topics
Short structured talks
• Debates
Reporting/ summarizing
5. Presentations:
• Pre-planning
Non-verbal communication
• Formal oral presentations on topics from academic contexts
6. Giving directions
Giving directions
Asking for directions
Specific instructions
Importance of Landmarks
REFERENCES:
1. A Manual for English Language Laboratories: Dr. D. Sudha Rani, Pearson Publications
2. Techniques of Teaching English: A.L. Kohli
3. https://www.talkenglish.com/

<u>19SH12P2 - ENGINEERING PHYSICS LABORATORY</u>

I B.Tech. II – Semester (Common to CIVIL&MECHANICAL Branches) (New regulation w.e.f. 2019 – 2020)

Course Category:	Basic Science	Credits:	1.5
Course Type:	Practical	Lecture-Tutorial-Practical:	0-0-3
Pre-requisite:	Engineering Physics	Sessional Evaluation: External Exam Evaluation: Total Marks:	40 60 100

Course Objectives	To provide student to learn about some important experimental techniques in physics with knowledge in theoretical aspects so that they can excel in that particular field.				
Course Outcomes	 These experiments in the laboratory are helpful in understanding important concepts of physics through involvement in the experiments by applying theoretical knowledge. It helps to recognize where the ideas of the students agree with those accepted by physics and where they do not. 				
	Minimum of 8 experiments to be conducted out of the following :				
	LIST OF EXPERIMENTS				
Course Content	 LIST OF EXPERIMENTS Determination of rigidity modulus of wire material – Torsional pendulum. Melde's experiment – Transverse & longitudinal modes. Resonance in LCR circuit. Magnetic field along the axis of a coil (Stewart – Gee's Method). Study of characteristics of LED Newton rings Wedge method Diffraction grating - Wavelength of given source. Dispersive power of prism material using spectrometer. P-N- junction diode characteristics. Evaluation of Numerical Aperture of given optical fiber. Energy gap of a P-N junction diode material. Transistor characteristics. Solar cell characteristics. 				

19ME12P2-COMPUTER AIDED ENGINEERING DRAWING LABORATORY-11

(Common to ME and Civil)

I B.Tech II Semester

(With effect from 2019-20)

Course Category	Engineering Science	Credits	1.5
Course type	Practical	Lecture- Tutorial-Practical	0-0-3
Prerequisite	Geometrical	Sessional Evaluation:	40
	Construction	External Exam Evaluation:	60
		Total Marks:	100
		External Exam Duration:	3 hrs.

Course	Marks	Examination and Evaluation		Scheme of examination
		Semeste	er end Examination	60 marks are allotted for the drawing
	60	for 3	hours duration in the	examination during semester end.
		CAD L	aboratory	
			Day-to-Day	Marks are evaluated based on average
		20	evaluation during the	performance of student in day-to-day
Computer			practice.	exercises and finalized for 20 marks
Aided				Two drawing examinations are
Engineering				conducted for 20 marks. 80% of better
Drawing	40			one and 20% of the other are added and
		20	Drawing examination	finalized for 20 marks. Drawing
		20	Drawing examination	examination-I: Shall be conducted just
				before I mid-term examinations. Drawing
				examination-II: Shall be conducted just
				before II mid-term examinations.
			de to understand / learn	
~				concepts like dimensioning, construction of
Course			ns, polygons, cycloids and	
Objectives		-		standing of AutoCAD fundamentals.
		✤ To apply the knowledge of AutoCAD for the projections of points, lines and		
	~	ids.		
		 To know about sections and developments of solids. 		
	◆ To improve the visualization skills with isometric projections.			
		At the end of the course, the student will be able to		
		Sketch the solutions to the problems on projection of solids and sections of		
Course		solids		
Outcomes		Understand the development of surfaces		
Outcomes		Demonstrate orthographic and Isometric principles		
	CO4 Understand and apply the knowledge of engineering drawing in modern			
		CAD tools.		

PROJECTIONS OF SOLIDS: Projections of Solids: Solids such as Prisms, Pyramids, Cylinders and Cones inclined to both the principal plane.							
 SECTIONS OF SOLIDS: Sections of Solids: Solids such as Prisms, Pyramids, Cylinders and Cones resting on their bases on HP. DEVELOPMENT OF SURFACES. 							
Development of Surfaces: Lateral surfaces of solids such as Prisms, Pyramids, Cylinders and Cones (cut by a plane inclined to HP).							
ISOMETRIC VIEWS AND PROJECTIONS: Isometric views of planes and solids. Isometric scale, Isometric Projections of simple objects.							
ORTHOGRAPHIC PROJECTIONS:							
Conversion of Pictorial views into Orthographic Views.							
 Engineering Drawing, N.D. Bhat / Charotar Publishing House, Gujarat, 53rd edition, 2014. AutoCAD 2 0 13 For Engineers and Designers, Sham Tickoo, Dream tech Press, 2013. 							
 Engineering Drawing And Graphics + Autocad, Venugopal K, New Age International Pvt. Ltd. New Delhi, 2007. Engineering Graphics with Auto CAD, D.M. Kulkarni, A.P. Rastogi and A.K. Sarkar, PHI Learning Private Limited, Revised Edition, August 2010. Engineering Drawing and Graphics Using Autocad, T Jeyapoovan, Vikas Publishing House, 3rd Edition, 2010. A Textbook on Engineering Drawing, <u>P. Kannaiah, K. L. Narayana, K. Venkata Reddy</u>, Radiant Publishing House, 2012. 							

19ME12P3- ENGINEERING WORKSHOP (Common to ME & CE)

(Common to ME & CE) I B.Tech II Semester (With effect from 2019-20)

Course Category	Engineering Science	Credits	1
Course type	Practical	Lecture- Tutorial-Practical	0+0+2
		Sessional Evaluation:	40
Duous auisita	No Drono quisito	External Exam Evaluation:	60
Prerequisite	No Prerequisite	Total Marks:	100
		External Exam Duration:	3 hrs

Course	1. To understand the usage of work shop tools and prepare the models in the trades								
	1. To understand the usage of work shop tools and prepare the models in the trades such as carpentry, fitting, sheet metal & foundry.								
Objectives	 To understand the usage of wiring tools and to execute house wiring connections. 								
	3. To understand and demonstrate the usage of tools of welding, black smithy and								
	machine tools.								
Course	After completing the course the student will be able to:								
Outcomes	CO1 Identify, Distinguish and Choose the tools of various trades (carpentry, fitting,								
	sheet metal, foundry, wiring, welding, black smithy and machine tools).								
	CO2 Demonstrate and Describe the usage of tools of various trades (carpentry,								
	fitting, sheet metal, foundry, wiring, welding, black smithy and machine tools).								
	CO3 Documenting the procedure adopted while preparing the model.								
	1. Carpentry: Half Lap, Mortise and Tenon and Bridle joint.								
	2. Fitting: Square, V, half round and dovetail fittings								
	3. Tin-Smithy: Tray, cylinder, hopper, cone								
	4. House-wiring: One lamp controlled by one switch, Two lamps (bulbs)								
	controlled by two switches independently, Stair - case connection, Two lamps								
	controlled by one switch in series, Two lamps controlled by on switch in								
Course	parallel and Water pump connected with single phase starter.								
Content	5. Foundry: single-piece pattern and Two- piece pattern								
	5. Foundry. single-piece patient and Two-piece patient								
	TRADES FOR DEMONSTRATION:								
	6. Machine Tools								
	7. Welding								
	8. Black Smithy								
Textbooks	1. Engineering Work shop practice for JNTU, V. Ramesh Babu, VRB Publishers Pvt.								
	Ltd,2009								
	2. Work shop Manual / P.Kannaiah/ K.L.Narayana/ SciTech Publishers,2004								
	3. Engineering Practices Lab Manual, Jeyapoovan, SaravanaPandian, Vikas								
	publishers,2007.								

N.B.K.R. INSTITUTE OF SCIENCE & TECHNOLOGY :: VIDYANAGAR

(AUTONOMOUS)

CIVIL ENGINEERING SCHEME OF INSTRUCTION AND EVALUATION

(With effect from the batch admitted in the academic year 2019-2020)

II YEAR OF FOUR YEAR B.TECH. DEGREE COURSE – I SEMESTER

					Evaluation											
S.NO.	Course Code	Course Title	e Contact Hours/ Week		Hours/		Sessional Test-I			Sessional Test-II			Total Sessional Marks (Max. 40)	Seme En Examin	d	Max. Total
	Code	THEORY	L	Т	Р		Test-I (2 hrs.)	Assignm ent-I	Max. Marks	Test-II (2 hrs.)	Assign ment-II	Max Mark s		Durati on In Hours	Max Mar ks	Marks
1	19SH2101	Engineering Mathematics - III	3	1	0	4	34	6	40	34	6	40	0.8(Better of	3	60	100
2	19CE2101	Strength of Materials	2	1	0	3	34	6	40	34	6	40	two sessional tests)	3	60	100
3	19CE2102	Fluid Mechanics	2	1	0	3	34	6	40	34	6	40	+	3	60	100
4	19CE2103	Surveying	2	1	0	3	34	6	40	34	6	40	0.2(Other)	3	60	100
5	19CE2104	Computer Aided Civil Engineering Drawing	1	0	3	2.5	34	6	40	34	6	40		3	60	100
6	19MC2101	Environmental Science	2	0	0	0	34	6	40	34	6	40		3	60	100
		PRACTICALS														
1	19CE21P1	Strength of Materials Lab	0	0	3	1.5	-	-	-	-	-	-	Day-to-day Evaluation	3	60	100
2	19CE21P2	Surveying Laboratory	0	0	3	1.5	-	-	-	-	-	-	- Evaluation and a test - (40 marks)	3	60	100
		TOTAL				18.5							(40 marks)			

Note:-*Survey camp for a duration of 7 days to be conducted before the last day of instruction for II B.Tech, I – Sem. This shall be evaluated as part of Surveying Laboratory.*

ENGINEERING MATHEMATICS –III

Code: 19SH2101

(New regulations with effect from 2019 -20) (Common to CE, MECH, EEE & ECE)

Course Category	Basic Science	Credits	4
Course Type	Theory	Lecture - Tutorial -Practical	3 - 1 -0
	Intermediate	Sessional Evaluation	40
Prerequisite	Mathematics	Semester End Exam Evaluation	60
		Total Marks	100

Course	To ma	ake the student learn about				
Objectives	1. Tl	he basic concepts of numerical solutions of simultaneous linear and non-				
	2. TI Ta M 3. TI fu 4. TI 5. TI va	hear algebraic equations. he numerical methods to solve Ordinary Differential Equations by using aylor's series method, Picard's method, Euler's and Modified Euler's lethods and Runge-Kutta methods of 2 nd and 4 th order. he concepts of Cauchy - Riemann equations, Construction of Analytic nction, Line integral, Cauchy's theorem and Cauchy's integral formula. he concepts of Residues. he Properties of Z-Transforms, shifting properties, initial value and final alue theorems and the applications of difference equations. bundation of the probability and statistical methods.				
Course Outcomes	CO1	Have a sound knowledge in analyzing the simultaneous linear and non- linear algebraic equations by various numerical methods.				
	CO2	Understand effectively the significance numerical methods to solve Ordinary Differential Equations.				
	CO3 Understand effectively the significance of differentiability for confunctions and be familiar with the Cauchy-Riemann equations an Cauchy's integral formula.					
	CO4	Compute the Taylor and Laurent expansions of simple functions, determining the nature of the singularities and calculating residues.				
	CO5	Attains skills in analyzing the Z-Transforms and their applications.				
	CO6 Have a well-founded knowledge of standard distributions (Binomial, Poisson and Normal distributions) which can describe real life phenomena.					
	UNIT - I					
	ALG Elimi	UTION OF SIMULTANEOUS LINEAR AND NON-LINEAR EBRAIC EQUATIONS: Iteration method, Gauss Jordon method, Gauss nation with Pivotal condensation method, Triangular Factorization method, s-Seidal method and Newton-Raphson method.				

	UNIT - II
	NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS: Solution by Taylor's Series, Picard's Method of Successive Approximations, Euler's Methods and Runge-Kutta Method of 2 nd order and 4 th order.
	UNIT - III
	COMPLEX ANALYSIS: Analytical functions, Cauchy - Riemann equations, Construction of Analytic function, Complex integration - Line integral, Cauchy's theorem, Cauchy's integral formula and Generalized Cauchy's integral formula.
	UNIT - IV
Course Content	RESIDUES : Taylor's theorem and Laurent's theorem (without proof), Singularities, Poles, Residues, Residue theorem and Evaluation of real definite integrals.
	UNIT-V
	Z-TRANSFORMS: Z-Transform of some standard functions, Properties of Z- Transforms, Shifting Properties, Initial value theorem and final value theorem, Inverse Z-Transform, Convolution theorem, Inversion by partial fractions and Applications to difference equations.
	Unit-VI
	PROBABILITY AND STATISTICS : Introduction, Random variables, Discrete and Continuous distributions, Binomial distribution, Poisson distribution and Normal distribution.
Textbooks	TEXTBOOKS:
Reference books	 B. S. Grewal, <i>Higher Engineering Mathematics</i>, Khanna Publishers, New Delhi.
DUOKS	2. B. V. Ramana, <i>Engineering Mathematics</i> , Tata McGraw-Hill Education Pvt. Ltd, New Delhi.
	3. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley, India.
	REFERENCE BOOKS:
	1. H. K. Dass, Er. Rajnish Verma, <i>Higher Engineering Mathematics</i> , S. Chand
	Publication, New Delhi.2. Dr. T. K. V. Iyengar, Dr. B. Krishna Gandhi, S. Ranganatham, Dr. M. V. S. S.
	 N. Prasad, Engineering Mathematics –III, S. Chand Publication, New Delhi. Shahnaz Bathul, Special functions and complex variables (Engineering Mathematics-III), PHI, New Delhi.

CO-PO Mapping: 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, Not Mapping	

	a	b	С	d	e	f	g	h	i	j	k	1
CO1	3	2	-	1	1	-	-	-	-	-	-	1
CO2	3	3	1	2	1	-	-	-	-	-	2	1
CO3	3	3	3	1	1	-	-	-	-	-	-	2
CO4	3	3	2	2	1	-	-	-	-	-	-	2
CO5	3	3	2	2	1	-	-	-	-	-	-	2
CO6	3	3	1	1	1	-	-	-	-	-	-	1

19CE2101 - STRENGTH OF MATERIALS

Course Category	Professional Core	Credits	3
Course Type	Theory	Lecture - Tutorial -Practical	2 -1 -0
		Sessional Evaluation	40
Pre-requisite	Engineering Mechanics	Semester End Exam Evaluation	60
	wiechanics	Total Marks	100

Course Objectives		To understand the behavior of ductile and brittle materials under uni-axial loading. To apply analytical and graphical method of Mohr's circle for principal						
	3.	stresses and strains and understand theories of failures. To construct shear force and bending moment diagrams of beams under various loads and study the relationships among shear force, bending moment and rate of loading.						
	4.	 To apply the concept of theory of simple bending for calculating flexural and shear stresses. 						
	5. 6.	To calculate stresses and strains in thin and thick cylinders. To implement the concept of theory of pure torsion for calculating shear stresses and understand the mechanical behavior of spring.						
Course Outcomes	CO1	× 1						
Outcomes	000	loading.						
	CO2	Calculate the principal stresses and strains by analytical methods and also by Mohr's circle method.						
	CO3	Construct shear force and bending moment diagrams for various types of						
	beams under different types of loading.							
	CO4	Understand and analyze the variation of flexural and shear stresses across						
		the cross-section due to shear force and bending moment.						
	CO5	Calculate hoop and longitudinal stresses and strains in thin and thick cylinders.						
	CO6	Calculate shear stress due to pure torsion and understand the mechanical behavior of spring.						
		UNIT – I						
		PLE STRESSES & STRAINS: Properties of materials - Ductile and brittle;						
	Concept of stress; Types of stress; Types of strain - Normal strain, shear stra							
Course	volumetric strain; Stress-Strain curves - Ductile (mild steel, HYSD bars), brittle							
Content	(Concrete); Hooke's law; Poisson's ratio; volumetric strain-Derivation							
	-	ssion for volumetric strain of rectangular bar and cylindrical bar subjected to						
		loading; Relation between Young's modulus, shear modulus and bulk						
		lus; Analysis of prismatic bars subjected to axial loading- Uniform cross ns, varying sections and uniform tapering – circular, rectangular bars.						
		, ·						

Compound bars- Analysis of bars of composite sections. Factor of safety – Endurance limit.

Introduction to thermal stresses – Analysis of thermal stresses – Expression for thermal stresses and strains in simple bars.

UNIT – II

PRINCIPAL STRESSES: Introduction to compound stresses; Methods of analysis – Application of analytical methods for the analysis of members subjected to direct stress in one plane, in two mutually perpendicular planes, subjected to simple shear stress alone and direct stresses in two mutually perpendicular planes accompanied by simple shear stress.

INTRODUCTION TO GRAPHICAL METHOD – Mohr's circle-Application of graphical method for the above cases.

INTRODUCTION TO THEORIES OF FAILURE (No derivations).

UNIT –III

SHEAR FORCE AND BENDING MOMENT IN BEAMS: Concept of shear force and bending moment – Relation between shear force, bending moment and rate of loading at a section of beam; shear force and bending moment diagrams for simply supported and cantilever beams subjected to point loads, uniformly distributed load, uniformly varying loads, couple and their combinations; Concept of point of contra flexure; shear force and bending moment diagrams of an overhanging beam subjected to point loads, uniformly distributed load, uniformly varying loads, couple and their combinations of an overhanging beam subjected to point loads, uniformly distributed load, uniformly varying loads, couple and their combinations.

UNIT –IV

FLEXURAL AND SHEAR STRESSES IN BEAMS: Concept of theory of simple bending; Assumptions made in simple bending – Derivation of pure bending (simple bending) equation. Introduction to shear stress – Derivation of equation for general shear stress; Shear stress distribution diagrams for rectangular, circular, I-section and T-sections; Bending stresses in unsymmetrical sections – I-section and T- sections;

Shear centre – Introduction - Derivation of expression for shear centre of I-section and Channel section.

UNIT –V

CYLINDERS: Introduction – Types of cylinders - Thin cylinders - Expressions for hoop and longitudinal stresses - Efficiency of joints; Thick cylinders – Introduction - Lame's theorems – Assumptions – Derivation of expressions (internal and external pressure); Compound cylinders – Introduction – Distribution of stresses (internal and external pressure).

	UNIT – VI TORSION OF CIRCULAR SHAFTS: Theory of pure torsion - Assumptions made in pure torsion equation - Derivation of pure torsion expression for solid and hollow circular shafts; Transmission of power in solid circular shafts. SPRINGS: Introduction –Types of springs – Expression for deflection of close and open coiled helical springs under axial loading; Concept of springs in series and parallel; Carriage/leaf springs - Introduction- Expression for deflection.
Textbooks & Reference books	 TEXTBOOKS: S. Ramamrutham and R. Narayananan "Strength of Materials" Dhanpatrai publishing house, 2018. R. K. Bansal, "A Textbook of Strength of Materials" Laxmi Publications, 6st edition, 2019. Dr. H. J. Shah and S. B. Junnarkar "Mechanics of Structures Vol-I", Charotor Publishing house, 32nd edition, 2016. REFERENCE BOOKS: Timoshenko S, "Strength of Materials Part 1 Elementary Theory and Problems", D. Van Nostrand Company, Incorporated, 3rd Edition, 2002. Vazirani and Ratwani, "Analysis of structures Vol-I" Khanna Publishers, 16th Edition. B. C. Punmia, "SMTS-I, Strength of Materials" Laxmi Publications, 10th Edition, 2019.

CO-PO Mapping: 3-High Mapping	, 2-Moderate Mapping,	1-Low Mapping, Not	Mapping
--------------------------------------	-----------------------	--------------------	---------

	a	b	c	d	e	f	g	h	i	j	k	l
CO1	3	3	2	2	1	1	-	-	-	-	2	2
CO2	3	3	2	3	1	-	-	-	-	-	1	2
CO3	3	3	2	3	1	-	-	-	-	-	1	3
CO4	3	3	3	3	2	-	-	-	-	-	2	3
CO5	3	3	3	3	1	-	-	-	-	-	2	2
CO6	3	3	3	2	2	-	-	-	-	-	2	2

19CE2102 - FLUID MECHANICS

Course Category	Professional Core	Credits	3
Course Type	Theory	Lecture - Tutorial - Practical	2-1-0
Prerequisite	Engineering	Sessional Evaluation	40
	Mathematics-II, Engineering	Semester End Exam. Evaluation	60
	Physics.	Total Marks	100

Course	1.	To understand various fluid properties and types of pressure.
Objectives	2.	To understand the concepts of pressure acting on submerged and floating
		bodies.
	3.	To study the concepts of fluid kinematics.
		To understand the basic concepts of fluid dynamics and its applications.
		To understand the factors influencing the efficiency of a pipe network.
	6.	To understand fluid flows in pipes under various flow conditions.
Course	CO1	Determine the fluid properties, and fluid pressure in various conditions
Outcomes		using manometers.
	CO2	Evaluate the hydrostatic pressure and buoyant force on plane & curved
		surfaces in floating and submerged conditions.
	CO3	Determine the velocity and acceleration components of a fluid flow.
	CO4	Apply the concepts of fluid dynamics to fluid flow problems.
	CO5	Compute the losses and efficiency of pipe networks.
	CO6	Analyze and apply the laminar and turbulent flow conditions for flow
		through pipes.
G		
Course Content		UNIT – I
Content		NITIONS & BASIC CONCEPTS: Definition of fluid & solid; fluid
		rties – density, specific weight, specific gravity, specific volume; viscosity –
		atic and dynamic viscosity, Newton's law of viscosity, variation of viscosity
		emperature; concepts of - compressibility, bulk modulus, surface tension,
	-	arity, vapour pressure and cavitation.
		SURE MEASUREMENT: Fluid pressure - fluid pressure at a point;
		l's law; pressure variation in a fluid at a rest; types of fluid pressure –
		ite, gauge, atmospheric & vacuum pressure; measurement of pressure –
		meters, mechanical gauges; simple manometers- piezometer, U-tube
		meter, single column manometer, differential manometers – U-tube
	differe	ential manometer, inverted U-tube differential manometer.

UNIT – II

FLUID STATICS: Total pressure and centre of pressure on – vertical plane surface, horizontal plane surface, inclined plane surface, curved plane surface; buoyancy, centre of buoyancy, meta-centre, meta-centric height equation, conditions of equilibrium of a floating & submerged bodies.

$\mathbf{UNIT}-\mathbf{III}$

FLUID KINEMATICS: Methods of describing fluid motion; types of fluid flow; description of the flow patterns – stream line, stream tube, path line, streak line; basic principles of fluid flow- conservation of energy & momentum; continuity equation in Cartesian coordinates; velocity and acceleration – local & convective acceleration; velocity potential function and stream function, equipotential line, relationship between velocity potential function and stream function.

$\mathbf{UNIT} - \mathbf{IV}$

FLUID DYNAMICS: Equations of motion- Euler's equation of motion, Bernoulli's equation – assumptions, applications; impulse momentum equation; forces excreted by a flowing fluid on a pipe bend.

DISCHARGE MEASUREMENT USING ORIFICES, MOUTHPIECE, NOTCHES & WEIRS: Types of orifice and mouthpiece; hydraulic coefficients; classification of notches & weirs; discharge over rectangular and triangular notches.

$\mathbf{UNIT} - \mathbf{V}$

ANALYSIS OF PIPE FLOW: Reynolds experiment on pipe flow, loss of energy due to friction – Darcy-Weisbach equation; minor losses; hydraulic gradient line and total energy line; flow through syphon; pipes in series & parallel; equivalent pipe; branched pipes; water hammer in pipes – gradual closure of valve, sudden closure of valve in rigid and elastic pipes, control measures.

UNIT VI

LAMINAR & TURBULENT FLUID FLOW IN PIPES: Flow of incompressible fluid through circular pipe and between two rigid parallel plates – velocity distribution, ratio of maximum to average velocity, drop of pressure, shear stress distributions for given length of pipe. Coefficient of friction in terms of shear stress, shear stress in turbulent flow, Prandtl's mixing length theory.

Textbooks	 TEXTBOOKS: 1. Dr. P. N. Modi, Dr. S. M. Seth, "Hydraulics and Fluid Mechanics
and	Including Hydraulics Machine" Standard Book House, 21 st Edition, 2017. 2. R. K. Bansal, "A Textbook of Fluid Mechanics and Hydraulic Machines"
Reference	Laxmi Publications, 10 th Edition, 2019. 3. A. K. Jain "Fluid Mechanics including Hydraulic Machines" Khanna
books	Publications, 2016.
	 REFERENCE BOOKS: 1. Frank M White, "Fluid Mechanics in SI Units" White, McGraw Hill Education India Private Limited, 8th Edition, 2017. 2. Yunus A. Cengel, Dr. John M. Cimbala, "Fluid Mechanics: Fundamentals and Applications" McGraw-Hill Education India Private Limited, 4th Edition, 2018. 3. Okiishi, Hubesh, and Rothmayer "Fluid Mechanics" Munson Johnwiley Publications, 7th Edition, 2017.

CO-PO Mapping: 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

	a	b	с	d	e	f	g	h	i	j	k	l
CO1	3	2	-	1	1	-	-	-	1	-	2	2
CO2	3	1	-	2	1	-	-	-	1	1	2	2
CO3	3	2	-	3	1	-	-	-	2	-	2	2
CO4	3	2	1	2	1	-	-	-	2	1	2	2
CO5	3	3	3	3	2	-	_	_	-	1	3	2
CO6	3	2	2	2	2	-	_	_	2	-	2	2

19CE2103 –SURVEYING

Course Category	Professional Core	Credits	3
Course Type	Theory	Lecture - Tutorial - Practical	2-1-0
	Engineering	Sessional Evaluation	40
Prerequisite	Mathematics - II	Semester End Exam. Evaluation	60
		Total Marks	100

Course Objectives	2. 3. 4. 5.	To apply knowledge of mathematics, science and engineering for understanding measurement techniques and basic equipment used in land surveying. To understand the operation of automatic level to perform differential and profile leveling, record observations, mathematically reduce and check levelling measurements, interpolation and plotting of contours. Understand various methods of angular measurements and perform traverse computations. To understand basics of curve setting and various methods of computing areas and volumes. To understand the principles and usage of total station and GPS in surveying. To apply the knowledge of surveying for setting-out works.
Course Outcomes	CO1 CO2 CO3	latitudes and departures and determine coordinates for a closed traverse
	CO4 CO5 CO6	 using a prismatic compass and theodolite. Calculate, design and layout horizontal and vertical curves. Calculate areas and volumes from survey data using mathematical principles. Operate a total station to measure distance, angles, and to calculate differences in elevation. Make GPS measurements and relate them to conventional surveying. Carryout setting-out for laying pipeline and tunneling.

	UNIT – I
	BASICS OF SURVEYING : Definition, principles, purpose of surveying, basic
	measurements – linear and angular; chain surveying - principle, methods and
	applications; pacing, ranging, chaining and selection of survey stations and lines;
	well-conditioned triangle, field book entries, scales-types and uses, plan and map
	- comparison; cross staff survey; plane table survey - principle, methods and
Course	errors.
Content	
content	LEVELLING – Definition, principles, methods and classification of levelling,
	recording observations and reduction of levels, calculation of gradient and
	plotting longitudinal and cross sections.
	CONTOURING – Contour interval, characteristics, uses; methods of locating
	contours, interpolation of contours.
	UNIT – III
	ANGULAR MEASUREMENTS: Compass surveying, bearings, meridians,
	directions, included angles, local attraction, dip and deflection. Theodolite
	surveying - measurements of horizontal and vertical angles, deflection angles.
	Traversing – methods, types, computations and checks for traverse. Tacheometry
	- principle, methods and determination of tacheometric constants.
	UNIT – IV
	CURVES: Types of curves, elements, methods of setting out of horizontal and
	vertical curves (only simple curves for examination).
	AREAS and VOLUMES: Area calculation- plotting of survey work, methods of
	area and volume computations, minor instruments.
	UNIT –V
	MODERN FIELD SURVEY SYSTEMS: Principle of Electronic Distance
	•
	• • • • • • • • • • • • • • • • • • • •
	surveys-connection of surface and underground surveys-levening in tunnels.
	Measurement, Modulation, Types of EDM instruments, Distomat, Total Station – Parts of a Total Station – Accessories –Advantages and Applications, Field Procedure for total station survey, Errors in Total Station Survey; Global Positioning Systems-Segments, GPS measurements, errors and biases, Surveying with GPS, Co-ordinate transformation, accuracy considerations. UNIT – VI CONSTRUCTION SURVEYS: Introduction-staking out buildings-pipelines and sewers-highways-culverts. Bridge surveys-determining the length of a bridge- locating centres of piers- surface surveys and tunnel alignment-underground surveys-connection of surface and underground surveys-levelling in tunnels.

Textbooks and	TEXTBOOKS:
reference	1. N. N. Basak, "Surveying and leveling", McGraw Hill Education (India)
books:	Pvt. Ltd, 2 nd Edition, 2014.
	2. Dr. K.R. Arora "Surveying Vol-I, II and III", Standard Book House, 17 th Edition, 2019.
	3. B. C. Punmia, Ashok K Jain and Arun K Jain, " <i>Surveying Vol.1</i> " Laxmi Publications, 2016.
	REFERENCE BOOKS:
	1. C. Venkatramaiah, " <i>Text Book of Surveying</i> " Universities Press, revised edition, 2011.
	2. T. P. Kanetkar and S. V. Kulkarni, "Surveying and Levelling", Pune Vidyarthi Griha Prakashan publishers, 2010.
	 A. M. Chandra "<i>Plane Surveying</i>", New Age International Ltd. Publishers, 3rd Edition, 2018.

Г

CO-PO Mapping: 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

	a	b	c	d	e	f	g	h	i	j	k	l
CO1	3	2	1	2	1	1	-	-	1	2	2	1
CO2	3	3	2	2	2	1	-	-	1	2	2	1
CO3	3	3	1	2	1	-	-	-	1	1	1	2
CO4	3	3	2	2	1	1	-	-	1	2	2	2
CO5	3	3	3	2	2	-	1	1	1	2	3	2
CO6	3	3	3	3	2	1	1	1	3	2	3	2

<u>19CE2104 - COMPUTER AIDED CIVIL ENGINEERING DRAWING</u>

Course Category	Engineering Science	Credits	2.5
Course Type	Theory	Lecture - Tutorial - Practical	1-0-3
Prerequisite	Building Materials and	Sessional Evaluation	40
	Building Construction	Semester End Exam Evaluation	60
		Total Marks	100

Course Objectives	1. To understand the basic concepts of building drawing as per NBC standards.											
Objectives	 To understand the basics of planning of different types of buildings. 											
	 3. To prepare plans, sections and elevations of a residential buildings. CO1 Understand the terms in building drawing, and able to apply the NBC 											
Course Outcomes	CO1 Understand the terms in building drawing, and able to apply the NBC standards in building drawing.											
	CO2 Analyze the basic principles of planning for different types of buildings.											
	CO3 Prepare detail drawings of residential building and its components.											
	PART-A (Theory)											
	INTRODUCTION: Terms used in building drawing as per NBC – Factors affecting in selection of site – Functional requirements of a residential building – Minimum size requirements as per NBC – Standard sizes of door, windows and ventilators.											
Course Content	PLANNING: Principles of planning – Factors to be considered in planning – Planning of residential, Office, School and Hospital buildings – Preliminaries of vaastu – Municipal bye-law – List of documents to be submitted for building plan approval.											
	PART-B (Drawing)											
	Standard conventional signs and symbols used in Civil Engineering Drawing – Bonds in brick masonry – Paneled and flush doors – Glazed windows – Steel roof truss.											
	Preparation of plan, section and elevation of simple residential buildings with flat roof not exceeding two storeys.											

	 EVALUATION: 1. For End examination (Internal only), two out of three questions to be answered from Part–A (Theory) for 20 marks (i.e. 2x10=20). And one compulsory drawing question to be answered from Part-B (Drawing) for 40 marks (i.e.,1x40=40). 2. For internal evaluation, a weightage of 20 marks out of a total of 40 marks to be given for day-to-day work.
Textbooks and Reference books	 TEXTBOOKS: 1. Dr. N. Kumara Swamy and A. KameswaraRao "Building Planning and Drawing" Charotar Publishing House Pvt. Ltd, 9th Edition, 2019. 2. Gurucharan Singh and Jagadish Singh, "Building Planning Design and Scheduling" Standard Publishers Distributors, 2015. 3. S. S. Bhavikatti and M. V. Chitawaagi, "Building Planning and Drawing", IK International Publishing House, 2014.
	 REFERENCE BOOKS: 1. Shah M. H, S.Y. Patkiand Kale C. M., "Building Drawing with an Integrated Approach to Built Environment" McGraw Hill Education, 6th Edition, 2020. 2. National Building Code of India 2016 (NBC 2016) (Vol.I & Vol.II), Published by the Bureau of Indian Standards (BIS). 3. Model Building Bye-laws -2016 of Govt. of India (GOI) - A.P building rules – 2017.

CO-PO Mapping: 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

	a	b	c	d	e	f	g	h	i	j	k	l
CO1	2	-	1	-	-	1	2	1	-	2	3	2
CO2	3	-	1	-	2	2	2	1	2	1	3	2
CO3	3	-	1	-	3	2	2	1	2	1	3	1

19MC2101 - ENVIRONMENTAL SCIENCE

(Common to CE, EEE, ECE, CSE & IT)

(New Regulations with effect from 2020-2021)

Course Category:	Mandatory course	Credits:	-
Course Type:	Theory	Lecture – Tutorial – Practical:	2-0-0
Prerequisite:	Basic idea on environment, Environmental pollution causes, effects and control measures.	Sessional Evaluation: Semester End Exam. Evaluation: Total Marks:	40 60 100

Objectives	 To know the importance of Environmental Sciences and understand the various components of environment. To know the value of natural resources and need to protect them. To know the value of biodiversity and it`s conservation methods. To describe advanced methods to solve problems related to environmental pollution. To understand the social issues and provide plans to minimize the problems. 						
		articulate various environmental acts in order to protect the environment. essful completion of the course, the students will able to:					
	CO1	Know the importance of Environmental sciences and understand the various components of environment.					
	CO2	Understand the value of natural resources					
Course	CO3	Summarize the function of ecosystem, values of biodiversity and conservation.					
Outcomes	CO4	Identify how the environment is polluted and suggest the mitigation measures.					
	CO5	Understand the environmental problems in India and way to minimize the effects.					
	CO6	Categorize the environmental protection laws in our country and role of information technology in environment protection.					
Course Content	Introduction components Multidiscip NATURAL LAND RE Effects of m FOREST L	UNIT-I SCIPLINARY NATURE OF ENVIRONMENTAL SCIENCES: n, Definition, Scope and Importance of environmental sciences - Various s of environment – Atmosphere, lithosphere, hydrosphere and biosphere – linary nature of environmental sciences. UNIT-II C RESOURCES: SOURCES: Importance, Land degradation, Soil erosion and desertification, nodern agriculture (fertilizer and pesticide problems). RESOURCES: Use and over-exploitation-Mining and Dams-their effects on ribal people.					

WATER RESOURCES: Use and over-utilization of surface and ground water - Floods and droughts.

ENERGY RESOURCES: Renewable and non-renewable energy, need to use of alternate energy sources, Impact of energy use on environment.

UNIT-III

ECOSYSTEM: Definition, types, structure (biotic and abiotic components) and functions of an Ecosystem – Energy flow, Food chain, food web, ecological pyramids and Ecological succession.

BIO-DIVERSITY AND ITS CONSERVATION: Definition - genetic, species and ecosystem diversity- value of biodiversity - hotspots of biodiversity in India - threats to biodiversity – in situ and ex situ conservation of biodiversity.

UNIT-IV

ENVIRONMENTAL POLLUTION: Causes, effects and control measures of Air pollution, Water pollution, Soil pollution, Marine pollution, Noise pollution, Thermal pollution and Nuclear hazards.

SOLID WASTE MANAGEMENT: causes, effects and control measures of urban and industrial waste.

DISASTER MANAGEMENT: Floods, earthquake and cyclones.

UNIT-V

SOCIAL ISSUES AND ENVIRONMENT: From unsustainable to sustainable development, urban problems related to energy, water conservation, rainwater harvesting and water shed management.

CASE STUDIES: Silent valley project, Madhura Refinery and TajMahal, Tehri Dam, Kolleru Lake Aquaculture and Fluorosis in Andhra Pradesh.

CLIMATE CHANGE: Global warming, Acid rain and Ozone depletion.

UNIT-VI

HUMAN POPULATION AND ENVIRONMENT: Population growth, variation among nations and population explosion- Role of information technology in environment and human health.

ENVIRONMENTAL ACTS: Water (Prevention and control of pollution) Act-Air (Prevention and control of pollution) Act – Wildlife protection Act and Forest conservation Act.

FIELD WORK: Visit to Local Area having river/Forest/grass land/hill/mountain to document environmental assets.

Text Books and References:	 TEXT BOOKS: 1. "Environmental science and Engineering" by Anubha Kaushik and C. P. Kaushik, New Age International publishers. 6th Edition, 2018. 2. "Environmental science and Engineering" by N. Arumugam, V. Kumaresan, Saras Publication; 2nd edition, 2014. REFERENCE BOOKS: 								
	 "Introduction to Environmental science" by Y. Anjaneyulu, B. S Publications.2004. Perspectives in Environmental Studies, Anubha Kaushik and C. P. Kaushik, New Age International publishers, 3rd Edition, 2019. "Environmental science" by M. Chandrasekhar, Hi-Tech Publications, 2009. 								

CO-PO Mapping: 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

	a	b	с	d	e	f	g	h	i	j	k	l
CO1	2	-	-	-	-	-	2	-	1	-	-	1
CO2	1	-	-	-	-	2	1	1	1	-	-	-
CO3	-	-	-	-	-	2	2	1	-	2	-	-
CO4	1	-	-	-	-	1	-	3	-	-	-	-
CO5	1	1	-	-	-	-	2	1	2	-	1	1
CO6	_	_	_	_	_	_	2	_	2	_	1	3

19CE21P1 - STRENGTH OF MATERIALS LABORATORY

(Civil Engineering)

Course Category	Professional Core	Credits	1.5
Course Type	Laboratory	Lecture - Tutorial - Practical	0 - 0 - 3
Prerequisite	Strength of Materials	Sessional Evaluation	40
		Semester End Exam Evaluation	60
		Total Marks	100

Course Objectives	To understand the characteristics and behavior of various materials used in buildings and infrastructure.										
Course Outcomes	CO1 Determine the strength and elastic modulus of various materials buildings and infrastructure.										
	CO2	Evaluate the impact strength of mild steel.									
	CO3 Compute the rigidity modulus of mild steel.										
	CO4	Evaluate the hardness property of steel, copper and brass.									
	CO5	Evaluate the stiffness property of the spring.									
	CO6	Determine the elastic modulus and flexural rigidity of various types of beam.									
		LIST OF EXPERIMENTS									
	1. Deflection test on fixed beam										
	2.	Deflection test on simply supported beam									
	3.	Deflection test on close-coiled helical springs									
Course	4.	Deflection test on over hanging beam									
Content	5.	Tension test on mild steel bar									
	6.	a) Rockwell hardness test									
		b) Brinell hardness test									
	7.	Tension test on HYSD bar									
	8.	Torsion test									
	9. Compression test on wood										
	10). a) Direct shear test on mild steel bar									
		b) Charpy impact test									
		c) Izod impact test									

CO-PO Mapping: 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping,Not Mapping	

	a	b	с	d	e	f	g	h	i	j	k	1
CO1	3	3	1	1	1	-	-	2	3	3	2	2
CO2	3	3	1	1	1	-	-	2	3	3	2	2
CO3	3	3	1	1	1	-	-	2	3	3	2	2
CO4	3	3	1	1	1	-	-	2	3	3	2	2
CO5	3	3	1	1	1	-	-	2	3	3	2	2
CO6	3	3	1	1	1	-	-	2	3	3	2	2

19CE21P2 - SURVEYING LABORATORY

Course Category	Program core	Credits	1.5
Course Type	Laboratory	Lecture - Tutorial - Practical	0 - 0 - 3
Prerequisite	Surveying	Sessional Evaluation	40
		Semester End Exam Evaluation	60
		Total Marks	100

Course		in Impercial and a second second and a second surveying a second second							
Objective	To obtain knowledge of various basic and advanced surveying equipments and their field applications								
Objective		their field applications.							
		anding the field conditions to plan and the collect the data.							
Course	CO1	Apply geometric and trigonometric principles of basic surveying							
Outcomes		calculations.							
	CO2	Be able to measure elevations of points using auto level.							
	CO3	Be able to use the theodolite along with chain/tape and also carry out							
	tacheometric surveying.								
	CO4	Be able to set out a simple curve.							
	CO5	Use the total station instrument in basic engineering works.							
	CO6	Understand the use of advanced surveying instruments.							
Course Content	Demons cross sta EXERC Determine EXERC a)	 CO6 Understand the use of advanced surveying instruments. EXERCISE -1 Demonstration on conventional equipment such as chain, ranging rod, comparents staff, Dumpy level etc. EXERCISE -2 Determination of elevations of given points using auto level. EXERCISE -3 a) Determination of difference in elevation between two points using auto level. b) Locating a bench mark by fly levelling using auto level. EXERCISE -4 a) Plotting profile of given road section by obtaining longitudinal and crosses 							

EXERCISE -5
Measurement of horizontal and vertical angles using theodolite
EXERCISE -6
Measurement of elevation and gradient between points by using tacheometry.
EXERCISE -7
Set out a simple curve by one theodolite method.
EXERCISE -8
Introduction and setting up of total station.
EXERCISE -9
a) Measurement of distance and direction using total station.
b) Measurement of area of given field using total station.
c) Measurement of height of an object in REM using total station.
EXERCISE -10
Setting out work using total station
DEMONSTRATION:
Introduction to advanced surveying instruments like hand held G.P.S, optical theodolite and electronic theodolite.

CO-PO Mapping: 3-H	igh Mapping, 2-Moderat	e Mapping, 1-Low I	Mapping,Not Mapping

	a	b	с	d	e	f	g	h	i	j	k	l
CO1	3	1	1	2	2	1	-	1	-	3	2	2
CO2	3	3	2	2	2	1	-	2	2	1	1	1
CO3	3	2	2	3	2	1	-	1	2	2	2	2
CO4	3	3	2	2	2	-	-	1	1	2	2	2
CO5	3	3	2	3	3	1	2	1	2	3	3	3
CO6	2	2	2	2	3	-	1	1	2	1	3	2

N.B.K.R. INSTITUTE OF SCIENCE & TECHNOLOGY :: VIDYANAGAR

(AUTONOMOUS)

CIVIL ENGINEERING SCHEME OF INSTRUCTION AND EVALUATION (With effect from the batch admitted in the academic year 2019-2020) II YEAR OF FOUR YEAR B.TECH. DEGREE COURSE – II SEMESTER

											Evalua	tion				
S.NO.	Course Code	Course Title	H	onta Iour Weel	s/	Credits		Sessional Test-I			Sessional Test-II		Total Sessional Marks (Max. 40)	Seme En Examir	d	Max. Total
	Code	THEORY	L	Т	Р		Test-I (2 hrs.)	Assignm ent-I	Max. Marks	Test-II (2 hrs.)	Assign ment-II	Max Marks		Durati on In Hours	Max Mar ks	Marks
1	19SH2202	Engg. Economics And Financial Accounting	2	0	0	2	34	6	40	34	6	40	0.8(Better of two	3	60	100
2	19CE2201	Structural Analysis - I	2	1	0	3	34	6	40	34	6	40	sessional	3	60	100
3	19CE2202	Design of Reinforced Concrete Structures	2	1	0	3	34	6	40	34	6	40	tests) + 0.2(Other)	3	60	100
4	19CE2203	Hydraulics And Hydraulic Machinery	2	1	0	3	34	6	40	34	6	40		3	60	100
5	19CE2204	Engineering Geology	2	0	0	2	34	6	40	34	6	40		3	60	100
6	19MC2201	Engineering Ethics	2	0	0	0	34	6	40	34	6	40		3	60	100
		PRACTICALS														
1	19CE22P1	Fluid Mechanics And Hydraulic Machinery Lab	0	0	3	1.5	-	-	-	-	-	-	Day-to-day Evaluation	3	60	100
2	19CE22P2	Engineering Geology Laboratory	0	0	3	1.5	-	-	-	-	-	-	and a test (40 marks)	3	60	100
	1	TOTAL				16										

19SH2202 - ENGINEERING ECONOMICS AND FINANCIAL ACCOUNTING

(Common to CE & CSE)

Course Category	Humanities and Social Sciences	Credits	2
Course Type	Theory	Lecture - Tutorial -Practical	2 - 0 -0
		Sessional Evaluation	40
Prerequisite	None	Semester End Exam Evaluation	60
		Total Marks	100

a	a 1	
Course Objectives		ts undergoing this course are expected to understand: Causes of economic problems.
	2.	Behaviour of a Consumer while purchasing and consuming various commodities and services
	3.	Various production and cost concepts used in managerial decision making process
	4.	Formation of different types of business organizations in India.
	5.	Application of the basic accounting concepts
Course Outcomes		Demonstrate an ability to define, analyze and identify the appropriate solution to a business problem using sound economic and accounting principles.
		Know the role of various cost concepts in managerial decisions and the managerial uses of production function.
	CO3	Understand to take price and output decisions under various market structures.
	CO4	Know in brief formalities to be fulfilled to start a business organization.
	CO5	Analyse the firm's financial position with the techniques of economic aspects as well as financial analysis.
	CO6	Evaluate and select profitable investment proposals
Course Content		UNIT – I
		ODUCTION TO ECONOMICS : Definition of Economics and basic
	-	ots of Micro and Macro-economics. The concept of Demand-Law of
		d – Elasticity of Demand: Types and measurement-Demand Forecasting- ds of Demand Forecasting.
		UNIT – II
	THEO	
	Dougla	DRY OF PRODUCTION AND COST : Production function – Cobb – as production function and its properties – Law of variable proportions – f Returns to Scale. Cost concepts – Cost- Out put relations in short run

	long run- Revenue curves – Break-Even Analysis.							
	UNIT – III							
	THEORY OF PRICING : Classification of markets – Pricing under perfect Competition – Pricing under Monopoly – Price discrimination – Monopolistic Competition.							
	UNIT – IV							
	TYPES OF BUSINESS ORGANIZATIONS: Sole proprietorship, partnership and Joint Stock Company – Shares and debentures.							
	BANKING SYSTEM : Central bank, Commercial banks and their functions. Impact of technology in banking sector.							
	$\mathbf{UNIT} - \mathbf{V}$							
	FINANCIAL ACCOUNTING : Concepts and principles, Journal and Ledg Trial Balance, Final Accounts: Trading account, Profit and Loss account a Balance sheet (Simple Final account problems without adjustments).							
	UNIT-VI							
	FUNDAMENTAL CONCEPTS OF CAPITAL AND CAPITAL BUDGETING: Factors and Sources of Capital -Meaning, process and Methods Capital budgeting (Payback period, NPV, ARR & IRR- simple problems).							
Textbooks	TEXT BOOKS:							
& Reference books	 Varshney & Maheswari: <i>Managerial Economics</i>, S. Chand Publishers. C. B. Gupta, <i>Business Organizations</i>, S. Chand Publishers A. R. Arya Sri, <i>Managerial Economics and Financial Accounting</i>, Tata McGraw Hill publishers. 							
	REFERENCE BOOKS:							
	 S. Sankaran, <i>Economic Analysis</i>, Margham Publications. S. N. Maheswari and S. K. Maheswari, <i>Financial Accounting</i>, Vikas Publishers. 							
	3. S. A. Siddiqui and A. S. Siddiqui, <i>Managerial Economics & Financial Analysis</i> , New age International Space Publications.							

CO-PO Mapping: 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping,Not M	Mapping
---	---------

	a	b	c	d	e	f	g	h	i	j	k	l
CO1	-	-	-	-	-	-	-	1	-	-	-	2
CO2	-	-	-	-	-	-	-	-	-	-	-	1
CO3	-	-	-	-	-	-	-	1	-	-	-	1
CO4	-	-	-	-	-	-	-	-	-	-	-	1
CO5	-	-	-	-	-	-	-	-	-	-	3	1
CO6	-	_	_	_	_	-	-	-	_	-	3	1

<u> 19CE2201 - STRUCTURAL ANALYSIS - I</u>

Course Category	Professional Core	Credits	3
Course Type	Theory	Lecture - Tutorial - Practical	2-1-0
Prerequisite	Engineering	Sessional Evaluation	40
	Mechanics & Strength of	Semester End Exam Evaluation	60
	Strength of Materials	Total Marks	100

Course	1 T	's understand the various methods for selevisting slong and deflection of
Course Objectives		o understand the various methods for calculating slope and deflection of
Objectives	_	eams.
		o analyze the columns for different end conditions subjected to axial load
		nd moments.
		o analyze the sections for stresses subjected to direct load and moment
		nd understand the concept of cables.
		o be capable of analysing and drawing of shear force and bending
		noment diagrams of propped cantilever and fixed beams under various
	lo	bading conditions including effect of sinking of supports.
		o be able to analyze and draw the shear force and bending moment
		iagrams of continuous beams using Clapeyron's theorem of three noments.
		o understand the concept of energy theorems and be able to calculate the
		lope and deflection of beams.
Course	C01	Determine the slope and deflection of determinate beams under various
Outcomes		loading conditions.
	CO2	Analyze the columns subjected to different loading conditions.
	CO3	Analyze the sections for stresses subjected to direct load and moment
		and analysis of cables.
	CO4	Calculate and draw SFD and BMD for propped and fixed beams.
	CO5	Calculate and draw SFD and BMD for continuous beams using
	CO5	Calculate and draw SFD and BMD for continuous beams using Clapeyron's theorem.
	CO5 CO6	Clapeyron's theorem.
	CO6	Clapeyron's theorem. Understand energy theorems and apply the same to analyze the structures.
	CO6	Clapeyron's theorem. Understand energy theorems and apply the same to analyze the structures. If the concepts covered in every unit must be demonstrated using an
	CO6	Clapeyron's theorem. Understand energy theorems and apply the same to analyze the structures.
	CO6	Clapeyron's theorem. Understand energy theorems and apply the same to analyze the structures. If the concepts covered in every unit must be demonstrated using an

	UNIT – I
	SLOPE AND DEFLECTION OF STATICALLY DETERMINATE
Course	BEAMS: Relationship between curvature, slope and deflection (Differential
Content	equation for the elastic line of a beam) - Slope and deflection of cantilevers
content	and simply supported beams by double integration method, Macaulay's

method, moment area method and conjugate beam method for point loads, uniformly distributed loads and combination of these loads.

UNIT – II

COLUMNS: Introduction – Unsupported and effective lengths of columns – Slenderness ratio – Types of columns – Types of failure of columns – Crippling load. Assumptions made in Euler's theory – Expressions for Euler's crippling load of columns for various end conditions; limitations of Euler's theory; Introduction to expression for Rankine's theory Eccentrically loaded columns (without initial curvature).

UNIT – III

DIRECT AND BENDING STRESSES: Stresses under the combined action of direct loading and B.M. – Core of a section – Circular, rectangular (solid and hollow) and triangular.

CABLES: Assumptions, Parabolic and Catenary cables.

UNIT – IV

ANALYSIS OF STATICALLY INDETERMINATE BEAMS:

PROPPED CANTILEVER BEAMS: Analysis of propped cantilevers for point loads uniformly distributed loads and couple – Shear force and bending moment diagrams.

FIXED BEAMS: Analysis of fixed beams for point loads, UDL, uniformly varying load, couple shear force and bending moment diagrams – Effect of sinking of supports.

UNIT – V

ANALYSIS OF CONTINUOUS BEAMS: Introduction – Clapeyron's theorem of three moments – Analysis of continuous beams with constant moment of inertia with one or both ends fixed – Continuous beam with overhang – Continuous beam with different moment of inertia for different spans – Effect of sinking of supports – Shear force and bending moment diagrams.

UNIT – VI

ENERGY THEOREMS: Strain energy due to axial load, bending moment and shear force – Maxwell's reciprocal's, Betti's theorems – Castigliano's first theorem and unit load method – Deflection of simple beams and pin -jointed trusses.

Textbooks and Reference books	 TEXTBOOKS: 1. T. S. Thandavamoorthy, <i>Structural Analysis</i>, Oxford University Press, 2011. 2. R. Vaidanathan, Dr. P. Perumal, <i>Structural Analysis</i>, Laxmi Publications, Revised edition, 2019. 3. R. K. Bansal, <i>A Text Book of Strength of Materials</i>, Laxmi Publications, 6th edition, 2019.
	 REFERENCE BOOKS: 1. G. S. Pandit, S. P. Gupta, R. Gupta, <i>Theory of Structures</i>, Vol. I, McGraw Hill Publications. 2. C. K. Wang, <i>Intermediate Structural Analysis</i>, McGraw Hill Education, Indian edition, 2017. 3. V. N. Vazirani, M. M. Ratwani, <i>Analysis of Structures</i> Vol. I & II, Khanna Publishers.

CO-PO Mapping: 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

	a	b	c	d	e	f	g	h	i	j	k	1
CO1	3	3	3	2	2	1	1	-	2	1	2	3
CO2	3	3	3	2	2	1	1	-	2	1	2	3
CO3	3	3	3	2	2	1	1	-	2	1	2	3
CO4	3	3	3	2	2	1	1	-	2	1	2	3
CO5	3	3	3	2	2	1	1	-	2	1	2	3
CO6	3	3	3	2	2	1	1	-	2	1	2	3

<u>19CE2202 - DESIGN OF REINFORCED CONCRETE STRUCTURES</u>

Course Category	Professional Core	Credits	3
Course Type	Theory	Lecture – Tutorial –Practical	2-1-0
Prerequisite	Strength of	Sessional Evaluation	40
	Materials	Semester End Exam. Evaluation	60
		Total Marks	100

0												
Course	1. To understand the basic principles of IS: 456-2000 in design of reinforced concrete elements.											
Objectives	2. To design the reinforced concrete beams and slabs subjected to flexure											
	shear, torsion and bond.											
	 To design the reinforced concrete compression members under axial load and moment. 											
	 4. To design different types of isolated footings. 5. To understand the serviceability conditions of reinforced concrete flexural 											
	members.											
	6. To gain in-depth knowledge of staircases and able to design the dog-											
	legged staircase.											
C	CO1 Understand the design animality of asinformed examples											
Course Outcomes	CO1 Understand the design principles of reinforced concrete members.											
Outcomes	CO2 Design singly and doubly reinforced rectangular and flanged beams for											
	flexure, shear, torsion and bond.											
	CO3 Carry out design and detailing of different types of slabs.											
	CO4 Carry out design and detailing of columns for various loading											
	conditions.											
	CO5 Carry out design and detailing of different types of footings under axial											
	load.											
	CO6 Analyze reinforced concrete members for serviceability conditions.											
IMP: At the	end of the course work, complete analysis and design of a RC building must											
be explained	using an appropriate software. This should be followed by an exercise.											
	UNIT – I											
Course	DESIGN PRINCIPLES: Basic design principles – Stress Strain curves of											
Content	concrete and steel – Characteristic strengths and loads – Partial safety factors –											
Content	Stress block – Various limit states.											
	DESIGN FOR FLEXURE: Limit state of collapse in flexure – Ultimate											
	flexural strength – Balanced, under and over – Reinforced sections – Design of											
	singly and doubly reinforced rectangular beams – Design of flanged beams.											
	UNIT – II											
	DESIGN FOR SHEAR, TORSION AND BOND : Shear – Truss analogy –											
	Design of beams for shear and torsion – Anchorage and development length.											

	TINITE TT
	UNIT – III DESIGN OF SLABS AND BEAMS: Design of one way and two way slabs-
	Design of continuous beams and slabs.
	Design of continuous beams and stabs.
	UNIT – IV
	DESIGN OF COMPRESSION MEMBERS: Columns – Reduction factors –
	Axially loaded, eccentrically loaded columns - Uni-axial moment - Biaxial
	moment (Biaxial moment for practice only and not for university
	examination).
	UNIT – V
	DESIGN OF FOUNDATIONS: Types of footings- Design of isolated
	(Square, Rectangular and Circular) footings subjected to axial load.
	UNIT – VI
	DESIGN OF STAIR CASE: Types of staircase – Specifications – Design of
	doglegged stair case.
	LIMIT STATES OF SERVICEABILITY: Deflection (short and long term)
	- Cracking.
	Clacking.
	TEXTBOOKS:
Textbooks	1. Dr. B. C. Punmia, Ashok Kumar Jain, Arun Kumar Jain, RCC Designs
and Reference	(Reinforced Concrete structures), Laxmi Publications, 10 th edition,
books	2019.
	2. N. Krishna Raju, R. N. Pranesh, <i>Reinforced Concrete Design: IS: 456-</i>
	2000 Principles and Practice, New Age International (P) Ltd.
	Publishers, 1 st edition, 2018.
	3. Unni Krishna Pillai, Devdas Menon, <i>Reinforced Concrete Design</i> , Tata McGraw-Hill Educational Private Ltd., 3 rd edition, 2017.
	REFERENCE BOOKS:
	1. S. N. Sinha, <i>Reinforced Concrete Design</i> , Tata McGraw-Hill
	Educational Private Ltd., 3 rd edition, 2017.
	2. Dr. Ramchandra, <i>Reinforced Concrete Structures (Limit State Design)</i> ,
	Rajsons Publications Pvt. Ltd, 3 rd edition, 2014.
	3. S. R. Karve & V. L. Shah, Limit State Theory and Design of
	Reinforced Concrete, Structures Publications, 8th edition, 2014.
	4. Plain and Reinforced Concrete – Code of practice (IS: 456-2000).
	ming: 3-High Manning, 2-Moderate Manning, 1-Low Manning,Not Manning

Г

CO-PO Mapping: 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

	a	b	с	d	e	f	g	h	i	j	k	l
CO1	3	3	3	2	2	-	-	2	-	-	2	3
CO2	3	3	3	3	3	-	1	2	-	-	3	3
CO3	3	3	3	3	3	-	1	2	-	-	3	3
CO4	3	3	3	3	3	-	1	2	-	-	3	3
CO5	3	3	3	3	3	-	1	2	-	-	3	3
CO6	3	3	2	3	2	1	2	2	-	-	2	3

19CE2203 - HYDRAULICS AND HYDRAULIC MACHINERY

Course	Professional Core	Credits	3
Category			
Course Type	Theory	Lecture - Tutorial - Practical	2-1-0
Prerequisite	Engineering	Sessional Evaluation	40
	Mathematics- I &II, Fluid Mechanics.	Semester End Exam. Evaluation	60
	T fuid Wicenames.	Total Marks	100

Course	1. To understand the concepts of dimensional analysis and its importance
Objectives	in modeling.
	2. To understand the concepts of boundary layer, drag and lift acting on a body.
	3. To understand the basics of open channel flow for sectional design.
	 To examine the hydraulics of open channel flow.
	5. To study the forces exerted by a jet on plates and there by understand
	the performance of the turbines.
	6. To understand the working principle and characteristics of centrifugal
	pump
Course	CO1 Apply the concepts of modeling and similitude for a given flow
Outcomes	condition.
	CO2 Illustrate the fundamental characteristics of the boundary layer and
	compute the lift and drag forces.
	CO3 Design the most economic geometric section of open channel.
	CO4 Analyze open channel flow and calculate key properties of hydraulic
	jump.
	CO5 Compute the forces exerted by a jet of fluid on stationary and moving
	plates and also determine the efficiency of turbine and draft-tube.
	CO6 Compute the losses in centrifugal pump and examine the importance of
	characteristic curves, cavitation and lift.
Course	UNIT – I
Content	DIMENSIONAL ANALYSIS, HYDRAULIC SIMILITUDE & MODEL
	TESTING : Derived quantities; dimensional homogeneity; methods of
	dimensional analysis – Rayleigh's method, Buckingham's Pie-theorem;
	similitude – types and similarities; types of forces acting in moving fluid;
	dimensionless number; model laws.
	UNIT – II
	BOUNDARY LAYER THEORY: Definitions – types of boundary layer;
	boundary layer theory, types of boundary layer thickness; drag force on a flat
	plate due to boundary layer; separation of boundary layer- effects and
	prevention.
<u> </u>	

	UNIT – III
	OPEN CHANNEL FLOW – I: Types of flow in channel; geometric properties of channel section; velocity distribution in a channel section; uniform flow in channels – Chezy's formula, Ganguillet-Kutter formula, Bazin's formula, Manning's formula; most economical channel section; specific energy & critical depth, critical flow and its computation – rectangular channel section; determination of mean velocity of flow in channel.
	UNIT – IV OPEN CHANNEL FLOW – II: Gradually varied flow: dynamic equation of gradually varied flow; classification of channel bottom slopes and surface profiles; characteristics of surface profiles; hydraulic jump – assumptions, hydraulic jump in rectangular channel, types and application of hydraulic jump.
	UNIT – V IMPACT OF JETS: Forces exerted by a jet on a vertical plate, inclined plate and curved plate - stationary and moving.
	HYDRAULIC TURBINES: Turbines – classification of turbines; definitions of heads and efficiencies of a turbine; Pelton wheel, Francis turbine, Kaplan turbine – velocity triangles, work done & efficiency; draft tube- classification, functions of draft tube; specific speed – derivation, significance, unit quantities and its uses; performance characteristics curves of hydraulic turbines; selection of turbines.
	UNIT – VI CENTRIFUGAL PUMPS – I: Components of centrifugal pump; work done by impeller of the centrifugal pump; head of the pump – suction head, delivery head, static head; losses and efficiency of centrifugal pump – manometric, mechanical, overall; minimum speed for a centrifugal pump; multistage centrifugal pump – parallel, series; expression for specific speed of a centrifugal pump.
	CENTRIFUGAL PUMPS – II: Unit quantities; priming of a centrifugal pump; characteristic curves of centrifugal pump; cavitation; maximum suction lift, Net Positive Suction Head (NPSH).
Textbooks and Reference books	 TEXTBOOKS: 1. Dr. P. N. Modi, Dr. S. M. Seth, Hydraulics and Fluid Mechanics Including Hydraulics Machines, Standard Book House, 21st edition, 2017. 2. R. K. Bansal, A Textbook of Fluid Mechanics and Hydraulic Machines, Laxmi Publications, 10th edition, 2018. 3. K Subramanya, Flow in Open Channels, Tata McGraw-Hill Educational Private Ltd., 5th edition, 2019.

REFERENCE BOOKS:

- 1. Madan Mohan Das, *Open Channel Flow*, PHI Publications, 3rd edition, 2009.
- 2. Ven Te Chow, *Open-Channel Hydraulics*, The Blackburn Press, 7th edition, 2009.
- Terry W Sturm, Open Channel Hydraulics, Tata McGraw-Hill Educational Private Ltd., 2nd edition.

CO-PO Mapping: 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

	a	b	С	d	e	f	g	h	i	j	k	l
CO1	3	3	3	3	2	-	-	-	1	-	1	2
CO2	3	2	2	2	1	-	-	-	1	-	2	2
CO3	3	3	3	3	-	-	1	-	1	-	3	2
CO4	3	2	1	2	1	-	-	_	1	_	2	2
CO5	3	3	3	3	2	1	-	-	2	-	2	2
CO6	3	2	3	3	1	2	-	-	2	-	3	2

19CE2204 - ENGINEERING GEOLOGY

Course Cate	gory	Professional Core	Credits	2								
Course Type	e	Theory	Lecture - Tutorial - Practical	2-0-0								
Prerequisite		None	Sessional Evaluation	40								
			Semester End Exam. Evaluation	60								
			Total Marks	100								
Course	1.	To introduce the basic concepts of geology, mineralogy and petrology										
Objectives		in identification of ro										
			concepts of geomorphology.	1 1100								
	3.	geological structures	To introduce the basic concepts of structural geology and different									
	4		basic core logging, basic properties (of rocks and								
		calculate thickness of		of footing und								
	5.	To know the general	geological hazards and its mitigation.									
	6.	To apply the geolog	gical concepts for suitable site select	ion of major								
		civil engineering stru										
Course Outcomes	CO1		ance of geology in civil engineering an	nd identify								
Outcomes		various minerals and										
	CO2	Classify surface geole	ogical process and landforms of Earth	surface.								
	CO3	Identify various geolo	ogical structures.									
	CO4	Understand basic pro	perties of rock and its quality.									
	CO5	Summarize the differ	ent geological hazards.									
	CO6	Apply the geological	concepts for suitable site selection of a	major civil								
		engineering structure	s.									
			UNIT - I									
	INTF	RODUCTION : Branch	les of geology useful to Civil Enginee	ring – Scope								
		of geological studies in GSI, NIRM. Role of engineering geologist in planning,										
	design and construction of civil engineering structural features.											
a		MINERALOGY : Definition, origin and physical properties of minerals and										
Course Content	miner	gascopic identification of common rock forming, economic and clay										
Content	miner	4 415.										
	PETI	ROLOGY: Definition	n, origin (Rock cycle), textures, str	ructures and								
		•	sedimentary and metamorphic rock	-								
		-	ous rocks –Granite, Rhyolite; Basic igr									
			lt; Physical identification of sedimen	•								
	-		dstone, Mudstone and Shale, Limesto	-								
	luelit	lentification of metamorphic rocks –Gneiss, Schist, Slate, Marble, Quartzite.										

UNIT - II

PHYSICAL GEOLOGY: Factors causing weathering, erosion and denudation. Soil as product of weathering and engineering consideration, its profile and types in India. Geomorphologic (landforms) features of various geological agents as Water fall, Gorges, River meandering, superficial deposits, alluvium, glacial deposits, laterite (engineering aspects), desert landforms, loess, residual deposits of clay with flints, solifluction deposits, mudflows, coastal deposits.

UNIT - III

BASICS OF STRUCTURAL GEOLOGY: Concept of rock deformation and plate tectonics. Geological Structural elements as Dip and Strike. Fold: classification and nomenclature, Criteria for their recognition in the field. Faults: Classification, nomenclature and their recognition in the field. Types of joints, unconformity.

UNIT - IV

PROPERTIES OF ROCKS: Properties of rocks – Density, unit weight, porosity; Strength index measurements of rocks – RMR, RQD and point load. Core logging; Calculation of true thickness and vertical thickness of bed rock.

UNIT - V

GEOLOGICAL HAZARDS: Rock instability and slope movement: Concept of sliding blocks – Different controlling factors – Instability in vertical rock structures and measures to prevent collapse –Types of landslide and their prevention. Ground water: Factors controlling water bearing capacity of rock – Pervious and impervious rocks and lowering of water table. Earthquake: Magnitude and intensity of earthquake. Seismic zones in India. Importance in civil engineering.

UNIT - VI

GEOLOGICAL INVESTIGATION FOR DAMS, RESERVOIRS AND TUNNELS: Required geological consideration for selecting dam (geological profile from catchment area to dam site, topography, slope, drainage system.), reservoir and tunnel site. Failure of Reservoir. Favorable & unfavorable conditions in different types of rocks in presence of various structural features, precautions to be taken to counteract unsuitable conditions for dams, reservoirs and tunnels. Two case studies on failure of dams due to ignorance of geological aspects.

Textbooks and Reference books	 TEXTBOOKS: Parbin Singh, <i>Engineering and General Geology</i>, S K Kataria & Sons, 2013. P. C. Varghese, <i>Engineering Geology for Civil Engineers</i>, PHI Learning Private Ltd., 2012. Subinoy Gangopadhyay, Engineering <i>Geology</i>, Oxford University Press, 2013.
	REFERENCE BOOKS:
	 K. M. Bangar, Principles of Engineering Geology, Standard Publishers, 2009. N. W. Gokhale, A Manual of problems in structural geology, CBS Publishers, 2018. Dimitri, P. Krynine, William R. Judd, Principles of Engineering Geology and Geotechnics, CBS Publishers and Distributers Private Ltd. 2018.

CO-PO Mapping: 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

	a	b	c	d	e	f	g	h	i	j	k	l
CO1	-	2	-	-	-	-	-	-	-	-	-	1
CO2	-	-	-	-	-	-	1	-	2	-	-	-
CO3	-	-	-	2	-	-	-	-	-	2	-	-
CO4	-	2	-	-	-	-	-	-	-	-	1	-
CO5	-	-	-	1	_	-	2	-	-	-	-	_
CO6	-	-	-	2	-	-	-	-	-	-	-	-

<u> 19MC2201 – ENGINEERING ETHICS</u>

Course Category	Mandatory Course	Credits	-
Course Type	Theory	Lecture - Tutorial - Practical	2 - 0 - 0
Prerequisite	None	Sessional Evaluation	40
		Semester End Exam Evaluation	60
		Total Marks	100

Course	1.	To create awareness on engineering ethics providing basic knowledge
Objectives		about engineering ethics, professional ideals and virtues.
	2.	To provide basic familiarity about engineers as responsible
		experimenters, research ethics, Industrial standards.
	3.	To inculcate knowledge and exposure on safety and risk, risk benefits
		analysis.
	4.	To have an idea about the collegiality and loyalty, collective bargaining,
		confidentiality, occupational crime.
	5	To explain concept of intellectual property rights.
	6.	
	0.	computer ethics, honesty, moral leadership and sample code of conduct.
		computer etities, nonesty, moral leadership and sample code of conduct.
Course	CO1	Understand the basic perception of profession, professional ethics,
Outcomes		various moral issues & uses of ethical theories.
	<u> </u>	
	CO2	Understand various social issues, industrial standards, code of ethics and
		role of professional ethics in engineering field.
	CO3	Solve ethical problems.
	CO4	Aware of responsibilities of an engineer for safety and risk benefit
		analysis.
	<u> </u>	
	CO5	Aware of professional rights and responsibilities of an engineer.
	CO6	Perform various roles of engineers in variety of global issues and able to
		apply ethical principles to resolve situations that arise in their
		professional lives.
		UNIT-I
	Introc	luction to professional ethics: Basic concepts – Governing ethics –
		ghts of ethics, ethics and Indian philosophy - Contemporary Indian
		sophies, engineering ethics, ethics and law – Space shuttle challenger
Course	-	ent and other recent case studies.
Content	ucera	
		UNIT-II
	Profe	ssionalism – Profession, Engineering as a profession, difference between
		eering and other professions and codes of ethics.
	engin	and other professions and codes of ethics.

	Ethical problems- moral theories, utilitarianism, cost benefit analysis, Duty and right ethics, virtue ethics – Intel Pentium Chip, Runway concrete at the Denver International Airport and other recent case studies.						
	UNIT-III						
	Techniques for solving ethical problems – Line drawing method and flow chart method - The Disaster at Bhopal, and other significant national and international case studies.						
	UNIT-IV						
	Risk, safety- factors, engineers and safety and accidents- types of accidents – Designing for safety, risk benefit analysis – The crash of valujet flight 592, firestone tires and other recent incidents.						
	UNIT-V						
	Rights and responsibilities of engineers – Ethics in research – Computer ethics – Experimentation. Case studies – Goodrich A7-D Brake case, kevin mitnick and computer hacking, etc.						
	UNIT-VI						
	Global issues in professional ethics: Introduction – Current scenario – Business ethics and corporate governance – Media ethics – Bio ethics – War ethics – Intellectual property rights.						
Touthooks	TEXTBOOKS:						
Textbooks and Reference	 Charles B. Fleddermann, <i>Engineering Ethics</i>, Pearson Education, 4th edition, 2012. 						
books	 M. Govindarajan, S. Natarajan, V. S. Senthilkumar, <i>Engineering Ethics</i> (<i>Includes Human Values</i>), PHI Publications, 12th edition, 2012. Jayshree Suresh and B.S. Raghavan, <i>Human Values and Professional</i> <i>Ethics</i>, S Chand, 3rd revised edition, 2005. 						
	REFERENCE BOOKS:						
	 R. S. Naagarazan, A Text Book on Professional Ethics and Human Values, New Age International publishers, 2nd edition, 2017. Mike W. Martin, Roland Schinzinger, Ethics in engineering, McGraw Hill Education, 4th edition, 2005. William Lillie, An Introduction to Ethics, University Paperbacks, 2006. 						

CO-PO Mapping	: 3-High Mapping	, 2-Moderate Mapping,	1-Low Mapping.	Not Mapping
		,		

	a	b	с	d	e	f	g	h	i	j	k	1
CO1	2	-	-	-	-	2	3	3	2	-	2	1
CO2	1	1	-	-	-	3	2	3	2	-	2	1
CO3	-	-	-	-	-	3	2	3	2	-	2	1
CO4	2	-	-	-	-	3	3	3	-	-	2	1
CO5	1	-	-	2	-	3	3	3	2	-	2	2
CO6	-	-	-	-	-	3	3	3	1	-	2	1

<u>19CE22P1 - FLUID MECHANICS & HYDRAULIC MACHINERY LABORATORY</u>

Course Category	Professional Core	Credits	1.5
Course Type	Laboratory	Lecture - Tutorial - Practical	0-0-3
Prerequisite	Fluid Mechanics	Sessional Evaluation	40
		Semester End Exam. Evaluation	60
		Total Marks	100

Course Objective(s)		b impart knowledge of evaluating various flow measuring devices and adraulic machines.								
Course	CO1	CO1 Calibration of orifice and mouthpiece.								
Outcomes	CO2 Determination of efficiency of notches, venturimeter and meter.									
	CO3	Evaluate the major and minor losses in pipe network.								
	CO4	Evaluate the performance characteristics of pump.								
	CO5	Evaluate the performance characteristics of turbine.								
	CO6	Evaluate the Chezy's and Manning's coefficient in open channel flow.								
	I. EX	LIST OF EXPERIMENTS PERIMENTS ON CALIBRATION OF								
Course Content	П. Е	 a. Orifice b. Mouth piece c. Notch d. Venturimeter e. Orifice meter f. Bend meter g. Friction loss through a pipe h. Gate valve i. Bend loss j. Sudden contraction k. Sudden Expansion l. Open channel XPERIMENTS ON PERFORMANCE CHARACTERISTICS OF a. Turbines b. Pumps 								

	a	b	С	d	e	f	g	h	i	j	k	l
CO1	3	2	1	2	2	-	-	-	1	2	1	1
CO2	3	3	2	2	1	-	-	-	1	3	1	2
CO3	3	3	1	1	1	-	-	-	1	2	2	1
CO4	3	2	1	2	2	2	-	-	1	2	2	1
CO5	3	3	2	2	1	2	-	-	1	3	1	2
CO6	3	2	1	2	2	-	-	-	1	2	1	1

CO-PO Mapping: 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

<u> 19CE22P2 - ENGINEERING GEOLOGY LABORATORY</u>

(Orth Engineering)						
Course Category	Professional Core	Credits	1.5			
Course Type	Laboratory	Lecture - Tutorial - Practical	0-0-3			
Prerequisite	None	Sessional Evaluation	40			
		Semester End Exam Evaluation	60			
		Total Marks	100			

Course	To ur	To understand various geological aspects of minerals, rocks and landforms for their						
Objective (s)	applica	ation to engineering projects.						
Course	CO1	Identify the minerals using basic geologic classification systems.						
Outcomes	CO2	dentify the rocks using basic geologic classification systems.						
	CO3	Categorize the various landforms of the Earth surface.						
	CO4	Calculate the elements of structural geology and thickness of rock strata.						
	CO5	Study the structural elements of surface and subsurface strata.						
	CO6	Interpret various types of topographical and geological maps.						
Course Content	1. 2. 3. 4. 5. 6. 7.	LIST OF EXPERIMENTS.Study of physical properties of mineralsIdentification of mineralsIdentification of mineralsIdentification of RocksStudy of Dipping beds and their thicknessStudy of Dipping beds and their thicknessStudy of true dip, apparent dip and strike direction of bedsThree point problem or Borehole problemStudy of geological maps ofi.Horizontal bedsii.Dipping bedsiii.Dipping beds with dykeiv.Folded bedsv.Faulted bedsvi.Beds with unconformityvii.Completion of outcrop						
	8.	Study of geological models						
	9.	Aqua meter- Demonstration						

	a	b	c	d	e	f	g	h	i	j	k	1
CO1	-	2	-	_	-	-	-	_	-	-	_	-
CO2	-	2	-	-	-	-	-	-	-	-	-	-
CO3	-	-	-	-	-	-	2	-	-	-	-	-
CO4	-	-	-	2	-	-	-	-	-	1	-	-
CO5	_	2	-	-	-	-	_	-	-	_	-	-
CO6	-	-	-	2	-	-	-	-	-	-	-	-

CO-PO Mapping: 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping