INSTITUTE VISION

To emerge as a comprehensive Institute that provides quality technical education and research thereby building up a precious human resource for the industry and society.

INSTITUTE MISSION

- To provide a learner-centered environment that challenges individuals to actively participate in the education process.
- To empower the faculty to excel in teaching while engaging in research, creativity and public service.
- To develop effective learning skills enabling students pick up critical thinking thus crafting them professionally fit and ethically strong.
- To share human and academic resources with industries, schools and public agencies through partnerships and outreach activities.

VISION OF THE DEPARTMENT

To become an excellent centre for technical education and research in the field of mechanical engineering to meet the societal, regional, national and global challenges.

MISSION OF THE DEPARTMENT

- M1: To impart quality technical education and transform bud engineers into an effective and responsible engineers to work with the current technologies in multi-cultural and multi-discipline environment.
- M2: To encourage the students to develop their creativity in the field of mechanical engineering by providing modern laboratory facilities with hands on training and contemporary curriculum.
- M3: To develop the interaction with the Industry experts to gain practical knowledge.
- M4: To provide best teaching & learning practices as well as creating opportunities for Research, maximise student results and placements.
- M5: To inculcate and promote lifelong learning skills, problem solving skills, leadership qualities and team work.

	PROGRAMME EDUCATIONAL OBJECTIVES (PEOS)
PEO 1:	A strong foundation to access, analyze, plan and implement their knowledge in
12011	basic sciences & mathematics, core and interdisciplinary courses.
PEO 2:	Graduate will be in a position to work with the members of multi-disciplinary
110 1	teams and can play a leading role in handling the technical issues.
PEO 3:	Graduates will have capability to work with modern engineering tools,
1105.	software and equipment under the realistic constraints.
PEO 4:	Graduates will engage in lifelong learning skills with research attitude and
1 EO 4.	social responsibility.
	PROGRAM OUTCOMES
PO1	Engineering knowledge: Apply the knowledge of mathematics, science,
	engineering fundamentals, and engineering specialization to the solution of
	complex engineering problems.
PO2	Problem analysis: Identify, formulate, research literature, and analyze
102	engineering problems to arrive at substantiated conclusions using first
	principles of mathematics, natural, and engineering sciences.
PO3	Design/development of solutions: Design solutions for complex engineering
	problems and design system components, processes to meet the specifications
	with consideration for the public health and safety, and the cultural, societal,
	and environmental considerations.
PO4	Conduct investigations of complex problems: Use research-based knowledge
	including design of experiments, analysis and interpretation of data, and
	synthesis of the information to provide valid conclusions.
PO5	Modern tool usage: Create, select, and apply appropriate techniques,
	resources, and modern engineering and IT tools including prediction and
	modeling to complex engineering activities with an understanding of the
	limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual
	knowledge to assess societal, health, safety, legal, and cultural issues and the
	consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability: Understand the impact of the professional
	engineering solutions in societal and environmental contexts, and demonstrate
	the knowledge of, and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and
	responsibilities and norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual, and as a
	member or leader in teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively with the engineering community
	and with society at large. Be able to comprehend and write effective reports
	documentation. Make effective presentations, and give and receive clear
	instructions.
PO11	Project Management and Finance: Demonstrate knowledge and
	understanding of the engineering and management principles and apply these
	to one's own work, as a member and leader in a team, to manage projects and
	in multidisciplinary environments.
PO12	Life-long learning: Recognize the need for, and have the preparation and
	ability to engage in independent and life-long learning in the broadest context
	of technological change. Specific
	PROGRAMME SPECIFIC OUTCOMES
DCO1	Solve engineering mechanics in the error of Debeties and Automation
PSO1 PSO2	Solve engineering problems in the area of Robotics and Automation. Design, Simulate and Analyze using CAD/CAM/CAE tools.

NBKR INSTITUTE OF SCIENCE & TECHNOLOGY: VIDYANAGAR (AUTONOMOUS) (AFFILIATED TO JNTUA ANANTAPURAMU)

I YEAR OF FOUR YEAR B.TECH DEGREE COURSE – I SEMISTER

MECHANICAL ENGINEERING

SCHEME OF INSTRUCTION AND EVALUATION

(With effect from the academic year 2017-2018)

							Evaluation							
S.No	Course Code	Course Title		Instruction Hours/Week		Credits	Sessional Test-I		Sessional Test-II		Total Sessional Marks (Max. 40)	End Semester Examination		Maximum Total Marks
		THEORY	L	Т	D/P		Duration In Hours	Max. Marks	Duration In Hours	Max. Marks		Duration In Hours	Max. Marks	100
1	17SH1101	Functional English	3	-	-	3	2	40	2	40		3	60	100
2	17SH1102	Engineering Chemistry	3	-	-	3	2	40	2	40		3	60	100
3	17SH1103	Numerical Analysis	2	2	-	3	2	40	2	40	0.8*Best of two+0.2*least	3	60	100
4	17CS1102	Introduction to Computing	3	-	2	4	2	40	2	40	of two	3	60	100
5	17ME1101	Elements of Mechanical Engineering	3	-	1	3	2	40	2	40		3	60	100
6	17ME1102	Engineering Mechanics – I	2	2	0	3	2	40	2	40		3	60	100
		PRACTICALS						· · · · · · · · · · · · · · · · · · ·						
7	17SH11P1	English language Laboratory	-	-	3	2	-	-	-	40		3	60	100
8	17SH11P2	Chemistry Laboratory	-	-	3	2	-	-	-	40	Day to Day Evaluation	3	60	100
9	17ME11P1	Engineering Workshop	-	-	2	1	-	-	-	40	and a test (40 Marks)	3	60	100
		TOTAL	16	04	11	24	-	-	-	360		-	540	900

17SH1101- FUNCTIONAL ENGLISH

(Common to all Branches) I B.Tech I Semester

Course Category:	Basic Sciences	Credits:	3
Course Type:	Theory	Lecture-Tutorial-Practical:	3-0-0
Pre-requisite:	Basic Level of LSRW skills	Sessional Evaluation:	40
		External Exam Evaluation:	60
		Total Marks:	100
		External Exam Duration:	3 hrs

Course Objectives	* T * T * T	 Students undergoing this course are expected: To develop their basic communication skills in English To achieve specific linguistic and communicative competence To acquire relevant skills and function efficiently in a realistic working context To inculcate the habit of reading 								
	On su	accessful completion of this course students will be able to:								
	CO1	Correct the error of the sentence; improve language proficiency and face competitive exams; GATE, GRE, TOEFL, GMAT etc.								
Course	CO2	Write clear and coherent passages for social and professional contexts.								
Outcomes	CO3	Acquire considerable flair in using broad range of vocabulary.								
	CO4	Write proposals, business letters.								
	CO5	Draft, speech-building and critical thinking.								
	CO6	Comprehend the advanced level of reading comprehensions.								
		<u>Unit –I</u>								
Course Content	WRI unam items	MMAR : Parts of Speech & Subject- Verb Agreement TING-PARAGRAPH WRITING: Expressions of ideas, concepts etc., in biguous grammatically acceptable and logically coherent manner (in general); In particular skills in sentence construction emphasizing on function of word Basic sentence patterns- framing sentences leading to effective paragraph)								
		<u>Unit-II</u>								
	REA and R	MMAR: Pronoun - Agreement & Usage, Articles: Kinds & Omission of Article DING: Different Reading Strategies: Skimming, Scanning, Inferring, Predicting Responding to content –Guessing from Context and Vocabulary Extension. TING: Letter writing - Formal and Informal Writing								

<u>Unit-III</u>								
 GRAMMAR: Tenses, Conditional Sentences, Non-Finite Verbs: Kinds of Non-Finite Infinitives, Gerund & Participle. WRITING: Dialogue writing: Communicating and presenting ideas effectively a coherently, Exchanging conversation in a group or between two persons directed towar a particular subject. 								
GRAMMAR: Prepositions: Kinds, Position, Adverb usage, Question tags & Transformation of sentences-Degrees of comparison Writing: Telephonic conversations and Etiquettes								
<u>Unit-V</u>								
GRAMMAR: Transformation of sentences- Direct- Indirect Speech, Active- Passive Voice & Modifiers WRITING: Story Writing								
<u>Unit –VI</u>								
GRAMMAR: Simple, Complex, Compound Sentences - Parallelism WRITING: Drafting of Public Speech: Ideas / Content Generation, Structure								
REFERENCE BOOKS:								
 Essential English Grammar: Raymond Murphy, Cambridge University Press Advanced Grammar in Use: Martin Hewings, Cambridge University Press High School English Grammar: Wren and Martin, S Chand Publications Effective Technical Communication: Ashraf Rizvi, Tata Mc Graw Hill Publication 								

17SH1102-ENGINEERING CHEMISTRY

(Common for ME and CE) I B.Tech I Semester (With effect from 2017-18)

Course Category:	Basic science	Credits	3			
Course Type:	Theory	Lecture-Tutorial-Practical:	3-0-0			
Pre-requisite:	Fundamental concepts of	Sessional Evaluation:	40			
-	Chemistry	External Exam Evaluation:	60			
		Total Marks:	100			
		External Exam Duration:	3 hrs			

Course Objectives	 Students undergoing this course are expected to understand: Strengthen the fundamentals of Chemistry and then build an interface of theoretical and experimental concepts with their industrial/ engineering applications. The extension of fundamentals of Electrochemistry to energy storage devices such as batteries and fuel cells is one such example. Know the factors affecting the rate of corrosion and its prevention. Design engineering materials and solve problems related to them. Understand various water softening methods. Understand preparation of polymers and their applications.
Course Outcomes	On successful completion of this course students will be able to:CO1Understand the electrochemical sources of energyCO2Identify and investigate means of protecting metal against corrosion.CO3Understand industrially based engineering materialsCO4Understand the classification of fuels and their analysisCO5Know the disadvantages of hard water and ability to remove hardness by using various methodsCO6Understand the basics of polymers and their preparation and uses in engineering field
	UNIT – I Single electrode potential-explanation and measurement Reference electrodes-hydrogen gas electrode-calomel electrode-glass electrode Electrochemical cells: Lead-Acid storage cells Batteries: Li-ion Batteries Fuel Cells: Hydrogen - Oxygen fuel cell Conductometric titration of strong acid and strong base <u>UNIT – II</u> Definition-classification- theories of corrosion-factors affecting the corrosion- Prevention methods of corrosion-metallic coatings (Electroplating, cementation) and cathodic protection. <u>UNIT-III</u> Electrical insulators: Definition-classification-Characteristics- Application of electrical insulating materials (solid, liquid and gaseous insulators). Refractories: Classification- properties and applications of refractories. Lubricants: Lubricant-Lubrication-classification of lubricants-Properties and applications of lubricating oils.

	
	<u>UNIT – IV</u>
	Classifications of Fuels - Characteristics of fuels - Calorific value – determination – Bomb calorimeter – Boy's gas calorimeter - Theoretical calculation of calorific value. Solid fuels: coal-analysis of coal. Liquid fuels: Petroleum-refining of petroleum - Synthetic petrol – Fischer Tropch's synthesis Gaseous fuel – Flue gas analysis by Orsat's apparatus.
	$\underline{\mathbf{UNIT}} - \mathbf{V}$
	Impurities in water-Hardness of water-Estimation of hardness by EDTA method- Estimation of dissolved oxygen-alkalinity-chlorides in water
	Industrial use of water: For steam generation-troubles in boilers-scale and sludge-priming and foaming-caustic embrittlement-boiler corrosion
Course	Softening methods of hard water: Lime-soda process- Zeolite process-Ion exchange method.
Content	<u>UNIT-VI</u> Introduction to polymers- Polymerization process-types of polymerization Elastomers: natural rubber – vulcanization of rubber – compounding of rubber- Synthetic rubbers: preparation, properties and engineering applications of Buna – N, Neoprene, Thiokol and silicon rubbers Plastomers: Thermosetting and thermoplastics- Preparation, properties and engineering
	applications of PVC, Bakelite, Nylons and Urea-Formaldehyde
	TEXT BOOKS:
	 Engineering Chemistry, First Edition, Jayaveera KN, Subba Reddy GVand RamachandraiahC, McGraw Hill Higher Education, New Delhi, 2013. A Text Book of Engineering Chemistry, 15th Edition, Jain and Jain, Dhanapathi RaiPublications, New Delhi, 2013.REFERENCES:
	REFERENCES:
	1. A Text book of Engineering Chemistry, 12th Edition, SS Dhara,Uma, S. Chand
	Publications, New Delhi, 2010.
	2. Engineering Chemistry, First edition, K.B. Chandra Sekhar, UN.Das and Sujatha
	Mishra, SCITECH Publications India Pvt Limited, 2010.
	3. Engineering Chemistry, First edition, Seshamaheswaramma K and Mridula Chugh, PearsonEducation, 2013.

17SH1103-NUMERICAL ANALYSIS

(Common to all Branches)

I B.Tech I Semester

Course Category:	Basic Sciences	Credits:	3
Course Type:	Theory	Lecture-Tutorial-Practical:	2-2-0
	-		
Pre – requisite:	Intermediate Mathematics	Sessional Evaluation:	40
-		External Exam Evaluation:	60
		Total Marks:	100
		External Exam Duration:	3 hrs

Course Objectives	 Students undergoing this course are expected to understand: The Bisection, False Position, Iteration and Newton-Raphson Methods. The basic concepts of numerical solutions of simultaneous linear and non-linear algebraic equations. The concepts of Interpolation. The concepts of Numerical Differentiation and Integration. The numerical methods to solve Ordinary Differential Equations by using Taylor's series method, Picard's method, Euler's and Modified Euler's Methods and Runge-Kutta methods of 2nd and 4th order. The concepts of Curve Fitting and Regression Analysis. 						
	After completing the course the student will be able to						
	CO1 Acquire knowledge in solving algebraic and transcendental equations by using tappropriate numerical methods.						
	CO2 Develop skills in analyzing the simultaneous linear and non-linear algebraic equal by various numerical methods.						
	CO3	Attains skills in analyzing the methods of interpolating the given data.					
Course	CO4	Acquire knowledge in Numerical Differentiation by Newton's formula and in Numerical Integration by Trapezoidal, Simpson's 1/3 and Simpson's 3/8 rules.					
Outcomes	CO5	Apply appropriate numerical methods to solve Ordinary Differential Equations.					
	CO6	Develop skills in designing mathematical models for fitting geometrical curves to the given data and also acquire knowledge in Regression Analysis.					

	LINIT I
	<u>UNIT – I</u> SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS:Bisection - False position- Iteration - Newton-Raphson Methods.
	<u>UNIT - II</u>
Course Content	SOLUTION OF SIMULTANEOUS LINEAR AND NON-LINEAR ALGEBRAIC EQUATIONS: Iteration method - Gauss Jordon method - Gauss Elimination with Pivotal condensation method - Triangular Factorization method - Gauss-Seidal method - Newton- Raphson method.
	<u>UNIT – III</u>
	INTERPOLATION: Newton's forward and backward interpolation formula - Lagrange's interpolation - Gauss forward and backward formulae - Stirling's formula.
	<u>UNIT – IV</u>
	NUMERICAL DIFFERENTIATION AND INTEGRATION: First and Second Order Derivatives at given points by Newton's formula. Trapezoidal rule - Simpson's 1/3 rule and Simpson's 3/8 rule.
	<u>UNIT – V</u>
	NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS: Solution by Taylor's Series - Picard's Method of Successive Approximations - Euler's and Modified Euler's Methods - Runge-Kutta Method of 2 nd order and 4 th order.
	<u>UNIT - VI</u>
	CURVE FITTING: Introduction - Method of least squares - Linear and Non-linear equations. Correlation coefficient - Lines of regression - Rank correlation coefficient (Spearman's Rank-Correlation).
Text Books and	TEXTBOOKS:
Reference Books	 Higher Engineering Mathematics-B.S.Grewal, Kanna Publishers, New Delhi. Mathematical Methods - Dr.T.K.V. Iyengar, Dr.B. Krishna Gandhi, S.Ranganatham, Dr.M.V.S.S.N. Prasad, S.Chand Publication, New Delhi.
	REFERENCE:
	 Introductory Methods of Numerical Analysis - S.S. Sastry, Prentice Hall India Learning Private Limited, New Delhi. Numerical Methods - E. Balagurusamy, Tata McGraw-Hill Education Pvt. Ltd, New Delhi.
	 Numerical Methods - E. Balagurusamy, Tata McGraw-Hill Education Pvt. Ltd, New Delhi

17CS1102 -INTRODUCTION TO COMPUTING

(Common to Civil and Mechanical) I B.Tech I Semester (With effect from 2017-18)

Course Category:	Engineering Science	Credits:	4			
Course Type:	Theory	Lecture – Tutorial – Practical:	3-0-2			
Prerequisite:	Basic usage of computer may be required and a few terms must be known in advance.	Sessional Evaluation: External Exam Evaluation: Total Marks: External Exam Duration:	40 60 100 3 hrs			
Course Objectives	 Creating awareness regarding various I/O and Storage devices. Studying the operating system basics. Learning the fundamental blocks of C Programming 					

	Upon	the successful completion of the course, the students will be able to:	
	CO1	CO1 Identify physical components of a computer and their functionalities	
	CO2	Learn, recognize and identify various interactive mechanisms through	
	02	different devices.	
Course	CO3	Study various types of operating systems and properties	
Outcomes	CO4	Learn the fundamental blocks of C language	
	CO5	Understand the basics of formatted I/O, decision statements and its	
	COS	applicability	
	CO6	Gain the knowledge about iterative statements, array fundamentals and	
	000	basic application development.	
		<u>UNIT – I</u>	
Course Content	indivi Handi server are so Healt Insid Hardw	duction to Computers: Overview and definitions, Computers for idual users – Desktop, Workstations, Notebook computers, Tablet and held computers, Smart phones, Computers for organizations – Network rs, mainframes, mini and super computers, Computers in society – why o important, home, Education, Small Business, Industry, Government, hcare, Banking and Communication. e the Computer: Various parts of a Computer System - Software, ware, Data and Users, Information processing cycle, Essential Computer vare - processor, Memory, I/O and Storage, Software and major ories- system software and application software. <u>UNIT – II</u>	

TheMouse –Usage, Variants of mouse, Devices for Hand – Pens, Touch Screens, Game controllers, Optical devices – Bar Code readers, Image scanners and OCR, Monitors – Types, CRT monitors, Flat panel Monitors.

Data Storage: Categories of storage devices, Magnetic – How data is stored and organized on disk, How OS access the data, Diskettes, Hard disks, Removable High-Capacity Magnetic disks, Tape Drives, Optical Storage devices – CD-ROM, DVD-ROM, Recordable Optical Technologies, Solidstate storage devices – Flash Memory, Smart Cards, Solid State Disks.

<u>UNIT – III</u>

OS Basics: types of Operating Systems – Real Time Operating Systems, Single-user/Single-Tasking OS, Single user/Multitasking OS, Multiuser/Multitasking OS, User interfaces – Graphical User Interfaces, Command-Line Interfaces, Running Programs – Sharing information.

$\underline{UNIT} - IV$

Fundamentals of C: History, Structure of a C program, Programming rules and execution.Character set, Delimiters, C keywords, Identifiers, Constants, Variables, Rules for defining Variables, Data types, Declaration and Initialization of Variables.

Operators and Expressions: Introduction, Operator Precedence and Associativity, Operator Types.

<u>UNIT – V</u>

Input and Output in C: Formatted and Unformatted functions, Commonly used libraryfunctions.

Decision Statements: Introduction, Types of If statements, switch statement, Break, continue, goto.

<u>UNIT – VI</u>

Iterative Statements: while, do-while and for loops.

Arrays: Definitions, Initialization, Characteristics of an array, Array Categories.

	Text Book(s):
Text Books and References	 Peter Norton "Introduction to Computers", McGraw Hill Publishers, 7th Edition 2011. Programming with ANSI & TURBO C by Ashok N.Kamthane, Pearson Education 2007 Reference Books: Alex Leon and Mathews Leon "Fundamentals of Information Technology", Vikas Publishers, 2nd Edition 1999. Let Us C byYashwant Kanetkar, BPB Publications. Programming in ANSI C by Balagurusamy 6th Edition, Tata McGraw Hill Education, 2012.
E-	1. https://nptel.ac.in/courses
Resources	2. https://freevideolectures.com/university/iitm

17ME1101-ELEMENTS OF MECHANICAL ENGINEERING

(Only for ME) I B.Tech I Semester (With effect from 2017-18)

Course Category	Programme core	Credits	3
Course type	Theory	Lecture- Tutorial-Practical	3-0-1
Prerequisite	-	Sessional Evaluation:	40
		External Exam Evaluation:	60
		Total Marks:	100
		External Exam Duration:	3 hrs

Course	Students of Machanical Engineering are made to learn fundamentals related		
	Students of Mechanical Engineering are made to learn fundamentals related		
Objectives	to mechanical engineering and provide overview on various mechanical		
<u> </u>	systems.		
Course	After completing the course the student will be able to		
Outcomes	CO1 Understand the concepts of various methods of production		
	processes.		
	CO2 Identify appropriate application of engineering materials		
	CO3 Summarize the working of IC engines		
	CO4 Understand various sources of energy resources and applications.		
	CO5 Grasp the working of refrigeration and air-conditioning systems.		
	CO6 Understand the functions and applications of machine elements in		
	power transmission and suspension.		
Course	UNIT – I		
Content	Basic Manufacturing Methods: Principles of casting, greensand		
	moulding, advantages and applications of casting.		
	Welding: Principles of gas welding and arc welding, soldering and brazing.		
	Metal working: Hot working and cold working processes.		
	UNIT – II		
	Engineering Materials: Types, application of ferrous and non-ferrous metals and alloys.		
	Composites : Definition, classification and applications.		
	Machine Tools: Classification of machine tools, Lathe operations -		
	Turning, Facing, Knurling, thread cutting, Boring, taper turning by		
	swiveling compound rest.		
	UNIT – III		
	Engines: Classification, applications, Components of IC engines, working		
	of 4-stroke petrol engine and diesel engine, working of 2-stroke petrol and		
	diesel engine, comparison of 4- stroke and 2-stroke engines, IC engine performance characteristics.		
	UNIT – IV		
	Energy sources: Forms of energy, sources of energy, classification of		
	energy sources, comparison between renewable and non-renewable energy		
	sources, petroleum based fuels, alternate sources of energy – Nuclear,		
	Solar, Wind and Tidal power.		

	Power plants: Introduction, working principle of hydraulic and steam		
	power plant.		
	UNIT – V		
	Refrigeration and Air-conditioning: Working of domestic refrigeration		
	and Air-conditioning systems, unit of refrigeration, applications of		
	refrigeration and air conditioning system.		
	UNIT – VI		
	Power Transmission: Types – gear, chain, belt drives - Applications.		
	Springs: Classification- Helical and leaf springs, applications.		
	Cams: Types of cams and applications.		
TEXT	1. Elements of mechanical engineering, M.L.Mathur, F.S.Mehtha and		
BOOKS	R.P.Tiwari, Jain Brothers, New Delhi,2008.		
	2. Engineering basics, Saeed Moaveni, Cengage Learning, 2009		
REFERENCE	1. Basic Mechanical Engineering, K.Venugopal, Anuradha Agencies, 2014		
BOOKS	2. An Introduction to Mechanical Engineering, J. Wickert, Cengage		
	Learning,2012		
	3. Elements of Mechanical Engineering, N.Krishnamurthy, H.S.Manohar,		
	Sagar, Baligidad, and published by Sunstarpublishers, 2015.		

17ME1102-ENGINEERING MECHANICS – I (STATICS) (Only for ME) I B.Tech I Semester (With effect from 2017-18)

Course Category	Programme core	Credits	3
Course type	Theory	Lecture- Tutorial-Practical	2-2-0
Prerequisite	Basic physics and mathematics	Sessional Evaluation:	40
-		External Exam Evaluation:	60
		Total Marks:	100
		External Exam Duration:	3 hrs

Course	Students are made to learn	
Objectives	The laws of mechanics, concept of forces and moments.	
	 The conditions of equilibrium of a body and procedure for drawing free body diagrams. The usages of trusses in carrying load and apply procedures for their analysis. The laws of friction, the action of friction on bodies moving on horizontal as well as inclined planes. The basic idea of centre of gravity and compute centroid of plane figures and centre of gravity of solids. The importance of moment of inertia and the methods of calculating area moment of inertia of plane figures and mass moment of inertia of solids. 	
Course	After completing the course the student will be able to	
	After completing the course the student will be able to	
Outcomes	CO1 Understand the concepts of basic engineering mechanics for static structures	
	CO2 Categorize various types of loading and support conditions that act on structural systems	
	CO3 Solve problems using required skills or knowledge in equilibrium of forces and trusses	
	CO4 Demonstrate use of laws of mechanics in simple machines with consideration of friction	
	CO5 Understand the meaning of centers of gravity (mass)/centroids, moments of Inertia and mass moment of inertia.	
	CO6 Solve problem on centers of gravity (mass)/centroids, moments of Inertia and mass moment of inertia	
Course	UNIT – I	
Content	INTRODUCTION TO ENGINEERING MECHANICS: Introduction,	
	Resultant of forces, Resolution of forces, Laws of mechanics – Newton laws,	
	Parallelogram law, Lami's theorem, Law of transmissibility, Triangle and	
	polygon law of forces; System of forces, Varignon's principle, Moment of a	
	force, Couple and equivalent system.	

	UNIT – II	
	EQUILIBRIUM OF COPLANAR FORCE SYSTEM: Principle of	
	Equilibrium – concurrent and non-concurrent force systems, Concept of free	
	body diagram, Support reactions - Types of supports, loads and their	
	reactions.	
	UNIT – III	
	PLANE TRUSSES: Types of engineering structures, Perfect truss- mathematical condition and assumptions, Cantilever frames and simply supported frames – Analysis of frames using method of joints and method of sections for vertical loads, horizontal loads and inclined loads. UNIT – IV	
	FRICTION: Types of friction-Static and Dynamic Frictions, laws of Friction, Limiting friction, Cone of limiting friction, angle of repose, Motion of bodies on inclined planes – Ladder friction.	
	SIMPLE LIFTING MACHINES: Velocity Ratio, Mechanical Advantage	
	and Efficiency of Machines and their relation, self-locking of machine,	
	Simple Screw Jack – Effort required to raise and lower the load.	
	UNIT – V	
	CENTER OF GRAVITY: Centroid of simple plane figures - Method of	
	moments & Integration method, Centroid of Composite figures.	
	Centre of Gravity of bodies - Integration method, Centre of Gravity of	
	Composite figures.	
	UNIT – VI	
	MOMENT OF INERTIA: Area moment of Inertia, Radius of gyration, Parallel axis and perpendicular axis theorems, Moment of Inertia of some standard geometrical shapes.	
	MASS MOMENT OF INERTIA: Definition, mass moment of inertia of rectangular and circular plate, cylinder, cone and sphere.	
Text Books	 A text book of Engineering Mechanics – Bhavikatti, S.S, "Engineering Mechanics", New Age International (P) Limited Publishers,2014 A text book of Engineering Mechanics – D. R.K. Bansal ,Laxmi 	
	publications (P) Limited, 2016	
	3. Engineering Mechanics – K. L. Kumar, Tata Mc Graw Hill, New	
	Delhi,2010	
Reference	1. Engineering Mechanics: Statics and Dynamics - N.H Dubey, Tata Mc	
Books	Graw Hill, New Delhi,2016	
	2. Engineering Mechanics – S. Timoshenko, D.H. Young – Mc Graw Hill	
	International Edition,2013	
	3. Engineering Mechanics – Statics and Dynamics – Irving H Shames, G	
	Krishna Mohana Rao – Pearson Education,2006	

17SH11P1-ENGLISH LANGUAGE LABORATORY

(Common to all Branches) I B.Tech I Semester

Course Category:	Basic Sciences	Credits:	2
Course Type:	Practical	Lecture-Tutorial-Practical:	0-0-3
Pre-requisite:	Basic Level of LSRW Skills	Sessional Evaluation:	40
		External Exam Evaluation:	60 100
	Total Marks:		
		External Exam Duration:	3 hrs
Course Objectives	The main objective is to develop students' basic skills of communication viz. LSRW in English through which communicative competence can be enhanced and can communicate efficiently in a realistic professional ambience.		
	After completing the course the	student will be able to	
Course Outcomes	-	d in the laboratory are helpful in comprehend acts which are useful for the real life situations	-
Course Outcomes	CO2 These are also helpf communicative level of	ful in enhancing the language competer confidence	ncy and
Course Content	 I. Listening Skills: Listening for Please Listening for Detail II. Speaking Skills: Jam, Extempore Presentations Seminars III. Reading Skills: News Paper Readin IV. Writing Skills: Story Writing Description 1. Object 	s and Listening for Information	
	Publications 2. Pronunciation Dictionary 3. Techniques of Teaching	nguage Laboratories: Dr. D. Sudha Rani , Pea 7: Daniel Jones English: A.L. Kohli Phonetics: For Indian Students: T Balasubrama	

17SH11P2-ENGINEERING CHEMISTRY LABORATORY

(Common for ME and CE)

I B.Tech I Semester

Cours	e Category:	Basic science	Credits:	2	
C	ourse Type:	Practical	Lecture-Tutorial-Practical:	0-0-3	
P	re-requisite:	Fundamental concepts of	Sessional Evaluation:	40	
		Chemistry	External Exam Evaluation:	60	
			Total Marks:	100	
		• 1• .• • . • 1 .	External Exam Duration:	3 hrs	
G		• •	lents to learn about experimental tech ical aspects so that they can excel in t	-	
Course	particul		ical aspects so that they can excer in t	llat	
Objectives	1	eting the course the student v	vill be able to		
		U U	ory are helpful in understanding key c	onconts of	
Course		1	in the experiments by applying	1	
Outcomes		wledge.	in the experiments by upprying	uleoretieur	
		e	deas of the student agree with those ad	ccepted by	
		mistry and where they do not.			
	Minimum of	8 experiments to be completed out of the following:			
		LIST OF	EXPERIMENTS		
	1. Determination of total hardness of water by EDTA method				
	 Determination of Copper by EDTA method 				
	3. Estimation of dissolved oxygen by Winkler's method				
	4. Determination of Acidity of water				
	5. Determination of total alkalinity of water.				
	6. Estimation of chlorides using potassium chromate indicator				
Course	7. Conductometric titration of strong acid Vs strong base.				
Content	8. Determination of pH of unknown solution				
	9. Preparation of Bakelite				
	10. Determination of viscosity of oils with Redwood viscometer				
	Tort Books				
	Text Books:			all nerson	
	1. Vogel's text books of quantitative chemical analysis, Mendham et all, person publications				
	 publications. Chemistry lab manual – KN Jayaveera, Subbareddy & Chandrasekher. 			ıer	
		publications.	nvar anarysis – Chatwai & Ananu III	nanaya	

17ME11P1- ENGINEERING WORKSHOP

(Common to ME and CE) I B.Tech I Semester

Course Category	Engineering Science	Credits	1
Course type	Practical	Lecture- Tutorial-Practical	0+0+2
Prerequisite	-	Sessional Evaluation:	40
		External Exam Evaluation:	60
		Total Marks:	100
		External Exam Duration:	3 hrs

a	• -		
Course	\clubsuit To understand the basic work shop tools and operations such as		
Objectives	carpentry, fitting & sheet metal trades.		
	🔅 To	o understand the basic work tools of house wiring & house wiring	
	cc	nnections etc.	
	✤ Te	o understand the basic joints and manufacturing processes such as	
	fo	oundry and welding.	
Course	After	completing the course the student will be	
Outcomes	CO1	Understand the usage of the general purpose engineering	
		workshop tools	
	CO2	Demonstrate the correct usage of a method or procedure for	
		different engineering trades	
Course Content	1.	Carpentry: Lap joint, Mortise and Tenon joint, Bridle joint.	
	2.	Fitting: Square, V, half round and dovetail fittings	
		Tin-Smithy: Tray, cylinder, hopper, cone	
		House-wiring: One lamp controlled by one switch, Two lamps	
		(bulbs) controlled bytwo switches, Stair- case connection, Water	
	pump connected with single phase starter.		
	5	Foundry : single-piece pattern, Two- piece pattern	
	TRADES FOR DEMONSTRATION:		
	1.	Machine Tools	
		Welding	
		Black Smithy	
Text Books		gineering Work shop practice for JNTU, V. Ramesh Babu, VRB	
Text DOOKS		hers Pvt. Ltd,2009	
		Vork shop Manual / P.Kannaiah/ K.L.Narayana/ SciTech	
		hers,2004	
		gineering Practices Lab Manual, Jeyapoovan, SaravanaPandian,	
	Vikas	publishers,2007.	

NBKR INSTITUTE OF SCIENCE & TECHNOLOGY: VIDYANAGAR (AUTONOMOUS) (AFFILIATED TO JNTUA ANANTAPURAMU)

I YEAR OF FOUR YEAR B.TECH DEGREE COURSE – II SEMISTER

MECHANICAL ENGINEERING

SCHEME OF INSTRUCTION AND EVALUATION

(With effect from the academic year 2017-2018)

			Instruction Hours/Week		_		Evaluation							
S.No	Course Code	Course Title			Credits	Sessional Test-I		Sessional Test-II		Total Sessional Marks (Max. 40)	End Semester Examination		Maximum Total Marks	
		THEORY	L	Т	D/P		Duration In Hours	Max. Marks	Duration In Hours	Max. Marks		Duration In Hours	Max. Marks	100
1	17SH1201	Professional English	3	-	-	3	2	40	2	40		3	60	100
2	17SH1202	Engineering Physics	3	-	-	3	2	40	2	40	– 0.8*Best of	3	60	100
3	17SH1203	Engineering Mathematics-I	3	2	-	4	2	40	2	40	two+0.2*least	3	60	100
4	17EE1204	Basic Electrical & Electronics Engineering	3	-	-	3	2	40	2	40		3	60	100
5	17ME1201	Engineering Mechanics - II	3	2	-	4	2	40	2	40		3	60	100
	PRACTICALS													
6	17ME12P1	Computer Aided Engineering Drawing	-	-	6	3	2	40	2	40		3	60	100
7	17CS12P2	Computer Programming Laboratory	-	-	3	2	-	-	-	40	Day to Day Evaluation and a test	3	60	100
8	17SH12P2	Physics Laboratory	-	-	3	2	-	-	-	40	(40 Marks)	3	60	100
		TOTAL	15	04	12	24	-	-	-	320		-	480	800

17SH1201- PROFESSIONAL ENGLISH

(Common to all Branches) I B.Tech II Semester

Course Category:	Basic Science	Credits:	3
Course Type:	Theory	Lecture-Tutorial-Practical:	3-0-0
Pre-requisite:	Basic Level of LSRW skills	Sessional Evaluation: External Exam Evaluation: Total Marks: External Exam Duration:	60 100

Course Objectives	 ✤ D ♣ A ♣ A er 	 Students undergoing this course are expected to understand: Develop their basic professional writing skills in English Achieve specific linguistic and verbal competence Acquire relevant skills and function efficiently in a realistic professional working environment Inculcate the habit of reading & writing 				
	Upon	Upon successful completion of the course, the students will able to:				
	CO1	Equip verbal proficiency and face competitive exams; GATE, GRE, TOEFL, GMAT etc.				
Course	CO2	Draft professional writings: email drafting, professional Letters, etc. for social and professional contexts.				
Outcomes	CO3	Write effective book reviews and make effective notes in professional environment				
	CO4	Procure considerable knack in using wide range of vocabulary.				
	CO5	Write proposals, business letters, project reports, writing proposals.				
	CO6	Acquire skills: Prepare Speeches in analytical and critical procedures.				

	UNIT –I Data Interpretation: Interpretation and analysis of the data based on text, tables, graphs (linear), charts- bar, pie etc. Verbal: Verbal reasoning- Analogies, Homophones & Homonyms
	UNIT-II Writing: Email Communication- WritingEffective Business Email Verbal: Idioms and Phrases, One word substitutes UNIT-III Analytical Writing: Presenting perspective of an issue- Compare & Contrast, Cause and Effect, Analyze an argument Verbal: Affixes-prefix and suffix, root words, derivatives UNIT-IV Technical Writing:Writing Proposals: Significance; Structure, Style & Writing of Project Reports.
Course Content	Verbal: Synonyms & Antonyms UNIT-V Writing: Introduction to different kinds of materials: Technical & Non-technical- Note Taking and Note Making- identification of important points and precise the content Verbal: Words often confused
	UNIT-VI Book Reviews - Review of a Technical and Non-Technical - a brief written analysis including summary and appreciation Verbal: Sentence Completion
	 . References: A Textbook of English for Engineers and Technologists (combined edition, Vol. 1 & 2); Orient Black Swan 2010. Word Power Made Easy by Norman Lewis A Communicative Grammar of English By: Geoffrey Leech

17SH1202-ENGINEERING PHYSICS

(Common for ME and CE) I B.Tech II Semester

Course Category:	Basic Science	Credits:	3
Course Type:	Theory	Lecture-Tutorial-Practical:	3-0-0
Pre-requisite:	Fundamental Concepts of Physics	Sessional Evaluation:	40
		External Exam Evaluation:	60
		Total Marks:	100
		External Exam Duration:	3 hrs

	Stude	ents undergoing this course are expected to
		xplain the structure of crystalline solids and their uses in X-ray diffraction techniques.
		asic properties of magnetic materials and the uses in Science & Technology. A plain and provide the knowledge about semiconductors and their use in electronic
C		evices.
Course Objectives		escribe the basic principles of communication system and their uses in communication
Objectives		led.
		escribe the characteristics of lasers and their fibers construction and applications in cience & Technology.
		nderstand the behavior of these nanomaterials, quantum phenomena and the limitations
	of	basic physical laws.
	Upon	successful completion of the course, the students will able to:
	CO1	Understand the structure of Crystalline solids and their applications in x-ray
	CO2	diffraction. Understand the concept of magnetization and polarization and applications of magnets
Course	002	and dielectric materials in various disciplines.
Outcomes	CO3	To know the properties of semiconductor materials by projecting the view of energy
	004	bands.
	CO4	Understand the concept of communication system with its applications in the field of Science & Technology.
	CO5	Understand the utilization of laser technology in various disciplines and know the
	00(concept of optical fiber and its applications.
	CO6	Basic ideas about superconductors and nano materials with their uses in various fields of Science & Technology
		UNIT-I
	CRY	STALLOGRAPHY: Introduction – Space lattice – Unit cell – Lattice parameters –
		as lattice – Crystal systems – Packing fractions of SC, BCC and FCC – planes in
		ls – Miller indices – Interplanar spacing in cubic crystals.
	-	Y DIFFRACTION: X-ray diffraction in crystals - Bragg's law of diffraction – X-ray
	diffra	ction techniques - Laue method - powder method (Debye-Scherer method).
Course		<u>UNIT-II</u>
Content		ECTRIC PROPERTIES: Basic definitions, Electronic, Ionic (Quantitative) and
		tation polarizations (Qualitative) – Internal Fields in Solids, Classius – Mossotti
	Equat	
		NETIC MATERIALS: Introduction and basic definitions – Origin of magnetic
		ents – Classification of magnetic materials into dia, para, ferro, antiferro and ferri
	magn	etic materials – Hysteresis – Soft and Hard magnetic materials – Applications of

magnetic materials.

<u>UNIT-III</u>

SEMICONDUCTORS: Intrinsic and extrinsic semiconductors –Electrical Conductivity in Semiconductors – Drift and diffusion currents – Einstein relations – Hall Effect and its applications – Direct and indirect band gap semiconductors.

PHYSICS OF SEMICONDUCTOR DEVICES: Formation of PN Junction, I-V Characteristics of PN Junction Diode, LED, Photo Diode, Solar Cell.

UNIT-IV

Communication System – Principles of Basic Communication System – Digital Communication System – Analog Communication System - Basic Steps for Analog/Digital Conversion – Sampling Theorem.

System-Signal Bandwidth of signal – Signal impairment – Modulation – Different Types - Demodulation Process

<u>UNIT-V</u>

LASERS: Introduction – Characteristics of lasers – Spontaneous and stimulated emission of radiation – Condition for Population inversion – Ruby Laser - He-Ne Laser – Applications of Lasers.

OPTICAL FIBERS: Introduction – Construction and working principle of optical fiber – Acceptance angle –Numerical Aperture – Types of optical fibers – Block diagram of optical fiber communication system – Applications of optical fibers.

<u>UNIT VI</u>

SUPERCONDUCTIVITY: Introduction – effect of magnetic field – Meissener Effect – Type I and Type II superconductors – Flux quantization – BCS theory (Qualitative treatment) – Applications of superconductors.

PHYSICS OF NANO MATERIALS: Introduction – Significance of Nano scale and types of Nano materials – Physical properties: Optical, thermal, mechanical and magnetic properties – Synthesis of nanomaterials by Top down and bottom up approaches: ball mill, chemical vapour deposition and sol gel – Applications of nanomaterials.

TEXT BOOKS:

- 1. Principles of electronics by V.K.Mehtha, Tata Mc Graw Hill.
- 2. Solid State Physics by S.O.Pillai, New Age Publications (Labs edition).
- Introduction to Solid State Physics by Charles Kittel, Wiley India Pvt Ltd, 7th Edition.
- 4. Engineering Physics by R.K.Gaur & S.L.Gupta, Dhanpat Rai Publications.

REFERENCES:

- 1. Modern Engineering Physics by Dr. K. Vijaya Kumar, Dr. S. Chandralingam, S.CHAND & COMPANY LTD.
- 2. Applied Physics by P.K. Palanisamy : Scitech Publishers.
- 3. Engineering Physics by Dr. K.T. Tyagarajan, V.Rajendran, Tata Mc Graw-Hill

17SH1203-ENGINEERING MATHEMATICS - I (Common to all Branches) I B.Tech II Semester (With effect from 2017-18)

Course Category:	Basic Sciences	Credits:	3
Course Type:	Theory	Lecture-Tutorial-Practical:	3-0-0
Pre – requisite:	Intermediate Mathematics	Sessional Evaluation:	40
		External Exam Evaluation:	60
		Total Marks:	100
		External Exam Duration:	3 hrs

	Ctord -	nte un denocina this course and expected to un denoted de				
		nts undergoing this course are expected to understand:				
		e basic concepts of Matrices. Iving Higher Order Differential Equations with RHS of different types by using				
		lytical techniques.				
		ylor's and Maclaurin's series, Maxima and Minima of the functions of two and				
Course	-	ee variables.				
Objectives		e concepts of Double and Tripple integrals, Areas and Volumes.				
9		e Gradient, Divergence and Curl operators, Solenoidal and Irrotational vectors.				
		e basic concepts of Vector Integration.				
	After	completing the course the student will be able to				
	CO1	Understand effectively the analyzation of the Rank of the matrix, Consistency of system of linear equations, Eigen values and Eigen vectors.				
	CO2	Acquire knowledge in solving higher order differential equations by using various types.				
Couse	CO3	Attains skills in analyzing the Taylor's and Maclaurin's series and Maxima and Minima of the functions of two and three variables.				
Outcomes	CO4	Apply Double and Tripple integrals to find Areas and Volumes.				
	CO5	Understand effectively Curl, Divergence and Gradient operators, Solenoidal and Irrotational vectors with their applications.				
	CO6	Acquire knowledge in analyzing the applications of Green's, Stoke's and Gauss-divergence theorems.				
		<u>UNIT - I</u>				
	MAT	RICES:Rank of Matrix - Echelon Form and Normal Form - Consistency of				
Course	system of linear equations- Eigen values and Eigen vectors.					
Course						
Content	<u>UNIT – II</u>					
	HIGH					
	differential equations of second and higher order with constant coefficients with					
	К.Н.5	S. of the type e^{ax} , sin ax or cos ax, x^n , e^{ax} V and $x^n v(x)$.				

	<u>UNIT – III</u>				
	DIFFERENTIAL CALCULUS: Taylor's and Maclaurin's series - Maxima and				
	Minima of function of two variables - Lagrangian method of multipliers with three				
	variables only.				
	<u>UNIT - IV</u>				
	MULTIPLE INTEGRALS: Double and Triple integrals - Change of order of				
	integration - Change to polar coordinates - Area and Volumes by Double integration -				
	Volume by Triple integration.				
	<u>UNIT - V</u>				
	VECTOR DIFFERENTIATION: Gradient, Divergence, Curl - Solenoidal and				
	Irrotational vectors.				
	<u>UNIT - VI</u>				
	VECTOR INTEGRATION: Line, Surface and Volume integrals - Green's, Stoke's				
	and Gauss-divergence theorem (without proof), Applications to theorems.				
	TEXTBOOKS:				
	1. Higher Engineering Mathematics-B.S. Grewal, Khanna Publishers, New Delhi.				
	2. Engineering Mathematics – B.V. Ramana, Tata McGraw-Hill Education Pvt.				
	Ltd, New Delhi.				
	REFERENCE:				
	1. Higher Engineering Mathematics - H.K. Dass, Er. Rajnish Verma, S. Chand				
Text	Publication, New Delhi.				
Books and	2. Advanced Engineering Mathematics - N.P. Bali & M. Goyal, Lakshmi				
Reference	Publishers, New Delhi.				
Books	3. Engineering Mathematics-I& II - Dr.T.K.V. Iyengar, Dr.B. Krishna Gandhi, S.				
DOORS	Ranganatham, Dr.M.V.S.S.N. Prasad, S. Chand Publication, New Delhi.				
	 Advanced Engineering Mathematics - Erwin Kreyszig, Wiley, India. 				
	0000,0,0,0,				

17EE1204- ELECTRICAL AND ELECTTRONICS ENGINEERING

(MECHANICAL ENGINEERING)

I B.Tech II Semester

Course	Engineering Science	Credits:	3
Category:			
Course Type:	Theory	Lecture-Tutorial-Practical:	3-1-0
	Concept of e.m.f, ohm's law, resistance,	Sessional Evaluation:	40
	resistivity, series and parallel connections,	External Exam Evaluation:	60
	power dissipation in resistance, effect of	Total Marks:	100
Pre-requisite:	temperature on resistance	External Exam Duration:	3 hrs
	Capacitors, energy stored in capacitor, R-C		
	time constant.		
	Faraday's laws of Electromagnetic induction,		
	energy stored in an inductor, time constant in		
	R-L circuit.		

r				
	Students undergoing this course are expected to understand:			
~	✤Learn the basic concepts of circuit analysis.			
Course	✤Learn Single Phase A.C Circuits			
Objectives:	✤Learn the Resonance concept			
	♦ Overview of the principles, operation and application of the analog building			
	blocks like diodes, BJT, etc for performing various functions.			
	◆Elementary treatment and qualitative analysis and makes use of simple			
	models and equation to illustrate the concepts involved.			
	CO1 Understand the basic concepts of D.C circuits			
	CO2 Understand the Fundamental concepts of single phase A.C circuits.			
	CO3 Understand the basic concepts of Resonance and perform Steady state			
Course	analysis of A.C circuits.			
Outcomes:	CO4 Understand the basic properties of semi-conductor materials.			
	CO5 Understand the basic concepts of Rectifiers and Filters			
	CO6 Understand the characteristics of semi-conductor devices.			
	Unit-I:			
	FUNDAMENTALS OF DC CIRCUITS: Introduction to DC circuits, Active			
	and passive elements, Ohms law, Voltage-Current relations for resistor, inductor,			
	capacitor , Kirchhoff's laws, Mesh analysis, Nodal analysis, Star -Delta			
	transformation			
	Unit-II:			
	FUNDAMENTALS OF AC CIRCUITS: Definitions of Peak value, RMS			
	value, Average value and Form factor, Single phase circuits-Behavior of			
	resistance, Inductance and Capacitance to Sinusoidal excitation voltage. Series,			
	Parallel and series parallel circuits			
	Unit-III:			
Course	Resonance: Series and parallel resonance, Half power frequencies, Bandwidth			
Content:	and Quality factor, Relation between half power frequencies			
	Junction Diode: Band Structure of P-N junction diode, Current Components,			

	Volt-Ampere Characteristics and its temperature dependence, Diode resistance				
	and capacitance, Zener diode and tunnel diode				
	Unit-V:				
	Rectifiers: Diode equivalent circuit, Half-Wave, Full-Wave and Bridge				
	rectifiers, Analysis of filters with full-wave rectifier.				
	Unit-VI:				
	Bipolar Junction Transistor: Transistor action, PNP and NPN Transistors,				
	•				
	CB,CE,CC Configurations and their characteristics, analytical expressions for				
	transistor characteristics, specifications of BJT, Determination of h-parameters				
	from BJT characteristics.				
	Text Books:				
	1. "Circuit Theory Analysis & Synthesis" by Abhijit Chakrabarti,2010				
	2. William H. Hayt & Jack E. Kemmerly Engineering Circuit Analysis				
Text Books &	McGraw-Hill Book Company Inc.Seventh edition,2006				
Reference	3. Thomas L. Floyd - "Electronic devices ", Pearson new international Ninth				
Books:	edition, 2012.				
	Reference Books:				
	1.Network Analysis: Vanvalkenberg Third edition, PHI,2014				
	2. Millman and Halkias, "Integrated Electronics" MC Graw Hill & Co.Second				
	edition,2009.				
	3.David.A.Bell. "Electronic Devices and circuits", PHI,Fifth edition,2007.				
	http://nptel.ac.in/courses				
E-Resources:	http://iete-elan.ac.in				
	http://freevideolectures.com/university/iitm				

17ME1201-ENGINEERING MECHANICS – II (DYNAMICS)

I B.Tech II Semester

(With effect from 2017-18)

(Only for ME)

Course Category	Programme core	Credits	4
Course type	Theory	Lecture- Tutorial-Practical	3-2-0
Prerequisite	Engineering Mechanics static	Sessional Evaluation:	40
	analysis	External Exam Evaluation:	60
		Total Marks:	100
		External Exam Duration:	3 hrs

Course Objectives	Stude	nts are made to understand / learn
Course Objectives		he concept of rigid body kinematics under conditions such as uniform
		elocity, uniform acceleration.
		he concept of rigid body kinematics pertaining to circular motion.
	 The effect of forces in producing motion of rigid bodies, applying 	
	Newton's laws of motion.	
		he meaning of Impulse and momentum, the implications of conservation
	of	momentum principle.
) The concept of Work - change in energy equivalence instead of
		rectly applying the Newton's second law.
) The basic idea of simple harmonic motion.
) The idea of using the principle of virtual work which is very
		fective to solve equilibrium problems.
	◆ T	he meaning of stress & strain, and their relationships.
Course Outcomes	At the	e end of the course, the student will be able to
	CO1	Recall definitions and technical terms of engineering mechanics.
	CO2	Understand the procedures, principles, and theories in different
		motions of kinematics and kinetics.
	CO3	Solve problems using principles, and theories in different
		motions of kinematics and kinetics.
	CO4	Demonstrate the usage impulse momentum principles
	CO5	Demonstrate work energy principle, simple harmonic motions
		and virtual work.
	CO6	Understand the stress, strain and thier relations
Course Content		UNIT – I
	KINE	CMATICS OF LINEAR MOTION: Equations of motions for linear
	mover	ment with uniform velocity, uniform acceleration, variable acceleration,
	under	gravity and inclined planes. Motion Curves – graphical representation.
	Relative motion.	
	UNIT – II	
	VINEMATICS OF CIDCULAD MOTION DOTATION AND	
	KINEMATICS OF CIRCULAR MOTION, ROTATION AND TRANSLATION: Equations of motion along a circular path, Types of rigid	
	body motion – Velocity and acceleration for combined motion of translation	
		tation, Instantaneous centre.
		IECTILES: Equation of path of a projectile-Motion of a body projected
		ontally – Projection on inclined plane.
		UNIT – III
	KINE	TICS OF RIGID BODIES: Movement of bodies on smooth and rough

	planes, analysis of lift motion, analysis of two bodies connected by string over	
	pulley, one body resting on horizontal/inclined planes with and without friction. D'Alembert's Principle - application to linear and rotary motion.	
	UNIT – IV IMPULSE MOMENTUM: Principle of Impulse and momentum, Linear Impulse and Linear Momentum, Angular Impulse and Angular Momentum IMPACT OF ELASTIC BODIES: Types of impact- line of impact, central and non central impact, direct central impact, oblique central impact, Coefficient of restitution- Problems on Direct central impact.	
	UNIT – V	
	WORK ENERGY PRINCIPLE: Work energy equation, work done by varying force, work energy equation for translation, motion of connected bodies.	
	SIMPLE HARMONIC MOTION: Definitions of terms – Amplitude, time period and frequency; Equation of simple harmonic motion.	
	VIRTUAL WORK: Principle of virtual work and its application to beam and ladder problems.	
	UNIT – VI SIMPLE STRESS AND STRAIN: Types of stress and strain, Hooke's law, stress and strain curve, Factor of safety, stepped bars, compound bars, thermal stresses, elastic constants and their relations.	
Text Books	 A text book of Engineering Mechanics – Bhavikatti, S.S, "Engineering Mechanics", New Age International (P) Limited Publishers,2014. A text book of Engineering Mechanics – D. R.K. Bansal, Laxmi publications (P) Limited,2016. Engineering Mechanics – K. L. Kumar, Tata Mc Graw Hill, New Delhi,2010. 	
Reference Books	 Engineering Mechanics: Statics and Dynamics – N.H Dubey, Tata Mc Graw Hill, New Delhi,2016. Engineering Mechanics – S. Timoshenko, D.H. Young – Mc Graw Hill International Edition,2013. Engineering Mechanics – Statics and Dynamics – Irving H Shames, G Krishna Mohana Rao – Pearson Education,2006. 	

17ME12P1-COMPUTER AIDED ENGINEERING DRAWING LABORATORY

(Common to ME and Civil) I B.Tech II Semester (With effect from 2017-18)

Course Category	Engineering Science	Credits	3
Course type	Practical	Lecture- Tutorial-Practical	0-0-6
Prerequisite	Geometrical Construction	Sessional Evaluation:	40
		External Exam Evaluation:	60
		Total Marks:	100
		External Exam Duration:	3 hrs

Course	Mark	s Exan	nination and Evaluation	Scheme of examination
		Seme	ster end Examination	60 marks are allotted for the drawing
	60	for 3	hours duration in the	examination during semester end.
		CAD	Laboratory	
Computer		20	Day-to-Day evaluation during the practice.	Marks are evaluated based on average performance of student in day-to-day exercises and finalized for 20 marks
Aided Engineering Drawing	40	20	Drawing examination	Two drawing examinations are conducted for 20 marks. 80% of better one and 20% of the other are added and finalized for 20 marks. Drawing examination-I: Shall be conducted just before I mid-term examinations. Drawing examination-II: Shall be conducted just before II mid-term examinations.
Course Objectives	 Students are made to understand / learn To enable the students with various concepts like dimensioning, construction of conic sections, polygons, cycloids and involutes. To impart and inculcate proper understanding of AutoCAD fundamentals. To apply the knowledge of AutoCAD for the projections of points, lines and solids. To know about sections and developments of solids. 			
	To improve the visualization skills with isometric projections.			
	At the end of the course, the student will be able toCO1Understand the conventions and methods of engineering drawings			
Course	CO2			
Outcomes	CO3	Demonstra	ate orthographic and Isome	etric principles
		Understan CAD tools		dge of engineering drawing in modern
	UNIT – I: GEOMETRICAL CONSTRUCTIONS, CONICS AND SPECIAL			
	CURVES.			
	Importance of Drawing, Drawing Instruments, Sheet layout, BIS Conventions,			
	Types	Types of lines, Lettering, and dimensioning methods.		

	Geometrical Constructions: Regular Polygons.			
	Conic Sections: Introduction, Construction of Ellipse, Parabola and Hyperbola			
	using Eccentricity method and Rectangular/ Oblong methods, Rectangular			
	hyperbola.			
	• 1			
	Special Curves: Introduction, Construction of Cycloids and Involute curves.			
	UNIT – II: INTRODUCTION TO CAD SOFTWARE. Introduction: Importance of Computer Aided Drawing, software tool environmen			
	Introduction: Importance of Computer Aided Drawing, software tool environment,			
	drawing size and scale, main menu, tool bar and menus, co-ordinate system, drafting			
	settings.			
~	Creation and Editing: Points, Lines, Poly lines, Polygons, Splines, circle, ellipse,			
Course	text, move, copy, off-set, pan, mirror, rotate, trim, extend, break, chamfer, fillet,			
Content	curves, block, layers, line representations, dimensioning and hatching.			
	UNIT – III: PROJECTIONS OF POINTS AND LINES.			
	Projections of Points: Principles of projections, Planes of projection, Points in four			
	quadrants.			
	Projections of Lines: Line inclined to both the principal planes (first angle			
	projection only).			
	UNIT – IV: PROJECTIONS OF PLANES AND SOLIDS.			
	Projections of Planes: Plane (triangle, square, rectangle, pentagon, hexagon and			
	circular) inclined to both the principal planes.			
	Projections of Solids: Solids such as Prisms, Pyramids, Cylinders and Cones.			
	UNIT – V: SECTIONS OF SOLIDS, DEVELOPMENT OF SURFACES.			
	Sections of Solids: Solids such as Prisms, Pyramids, Cylinders and Cones resting on			
	their bases on HP.			
	Development of Surfaces: Lateral surfaces of solids such as Prisms, Pyramids,			
	Cylinders and Cones (cut by a plane inclined to HP).			
	UNIT – VI: ISOMETRIC AND ORTHOGRAPHIC PROJECTIONS.			
	Orthographic Projections: Conversion of Pictorial views into Orthographic Views.			
	Isometric Projections of simple objects.			
TEXT	1. Engineering Drawing, N.D. Bhat / Charotar Publishing House, Gujarat, 53 rd edition,			
BOOKS	2014.2. AutoCAD 2 0 13 For Engineers and Designers, Sham Tickoo, Dream tech Press,			
	2. AutoCAD 2 0 15 For Engineers and Designers, Shain Tickoo, Dicam teen riess, 2013.			
REFERENC	1. Engineering Drawing And Graphics + Autocad, Venugopal K, New Age International			
E BOOKS	Pvt. Ltd.New Delhi, 2007.			
	2. Engineering Graphics with Auto CAD, D.M. Kulkarni, A.P. Rastogi and A.K. Sarkar, PHI Learning Private Limited, Revised Edition, August 2010.			
	3. Engineering Drawing and Graphics Using Autocad, T Jeyapoovan, Vikas Publishing			
	House, 3 rd Edition, 2010.			
	4. A Textbook on Engineering Drawing, <u>P. Kannaiah, K. L. Narayana, K. Venkata</u>			
	<u>Reddy</u> , Radiant Publishing House, 2012.			

17CS12P2 - FUNDAMENTALS OF C PROGRAMMING

LABORATORY I B.Tech II Semester

Course Category:	Engineering science	Credits:	2
Course Type:	Practical	Lecture – Tutorial – Practical:	0-0-3
		Sessional Evaluation:	40
Duonoquicitor	Knowledge about computer fundamentals and	External Exam Evaluation:	60
Prerequisite:	basics of mathermatics	Total Marks:	100
		External Exam Duration:	3 hrs

Course	Upon successful completion of the course, the students will be able to:
Outcomes	CO1 Learning the fundamental blocks of C language to develop simple laboratory programs
	 Students are made to understand / learn Write a C program to evaluate expressions.
	 Write a C program to implement simple if and if-else constructs. Write a C program to implement nested if and else- if ladder constructs.
	 Write a C program to implement hested if and else- if fadder constructs. Write a C program to implement break, continue and goto statements.
	 Write a C program to implement a simple application using switch statement.
Course	• Write a C program to implement a menu driven concept using switch statement.
Content	Write a C program to implement a few examples using while loop.
	 Write a C program to implement a few examples using do-while loop.
	 Write a C program to implement a few examples using for loop.
	 Write a C program to implement factorial of a given number using loops. Write a C program to implement a formation of a given number using loops.
	 Write a C program to implement a few examples using one dimensional arrays. Write a C program to implement a few examples using two dimensional arrays.
Text Books and References:	 Text Book(s): 3. Programming with ANSI & TURBO C by Ashok N.Kamthane, Pearson Education 2007 4. Programming in ANSI C by Balagurusamy 6th Edition, Tata McGraw Hill Education, 2012. Reference Books: Alex Leon and Mathews Leon "Fundamentals of Information Technology", Vikas Publishers, 2nd Edition 1999. David Cyganski & John A.Orr "Information Technology-Inside and Outside", Pearson Education, 2002. Marilyn Wolf "Computers as Components", MK publications, 3rd Edition, 2014.
	4. Let Us C by Yashavant Kanetkar, BPB Publications.
E Deservess	3. <u>https://nptel.ac.in/courses</u>
E-Resources	4. <u>https://freevideolectures.com/university/iitm</u>

17SH12P2-ENGINEERING PHYSICS LABORATORY

(Common to ME and CE) I B.Tech II Semester (With effect from 2017-18)

Course Category:	Basic Science	Credits:	2
Course Type:	Practical	Lecture-Tutorial-Practical:	0-0-3
Pre-requisite:	Engineering Physics	Sessional Evaluation:	40
_		External Exam Evaluation:	60
		Total Marks:	100
		External Exam Duration:	3 hrs

Course Objectives	 Students are made to understand / learn The main objective is to provide students to learn about some important experimental techniques in physics with knowledge in theoretical aspects so that they can excel in that particular field. 	
Course Outcomes	 CO1 These experiments in the laboratory are helpful in understanding important concepts of physics through involvement in the experiments by applying theoretical knowledge. CO2 It helps to recognize where the ideas of the students agree with those 	
	accepted by physics and where they do not. Minimum of 8 experiments to be completed out of the following :	
	LIST OF EXPERIEMENTS	
G	 Determination of Rigidity modulus of a material – Torsional pendulum Melde's Experiment – Transverse and Longitudinal modes Time constant of RC circuit 	
Course Content	 Time constant of RC circuit Resonance in LCR circuit 	
Content	 Magnetic field along the axis of a coil (Stewart-Gees Method) 	
	6. Study of characteristics of LED and LASER Sources	
	7. Evaluation of Numerical Aperture of a given fiber	
	8. Energy Gap of a material of p-n junction	
	9. Diode Characteristics	
	10. Transistor Characteristics11. Characteristics of Solar cell	
	12. Logic Gates	
	13. Hall Effect	

INSTITUTE VISION

To emerge as a comprehensive Institute that provides quality technical education and research thereby building up a precious human resource for the industry and society.

INSTITUTE MISSION

- To provide a learner-centered environment that challenges individuals to actively participate in the education process.
- To empower the faculty to excel in teaching while engaging in research, creativity and public service.
- To develop effective learning skills enabling students pick up critical thinking thus crafting them professionally fit and ethically strong.
- To share human and academic resources with industries, schools and public agencies through partnerships and outreach activities.

VISION OF THE DEPARTMENT

To become an excellent centre for technical education and research in the field of mechanical engineering to meet the societal, regional, national and global challenges.

MISSION OF THE DEPARTMENT

M1: To impart quality technical education and transform bud engineers into an effective and responsible engineers to work with the current technologies in multi-cultural and multi-discipline environment.

M2: To encourage the students to develop their creativity in the field of mechanical engineering by providing modern laboratory facilities with hands on training and contemporary curriculum.

M3: To develop the interaction with the Industry experts to gain practical knowledge.

M4: To provide best teaching & learning practices as well as creating opportunities for Research, maximise student results and placements.

M5: To inculcate and promote lifelong learning skills, problem solving skills, leadership qualities and team work.

	PROGRAMME EDUCATIONAL OBJECTIVES (PEOS)
PEO 1:	A strong foundation to access, analyze, plan and implement their knowledge in
	basic sciences & mathematics, core and interdisciplinary courses.
PEO 2:	Graduate will be in a position to work with the members of multi-disciplinary
	teams and can play a leading role in handling the technical issues.
PEO 3:	Graduates will have capability to work with modern engineering tools,
12000	software and equipment under the realistic constraints.
PEO 4:	Graduates will engage in lifelong learning skills with research attitude and
120	social responsibility.
	PROGRAM OUTCOMES
PO1	Engineering knowledge: Apply the knowledge of mathematics, science,
	engineering fundamentals, and engineering specialization to the solution of
	complex engineering problems.
PO2	Problem analysis: Identify, formulate, research literature, and analyze
	engineering problems to arrive at substantiated conclusions using first
	principles of mathematics, natural, and engineering sciences.
PO3	Design/development of solutions: Design solutions for complex engineering
	problems and design system components, processes to meet the specifications
	with consideration for the public health and safety, and the cultural, societal,
	and environmental considerations.
PO4	Conduct investigations of complex problems: Use research-based knowledge
	including design of experiments, analysis and interpretation of data, and
	synthesis of the information to provide valid conclusions.
PO5	Modern tool usage: Create, select, and apply appropriate techniques,
	resources, and modern engineering and IT tools including prediction and
	modeling to complex engineering activities with an understanding of the
	limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual
	knowledge to assess societal, health, safety, legal, and cultural issues and the
	consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability: Understand the impact of the professional
	engineering solutions in societal and environmental contexts, and demonstrate
	the knowledge of, and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and
	responsibilities and norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual, and as a
	member or leader in teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively with the engineering community
	and with society at large. Be able to comprehend and write effective reports
	documentation. Make effective presentations, and give and receive clear
	instructions.
PO11	Project Management and Finance: Demonstrate knowledge and
	understanding of the engineering and management principles and apply these
	to one's own work, as a member and leader in a team, to manage projects and
	in multidisciplinary environments.
PO12	Life-long learning: Recognize the need for, and have the preparation and
	ability to engage in independent and life-long learning in the broadest context
	of technological change. Specific
	PROGRAMME SPECIFIC OUTCOMES
PSO1	Solve engineering problems in the area of Robotics and Automation.
PSO2	Design, Simulate and Analyze using CAD/CAM/CAE tools.

NBKR INSTITUTE OF SCIENCE & TECHNOLOGY: VIDYANAGAR (AUTONOMOUS)

(AFFILIATED TO JNTUA ANANTAPURAMU)

SPSR NELLORE DIST

II YEAR OF FOUR YEAR B.TECH DEGREE COURSE – I SEMISTER

MECHANICAL ENGINEERING

SCHEME OF INSTRUCTION AND EVALUATION (With effect from the academic year 2017-2018)

							Evaluation							
S.No	Course Code	Course Title	Instruction Hours/Week			Credits	Sessional Test-I		Sessional Test-II		Total Sessional Marks (Max. 40)	End Semes Examinatio		Maximum Total Marks
		THEORY	L	т	D/P		Duration In Hours	Max. Marks	Duration In Hours	Max. Marks		Duration In Hours	Max. Marks	100
1	17SH2101	Engineering Mathematics-II	2	2	-	3	2	40	2	40		3	60	100
2	17ME2101	Fluid Mechanics	2	2	-	3	2	40	2	40		3	60	100
3	17ME2102	Strength of Materials	2	2	-	3	2	40	2	40	0.8*Best of two+0.2*least	3	60	100
4	17ME2103	BasicManufacturingProcesses	3	-	-	3	2	40	2	40	of two	3	60	100
5	17ME2104	Basic Thermodynamics	2	2	-	3	2	40	2	40		3	60	100
6	17EE2104	Electrical Machines & Control Engineering	3	-	-	3	2	40	2	40		3	60	100
	PRACTICALS									-				
7	17ME21P1	Computer Aided Machine Drawing Laboratory	-	-	3	2	-	-	-	40		3	60	100
8	17ME21P2	Fuels & Lubricants Laboratory	-	-	3	2	-	-	-	40	Day to Day Evaluation and	3	60	100
9	17ME21P3	Production Engineering Laboratory	-	-	3	2	-	-	-	40	a test (40 Marks)	3	60	100
		TOTAL	17	08	09	24	-	-	-	360		-	540	900
		MANDATORY COURSE -1						. I						
1	17MC2102	Technical English and soft skills	3	-	-	3	2	40	2	40	0.8*Best of two+0.2*least of two	3	60	100

<u>17SH2101- ENGINEERING MATHEMATICS-II</u> (Common to all Branches)

Course Category:	Basic	Sciences	Credits:	3				
Course Type:	Theor	Theory Lecture-Tutorial-Practical:						
Pre-requisite:	Interr	termediate Mathematics Sessional Evaluation: External Exam Evaluation: Total Marks: External Exam:						
Course Objectives	* 7 tt d * 7 * 7 F * 7 * 7 V * 7	dents undergoing this course are expected to understand: The concepts of First shifting theorem, Change of scale property, Laplace transformation of multiplied by t and division by t and transformation of derivatives and integrals. The application of Solutions of Ordinary Differential Equations. The determination of Fourier coefficients, Fourier series, Even and Odd Functions and Change of intervals. The concepts of Fourier Transforms. The Properties of Z- Transforms, Shifting properties, initial value and final value theorems. The applications of difference equations and To develop the basic mathematical knowledge and computational skills of the students in the areas of applied mathematics.						
Course Outcomes	On successful completion of this course students will be able to:							
	CO1	Acquire basic knowledge in Laplace transforms and their applications.						
	CO2	Develop analytical skills in s using the Laplace transform tee	olving the Ordinary Differential Equations by chnique.					
	CO3	Develop analytical skills in solving the problems involving Fourier Series.						
	CO4 Understand effectively Fourier Sine and Cosine integral,Fourier Transfor Fourier Sine and Cosine transforms.							
	CO5	Attains skills in analyzing the	Z-Transforms and their applications.					
	CO6	Understand effectively Inverse equations.	e Z- Transforms and Applications to	difference				

Course Content	<u>UNIT – I</u> Laplace Transformation: Laplace Transformations of standard functions - First				
Course Content	shifting theorem - Change of scale property - Laplace transformation of multiple				
	by t and division by t - Transformation of derivatives and integrals.				
	$\frac{\text{UNIT} - \text{II}}{\text{UNIT} - \text{II}}$				
	Inverse Laplace Transformation: Inverse transforms - Method of partial fractions -				
	Shifting property - Inverse Laplace transform of a multiple by s and division by s -				
	Inverse Laplace transform of derivatives and integrals - Convolution theorem -				
	Application to Solutions of Ordinary Differential Equations.				
	<u>UNIT-III</u>				
	Fourier Series: Determination of Fourier coefficients - Fourier series - Even and				
	Odd functions - Change of intervals (0,21).				
	<u>UNIT-IV</u>				
	Fourier Transforms:Fourier Integral Theorem (Without proof)-Fourier Sine and				
	Cosine integrals - Fourier integral in complex form - Fourier Transforms - Fourier				
	Sine and Cosine transforms.				
	<u>UNIT-V</u>				
	Z-Transforms:Z-Transform of some standard functions - Properties of Z-				
	Transforms - Shifting Properties - Initial value theorem and final value theorem.				
	<u>UNIT-VI</u>				
	Inverse Z- Transform and Difference Equations:Inverse Z-Transform				
	Convolution theorem-Inversion by partial fractions - Applications to difference				
	equations.				
	TEXT BOOKS:				
	1. Higher Engineering Mathematics - B.S.Grewal, Kanna Publishers, New				
	Delhi.				
	2. Engineering Mathematics - B.V. Ramana, Tata McGraw-Hill Education				
	2. Engineering Wathematics - B.V. Kamana, Tata Weenaw-Hin Education Pvt. Ltd, New Delhi.				
	REFERENCES:				
	1. Higher Engineering Mathematics - H.K. Dass, Er. Rajnish Verma, S.Chand				
	Publication, New Delhi.				
	2. Advanced Engineering Mathematics - N.P. Bali & M. Goyal, Lakshmi				
	Publishers, New Delhi.				
	3. Advanced Engineering Mathematics - Erwin Kreyszig, Wiley, India				
	e. Hermiter Englissen grindering franklike Er win Riejseng, whey, india				

17ME2101-FLUID MECHANICS

Course Catego	ory:	Programme Core	Credits	3		
Course Type:		Theory	Lecture-Tutorial-Practical:	2-2-0		
Pre-requisite:		Engineering physics and Engineering Mathematics.	Sessional Evaluation: External Exam Evaluation: Total Marks: External Exam:	40 60 100 3 hrs		
Course Objectives	 Students undergoing this course are expected to understand: Provide basic knowledge in fluid properties and statics. Provide understanding on the fundamental laws related to the static dynamic behavior of fluid and also to develop the equations for pressure and momentum analysis. Make the students to explain pressure, discharge measurement devices. Analyze and evaluate the fluid flows of laminar and turbulent. 					
Course Outcomes	On successful completion of this course students will be able to:CO1Understand the definition, principles and laws related to fluid mechanCO2Solve problems to find fluid properties and static parameters.CO3Understand information related to kinematics and dynamics aspects flow.CO4Understand working of pressure and discharge measurement devices.CO5Classify the flow of fluid under different flow conditions.CO6Use suitable methods to handle problems related to laminar and the flow conditions.					

UNIT – IFluid properties: Mass density, weight density, specific volume, relative density, viscosity, compressibility and Bulk Modulus, surface tension and capillarity and standard atmosphere pressure, Vapour pressure and Capillary.UNIT – IIFluid statics: Fluid pressure, Pascal's law, absolute and gauge pressure, hydrostatic force on surfaces- total pressure and center of pressure on plane surfaces like Vertical, Horizontal and Curved.UNIT –IIIFluid kinematics: Type of fluid flow, type of flow lines, rate of flow, velocity potential and stream function continuity equation.Fluid dynamics: Euler's equation- Bernoulli's equation and its applications, momentum equation and moment of momentum equation.					
UNIT –IV Pressure Measurement: Piezometer, manometer-differential manometers, micro manometers, velocity measurements- Pitot tube. UNIT –V Discharge Measurement: Orifice and mouthpiece, Venturi meter, Orifice meter and Nozzle meter. Notches and weirs. UNIT –VI Laminar flow: Relationship between shear stress and pressure gradients, laminar flow through circular pipes, Hagen poiseulle law, loss of head due to friction. Turbulent flow: Loss of head due to friction in pipe, Darcy- Weisbach equation,					
 Introduction to Boundary Layer Theory. TEXT BOOKS: Fluid Mechanics with Engg. Applications :Daugherty R.L and J.B. Franzini, TMH, 10th ed. Fluid Mechanics and Fluid Machinery :Rajput R.K.;S.Chand Publications Fluid Mechanics and Fluid Machinery :Bhansal R.K.;Laxmi Publications, 9th ed. REFERENCES: Hydraulics and Fluid Mechanics:Modi and Sethi,Standard Book House, 2002 Theory and applications of Fluid Mechanics :Subramanyam K.,Tata McGraw-Hill 					

17ME2102-STRENGTH OF MATERIALS

Course Cat	egory:	Programme Core	Credits:	3			
Course Typ	e:	Theory	Lecture-Tutorial-Practical:	2-2-0			
Pre – requisite:		Engineering Mechanics	Sessional Evaluation: External Exam Evaluation: Total Marks: External Exam:	40 60 100 3 hrs			
Course Objectives	 Students undergoing this course are expected to understand: Provide the basic concepts and principles of strength of materials. Calculate stresses and deformations of objects under external loadings. knowledge of strength of materials on engineering applications and desig problems. Describe and derive the expressions for deflections in beams under variou conditions and expression for torsion used for basic design of shafts. Describe and demonstrate thoroughly the concepts of principal stresses applied to solid structural numbers and drawing Mohr's circle diagram and study of theories of failures and deflections of fixed beams. Analyze slender, long columns subjected to avial loads and having knowledge on basic design on appearing shalls. 						
		ompleting the course the stud					
	CO1	Understand the concepts and principles of strength of materials.					
	CO2	Illustrate the concept of shear force and bending moment diagrams.					
Course		CO3 Solve the problems on bending stress distribution for various cross sections the beam.					
Outcomes	CO4	deflection of beams for different types of	f beams.				
		Solve the problems on torsio and circumferential stresses of	nal stress distribution in circular shafts, lo on cylinders.	ongitudinal			
		Use concept of principal str problems of different states of	resses and methods of theories of failur of stress.	e to solve			

·							
	UNIT-I Shear Force and Bending Moments : Beam - Types of loads, types of support, shear force and bending moment – S.F and B.M diagrams for cantilever, simply supported and overhanging beams subjected to point loads, U.D.L., uniformly varying loads and combination of these loads – point of contra flexure – Relation between S.F., B.M. and						
	rate of loading at the section of the beam.						
	UNIT-II						
Course	Theory of Simple Bending: Assumptions – Derivation of bending equation –						
Content	Determination of bending stresses and section modulus of rectangular, circular, triangular, I, and T-sections.						
	Shear Stresses: Shear stress distribution across various cross section of the beam like						
	rectangular, circular, triangular, I and T-sections.						
	UNIT -III						
	Deflection of Beams : Relation between curvature slope and deflection, Determination						
	of slope and deflection for cantilever and simply supported beams subjected to point						
	loads, U.D.L, uniformly varying load– Double integration, Macaulay's methods. UNIT- IV						
	Torsion of Circular Shafts: Theory of pure torsion – Assumptions, Derivation of						
	torsion equations, polar section modulus, Torsion rigidity, Analysis of torsional						
	stresses, power transmitted.						
	Thin Cylinders: Thin seamless cylindrical shells, longitudinal and circumferential						
	stresses - hoop, longitudinal and volumetric strains – change in diameter and volume of						
	thin cylinders, Thin spherical shells.						
	Introduction to Thick cylinders.						
	UNIT -V						
	Columns and Struts: Introduction, Euler's theory of long columns for different cases -						
	Effective length of a column – Assumptions – limitation of Euler's formula, Rankine's formula.						
	UNIT -VI						
	Principal Stresses: Stresses on an inclined plane under different uniaxial, biaxial conditions, principal planes and principal stresses – Mohr's circle method.						
	Theories of Failure : Various theories of failure – Maximum Principal Stress Theory,						
	Maximum Principal Strain Theory, Maximum Shear Stress Theory, Strain Energy and						
	Shear Strain Energy Theory (Von Mises Theory).						
Text	1. Strength of Materials by R.K.Bansal, Lakshmi Publications House Pvt. Ltd.						
Books and	2. Strength of Materials by S.Ramamrutham, Dhanpat Rai Publishing Company						
	Pvt. Ltd.						
Reference	1. Strength of Materials by S.S.Bhavikatti, Vikas Publishing House Pvt. Ltd.						
Books	2. Mechanics of Structures Vol –I by H.J.Shah and S.B.Junnarkar, Charotar Publishing						
	House Pvt. Ltd.						
	3. Strength of Materials by S.S.Rattan, Tata McGraw Hill Education Pvt. Ltd.						
	4. Mechanics of Materials by Pytel, Cengage Learning Pvt. Ltd.						
	5. Strength of Materials by R.K Rajput, S.Chand & Company Ltd.						
	6. Strength of Materials by D.S Prakash Rao, Universities Press Pvt. Ltd.						
	 Fundamentals of Solid Mechancis by M.L.Gambhir, PHI Learning Pvt. Ltd Strength of Materials and Structures by John Case et al., Butterworth-Heinemann. 						

17ME2103-BASIC MANUFACTURING PROCESSES

Course Category:	Programme Core	Credits:	3				
Course Type:	Theory	Lecture – Tutorial – Practical:	3-0-0				
Prerequisite:	Basics in Engineering physics and Engineering Workshop practice	Sessional Evaluation: External Exam Evaluation: Total Marks: External Exam:	40 60 100 3 hrs				
Objectives	 Students undergoing this course are expected to understand: Examine the principles associated with basic operations of casting and interpret its advantages as well as limitations. Variety of welding processes including their typical use in our daily life. Common mechanical working of metals to aid in appropriate process section for the material. Various sheet metal operations as well as other cold working processes. The characteristics of various extrusion and forging processes along with their defects. 						
Course Outcomes	Upon the successful completion of the course, the students will be able to:CO1Understand the concept of casting techniques, methodology, procedures and theories in the field of casting.CO2Demonstrate sand properties and design principles of gating system.CO3Summarize the concept of welding techniques, methodology, procedures and theories in the field of welding.CO4Understand methodology, procedures and theories in the field of metal working						
Course Content	CO4 Understand methodology, procedures and theories in the field of metal working processes. UNIT – I CASTING: Introduction-Steps involved in making a casting; Pattern– Types of patterns, Materials and their allowances; Core and Core prints. Moulding sands-ingredients, types, properties, and its testing. Moulding Processes: Green sand moulding, dry sand moulding, CO2 moulding, Shell moulding. Special Casting Processes: Centrifugal, Die and Investment casting. UNIT – II Gating: Elements, types of gates, Design of Gating systems-pouring time, choke area, gating ratio. Risers: Types, functions and its location, direction of solidification, Design-size and shape. Chills and chaplets.Casting defects. Melting Furnaces: Crucible melting and cupola operation. UNIT – III Welding: Classification of welding processes, types of welds and welded joints, Heat affected zones in welding, Oxy-acetylene gas welding – principle, types of flames, welding techniques, Acetylene Gas cutting; ARC welding –principle of arc generation, power source – DCSP, DCRP, AC. Electrodes - types, functions, coatings,						

	Manual Metal Arc welding, Submerged arc welding, Plasma arc welding, Plasma arc						
	cutting; Resistance welding – Principle, types.						
	<u>UNIT – IV</u>						
	Advanced welding Processes: Inert Gas welding -TIG, MIG, atomic hydrogen						
	welding; EBW, LBW, USW, Explosive welding, Forge welding, Friction wel						
	Induction welding, Thermit welding.						
	Welding defects – causes and remedies.						
	<u>UNIT – V</u>						
	Mechanical Working of Metals: Hot working, Cold working, Warm working, Strain						
	hardening. Recovery, Recrystallisation and grain growth.						
	g						
	Sheet Metal Working Processes: Shearing action, Cutting process - blanking,						
	piercing; Forming process - Bending, forming, Drawing – shallow and deep;						
	embossing and coining, cold spinning.						
	Explosive forming and Electro-Magnetic pulse forming.						
	UNIT – VI						
	Rolling: Principle, Types of Rolling mills, Forces in rolling.						
	Extrusion of Metals: Hot extrusion and cold extrusion, Forward extrusion, Backward						
	extrusion, Impact extrusion, Hydrostatic extrusion.						
	Wire drawing and tube drawing						
	Forging Processes: Basic forging operations, forging processes - open die and closed						
	die forging, Types of Forging - Drop Forging, press forging, forging defects.						
	die forging, Types of Forging Drop Forging, press forging, forging defects.						
	TEXT BOOKS:						
	1. Manufacturing Technology : P.N. Rao, Tata McGraw Hill, 2 nd ed., 2008.						
	2. Manufacturing Technology : Kalpakjian, Pearson edition, 4 th ed., 2002.						
	3.Elements of Workshop Technology, Vol.1 : K.HajraChoudary,						
	A.K.HajraChoudary, Media Promoters Publishers, 15 th ed., 2012.						
Text Books							
and	REFERENCES:						
References	1. Production Technology : R.K. Jain, 2^{nd} ed., Khanna Publishers, 2001.						
I I I I I I I I I I I I I I I I I I I	2. Principles of Metal Castings : Rosenthal, 1 st ed., Tata McGraw Hill, 1955.						
	3. Welding Process & Technology : R.S.Parmar, New Delhi, 4 th ed.,						
	KhannaPublishers, 1997.						
	4. Manufacturing Technology : R.K. Rajput, 1 st ed., Laxmi Publications, 2007.						
L	1						

17ME2104-BASIC THERMODYNAMICS (SI UNITS)

Course Category	Programme core		Credits	3
Course type	Theory		Lecture- Tutorial-Practical	2-2-0
Prerequisite	Engineering	physics,	Sessional Evaluation:	40
	chemistry		External Exam Evaluation:	60
			Total Marks:	100
			External Exam:	3 hrs

Course Objectives	Students undergoing this course are expected to understand:					
	 A comprehensive and rigorous treatment of classical thermodynamics while retaining an engineering perspective. The groundwork for subsequent studies in such fields as fluid mechanics, heat transfer and to prepare the students to effectively use thermodynamics in the practice of engineering. An intuitive understanding of thermodynamics by emphasizing the physics and physical arguments. A wealth of real world engineering examples to give students a feel for how thermodynamics is applied in engineering practice. 					
Course Outcomes		end of the course, the student will be able to:				
	CO1	Understand the basic principles, laws, gas power cycles and				
		applications of thermodynamics.				
	CO2	Demonstrate non flow processes.				
	CO3	Solve problems related to first and second law of thermodynamics.				
	CO4	Determine entropy changes in various thermodynamic processes.				
	CO5	Calculate efficiencies for various thermodynamic cycles.				
Course Content	<u>UNIT – I</u> Basic Concepts and Scope of Thermodynamics: Basic concepts of Thermodynamics, Macroscopic and Microscopic properties, Thermodynamic system, Control Volume, Thermodynamic Properties, Process and Cycle, Thermodynamic Equilibrium, Quasi-static process, Zeroth Law of Thermodynamics, measurement of temperature - Gas Thermometers, Thermocouple, Work transfer, pdv work, Network done by a system, Specific heats and latent heat. <u>UNIT – II</u>					
	First Law of Thermodynamics: Energy, Different forms of stored energy, closed systems and steady flow systems – First Law, First law applied to steady flow engineering devices – Mass balance and energy balance in steady flow process – Perpetual motion machine of first kind.					
	<u>UNIT – III</u> Gas Laws: Boyle's Law, Charles Law, Characteristic equation of gas, Avagadro's Law, Joule's Law, Non- flow Processes: Constant volume, Constant Pressure, Isothermal, Hyperbolic, Adiabatic, Free expansion and Polytropic process. Real gases, Dalton's Law of Pressures, Avogadro's Law,					

	Gibb's Dalton's Law of mixture of gases.					
	<u>UNIT – IV</u>					
	Second Law of Thermodynamics: Limitations of first law, Heat engines and Heat reservoirs, Kelvin Planck statement of second law, Claussius inequality, Claussius theorem, Refrigeration and heat pump, reversibility and irreversibility, Carnot cycle, Reversible heat engine, Carnot Theorem, Corollaries, Efficiency of reversed heat engine. $\frac{UNIT - V}{V}$ Entropy and Availability: Property of entropy, Temperature entropy plot,					
	Principle of increase of entropy, Entropy changes in various thermodynamic processes.					
	Availability: Availability energy referred to a cycle, Helmholtz function and Gibb's functions, T-ds equations, energy equation, Joules Kelvin effect. <u>UNIT – VI</u>					
	Gas Power Cycles: Carnot cycle, Air standard cycles, Otto cycle, Diesel cycle, Mixed cycle or dual cycle, Comparison of cycles, Atkinson cycle and Brayton cycle.					
TEXT BOOKS	 Engineering Thermodynamics: Nag. P.K.5th ed., Tata McGraw-Hill, 2013 Heat Engineering : Vasandani V.P. and Kumar D.S., Metropolitan Publishers, 2005 					
	 Heat Engines : Ballaney P.L., Khanna publishers,2000 Thermodynamics : An engineering approach, Yunus A. Cengel Michael A. Boles,(2005), Tata McGraw-Hill, 2013 					
REFERENCE	1. Applied Thermodynamics : Thomas Deas Eastop, Allan Mc Conkey.					
BOOKS	Longmans, 2002					
	2. Thermal Engineering : Kurmi R.S , Gupta J.K, S.Chand & Co, 2010					
	3. Thermal Engineering : Domakundwar, Kodandaraman, Dhanapat Rai & Co, 2010					
	Co, 2010					

17EE2104-ELECTRICAL MACHINES & CONTROL ENGINEERING

Course Category	Engine	ering Science	Credits	3			
Course type	Theory	,	Lecture- Tutorial-Practical	3-0-0			
Prerequisite	The knowledge of principal of Electro Mechanical Energy Conversion , Fundamental concepts of magnetically coupled electric circuits, Logic circuit design, Basic knowledge of differentiation, integration, Laplace and inverse Laplace transformation techniques required.Sessional Evaluation: External Exam Evaluation: External Exam Evaluation: External Exam Evaluation: Total Marks: External Exam:						
Course Objectives	 Students undergoing this course are expected to understand: Clearly understand the basic concepts of the Electrical Machines work the modern Power System. The characteristics, operation and underlying theories of DC Machines The characteristics, operation and underlying theories of Transformers The history and need of different types of microprocessor. Practical knowledge about linear systems and their control techniqu open loop and closed loop systems. The concepts of PLC and SCADA. 						
Course	At the e	nd of the course, the student	will be Able to:				
Outcomes	CO1		nal details and principle of operat	ion of DC			
	CO2	machines	d control methods of DC Motors				
	CO3		on, principle of operation and a	nalyze the			
	CO4		f different types of microprocessors.				
	CO5		k control and controller design.				
Course Content	CO6	Understand the PLC and SC.	ADA UNIT-I				
	DC Generators: Constructional details-Principle of Operation-Types of Excitation,Generated EMF, Characteristics of various types of generators and applications.UNIT-IIDC Motors: Torque developed in a motor, Characteristics of different types of motor and applications, Motor starters, losses and efficiency calculations.UNIT-IIITransformers: Single phase transformers-Principle of operations-Construction, EMF equation, regulation, losses and efficiency, OC and SC test.UNIT-IVINTRODUCTION TO MICROPROCESSORS: Advantages and disadvantages of microprocessor , Architecture of 8085 microprocessor, pin configuration, Instruction set, Addressing modes.						

	UNIT-V Introduction to control systems: Open loop and closed loop control systems, Transfer function ,Electrical analogy of mechanical systems, Introduction to proportional, derivative and integral controllers. UNIT-VI Programmable Logic Controller And SCADA: CPU,memory,I/O modules, power supplies, programming device and system buses and remote I/Os, counter, timer -Different PLC's available in market -Selection of a PLC, SCADA-
Toxt Docks	Concept and Applications Text Books:
Text Books	 Text Books: Reference Books: 1. "Theory and performance of Electrical machines" by J.B Gupta, SK Kataria publishers. 2. "Electrical Machines" by Ashfaq Hussain ,Dhanpatrai& co. 3. "Electrical Machinery" by Dr. P.S Bimbhra, khanna publishers. 4. "Control system Engineering" by I.J.Nagrath and M.Gopal, Wiley Eastern Ltd. 5. "Control Systems" by A. Nagoor kani RBA publishers 6. "Control Systems" by A. Anand kumar PHI publishers 7. Douglas V. Hall, " Microprocessors and interfacing: Programming and hard ware", TMH, 2nd edition. Reference Books: 1. "Performance of DC Machines" by M.G.Say, Second edition, CBS publishers 2. "Electrical machines" by J.J.Nagarath and D.P.Kothari second edition, Tata McGraw-Hill.
	 3 "Control system Engineering" by NISE, Wiley, 2000. 4.A.K. Ray and K.M. Bhurchandi, "Advanced Microprocessors and Peripherals", TMH
Reference Books	http://nptel.ac.in/courses http://iete-elan.ac.in http://freevideolectures.com/university/iitm

17MC2102- TECHNICAL ENGLISH AND SOFT SKILLS

(Common	to ME and	Civil Branches)
---------	-----------	-----------------

Course Category:	Basic Sciences – Mandatory Course	Credits:	3
Course Type:	Theory	Lecture-Tutorial-Practical:	2-0-2
Pre- requisite:	Basic Level of LSRW skills	Sessional Evaluation: External Exam Evaluation: Total Marks: External Exam:	40 60 100 3 hrs

	Students undergoing this course are expected to understand:								
Course Objectives	 Their basic technical writing skills in English. Specific technical verbal competence. Acquire soft skills and work efficiently in a realistic professional wor environment. Develop soft skills including problem solving skills, working in groups leadership skills. 								
	Upon	successful completion of the course, the students will able to:							
	CO1	Present technical papers and equip technical verbal proficiency.							
Course	CO2	Develop group discussion skills and summarizing skills.							
Outcomes	CO3	Write effective resumes and job applications.							
	CO4	Develop soft skills and effective non-verbal communication skills.							
	CO5	Develop motivational skills and problem solving skills.							
	CO6	Develop professionals with idealistic, practical and moral values.							
Course Content	<u>UNIT – I</u> Introduction to Technical English :Writing simple descriptions and explanations on scientific/technical nature - Technical presentations - Communicating technical topics- Jargon <u>UNIT-II</u> Group Discussion: Dynamics of Group Discussion – Intervention-								
	Summ	narizing-Modulation ofvoice - Body Language – Relevance - Fluency and							
	Coher	rence.							
	<u>UNIT-III</u> Resumes and Job Applications: Writing resumes – Resume design – Parts of a resume – Resume styles – Cover letter								

	<u>UNIT-IV</u>
	Introduction to Soft Skills & Hard Skills: Non Verbal communication- Haptics
	– Proxemics - kinesics - Chronemics – Oculesics - Vocalics
	<u>UNIT-V</u> Personality Development Skills: Assertiveness - Positive Attitude - Self Confidence- Problem Solving Skills- Leadership Skills
	<u>UNIT-VI</u>
	Etiquette & Manners: Corporate etiquette-Dinning etiquette - Goal Setting-
	Career Planning -Time Management
REFERENCES:	1.A Textbook of English for Engineers and Technologists (combined edition, Vol. 1 &; Orient Black Swan 2010.
	2. Effective Technical Communication, M. Ashraf Rizvi, Tata Mc Graw-Hill, 2011
	3.Soft Skills, Dr K. Alex, S. Chand Publications, New Delhi

17ME21P1-COMPUTER AIDED MACHINE DRAWING LABORATORY

Course Categor y:	Progra	mme Core	Credits:	2				
Course Type:	Practic	al	Lecture-Tutorial-Practical: 0-0-3					
Pre- requisit e:	Compu	iter Aided Engineering Drawing	Sessional Evaluation: External Exam Evaluation: Total Marks: External Exam:	40 60 100 3 hrs				
Course Objectiv es	 Students undergoing this course are expected to understand: Make the students understand and interpret drawings of machine components so as to prepare assembly drawings either manually and using standard CAD packages. Familiarize the students with Indian Standards on drawing practices and standar components. Handle design problems in a systematic manner. Gain practical experience in handling 2D drafting and 3D modeling software systems. Apply CAD in real life applications. Enhance the employability skills that improves placement opportunities. 							
	At the end of the course, the student will be able to:							
Course	CO1 Understand the conventions and methods of machine drawings.							
Outcom es	CO2	Illustrate various simple machine	components.					
05	CO3	CO3 Use modern CAD software tools to draw sectional views of simple elements.						
Course Content	 Machine Elements Introduction to BIS, Drawing of simple components - Bolt, Nut, Thread profile, Keys, Cotter Joint, Riveted joints, Knuckle Joint, Shaft coupling. Assembly and Part Drawings Sectional Views of simple Machine elements Plummer block Stuffing Box Screw Jack Connecting rod Clapper block Eccentric Revolving centre 							

	2.	Machine Drawing including AutoCAD by Ajeet Singh, McGraw hill publications A Primer on Computer Aided Machine Drawing-2007', Published by VTU, Belgaum. 'Machine Drawing', N.D.Bhat & V.M.Panchal, Published by Charotar Publishing House, 1999
Text Books	4.	'Machine Drawing', N.Siddeshwar, P.Kannaih, V.V.S. Sastri, published by Tata Mc.Grawhill, 2006
	5.	"A Text Book of Computer Aided Machine Drawing", S. Trymbakaa Murthy, CBS Publishers, New Delhi, 2007.
	6.	'Machine Drawing', K.R. Gopala Krishna, Subhash publication.

17ME21P2-FUELS AND LUBRICANTS LABORATORY

Course Catego	ory:	Program Core	Credits:	2								
Course Type:		Practical	Lecture-Tutorial-Practical:	0-0-3								
Pre-requisite:		Engineering Chemistry	Sectional Evaluation:	40								
		and Basic	External Exam Evaluation:	60								
		Thermodynamics	Total Marks:	100								
	-		External Exam:	3 hrs								
Course	Stude	nts undergoing this course are e	expected to understand:									
Objectives	fuel p	roperties and their behaviour v	with respect to changes in tempe	rature and also								
	to det	ermine the viscosity of lubricar	ts against different temperatures									
	At the	e end of the course, the student	will be able to:									
Course	CO1	Examine various properties of	different fuels.									
Outcomes	CO2	Determine viscosity of various	s lubricants.									
	Minin	num of 8 experiments to be cor	of 8 experiments to be completed out of the following:									
	LIST	OF EXPERIMENTS										
	1.	Test on Abel's Flash Point A	pparatus.									
	2.	Test on Junker's Gas Calorin	neter.									
	3.	Test on Cleve land Flash and	Fire Point Apparatus.									
	4.	5	and Fire Point Apparatus.									
	5.	5										
	6.	Test on Redwood Viscomete										
	7.											
Course	8.	Test on Aniline point apparat										
Content	9.	Ash content and carbon resid										
		Drop point of grease and med										
	11	11. Study on cloud and pour point apparatus.										

17ME21P3-PRODUCTION ENGINEERING LAB

Course Category	Program	Core	Credits	2				
Course type	Practical		Lecture- Tutorial-Practical	0-0-3				
Prerequisite	Engineer	ring Workshop	Sessional Evaluation:	40				
-	Practice	-	External Exam Evaluation:	60				
		Total Marks:						
			External Exam:	3 hrs				
Course	Stud	ents undergoing this	course are expected to:					
Objectives			for metal casting processes.					
-	✤ Test	and correct sand mi	xture for metal casting processes					
			different kinds of patterns.					
			of metal joining processes.					
	 Shap 	be the given metal ro	od into desired shape by using forging p	process.				
Course	At the er	nd of the course, the	student will be able to :					
Outcomes	CO1		ment the pattern making design.					
	CO2	Analyze the proper						
	CO3	Demonstrate cast	ing, molding, welding, forging thr	ough simple				
		models.		0 1				
Course Content	LIST OF E	XPERIMENTS:						
	PAT	TERN MAKING						
		Model 1: Steppe	d Block					
			Design)					
	SAN	D TESTING						
		Model 3: Sand T	-					
	MO		Analysis					
	MO	ULDING Model 5: Loose	Piece Pattern					
			Piece Pattern					
	FOR	GING						
	1 011	Model 7: S Hool	k					
		Model 8: J Hoo						
	WEI	DING						
		Model 9: SMAV	V– Lap Joint					
		Model 10: SMAV						
			ance Spot Welding					
		Model 12: Gas W	elding/Brazing					
	CAS	FING						
			g of a Stepped Block					
		Model 14: Casting	of a Flanged Pipe					
	PLA	STIC MOULDING Model 15: Plastic	Injection Moulding					
		Wiodel 15: Plastic	Injection Moulding					

NBKR INSTITUTE OF SCIENCE & TECHNOLOGY: VIDYANAGAR (AUTONOMOUS) (AFFILIATED TO JNTUA ANANTAPURAMU) SPSR NELLORE DIST II YEAR OF FOUR YEAR B.TECH DEGREE COURSE – II SEMISTER MECHANICAL ENGINEERING

SCHEME OF INSTRUCTION AND EVALUATION(With effect from the academic year 2017-2018)

			r			1				,				
							Evaluation							
S.No	Course Code	Course Title		nstruction Iours/Week		Credits	Sessional Test-I	essional Sessional		Total Sessional Marks (Max. 40) End Semester Examination			Maximum Total Marks	
		THEORY	L	т	D/P		Duration In Hours	Max. Marks	Duration In Hours	Max. Marks		Duration In Hours	Max. Marks	100
1	17SH2202	Statistics and Partial differential Equations	2	2	-	3	2	40	2	40		3	60	100
2	17ME2201	Hydraulic Machinery	2	2	-	3	2	40	2	40	0.8*Best of	3	60	100
3	17ME2202	Kinematics of Machinery	2	2	-	3	2	40	2	40	of two	3	60	100
4	17ME2203	Machine Tools	3	-	-	3	2	40	2	40		3	60	100
5	17ME2204	Applied Thermodynamics-I	2	2	-	3	2	40	2	40		3	60	100
6	17ME2205	Materials Science and Metallurgy	3	-	-	3	2	40	2	40		3	60	100
		PRACTICALS Computer Program			nming Laboratory									
8	17ME22P1	Machine Tools Laboratory	-	-	3	2	-	-	-	40		3	60	100
9	17CE22P3	Strength of Materials Laboratory	-	-	3	2	-	-	-	40	Day to Day Evaluation and	3	60	100
10	17EE22P2	Electrical & Electronics Engineering Laboratory	-	-	3	2	-	-	-	40	a test (40 Marks)	3	60	100
		TOTAL	14	08	09	24	-	-	-	360		-	540	900
		MANDATORY COURSE - 2												
2	17MC2202	Environmental Studies	3	-	-	3	2	40	2	40		3	60	100

17SH2202- STATASTICS AND PARTIAL DIFFERENTIAL EQUATIONS (Only for ME)

Course Category:	Basic Science	Credits:	3
Course Type:	Theory	Lecture-Tutorial-Practical:	2-2-0
Pre-requisite:	Intermediate Mathematics	Sessional Evaluation: External Exam Evaluation: Total Marks: External Exam:	40 60 100 3 hrs

Course Objectives	 Students undergoing this course are expected to understand: Various descriptive statistics including the mean, variance and standard deviation for a given data set. Binomial, Poisson and Normal distributions. The basic concepts of Sampling Distribution. Construction of X, Range chart, C - chart and P chart. The basic concepts of Partial Differential Equations. The applications of Partial Differential Equations. 			
	-	successful completion of the course, the students will able to: Understand effectively the basic concepts of probability, random variables		
		and statistical parameters of distribution functions.		
	CO2	Have a well-founded knowledge of standard distributions (Binomial Poisson and Normal distributions) which can describe real life phenomena.		
Course Outcomes	CO3	Have a good grasp of Sampling distribution of the mean proportions, Sums and differences, Point Estimation and Interval Estimation.		
	CO4	Develop skills in constructing the X chart, Range chart, C-chart and P-chart.		
	CO5	Acquire knowledge in solving partial differential equations by using the appropriate techniques.		
	CO6	Have a sound knowledge in analyzing one dimensional wave equation, Heat flow equation and Two dimensional Laplace equations.		

	<u>UNIT – I</u> Probability and Random Variables: Introduction - Random experiments - Random variables - Discrete and continuous distributions - Statistical Parameters (Mean, Variance and Standard Deviation) of distribution functions. <u>UNIT – II</u> Probability Distributions: Binomial distribution - Poisson distribution - Normal distribution. <u>UNIT – III</u>
	Sampling Distributions: Population and Samples - Sampling distribution of the mean proportions, Sums and differences. Estimation: Point Estimation - Interval Estimation.
Course Content	$\underline{UNIT - IV}$ Statistical quality control: Introduction to Quality Control - Construction of \overline{X} -Range chart – C-chart and P chart.
	<u>UNIT – V</u> Partial Differential Equations: Formation of Partial differential equations - Solutions of Partial differential equations - Equations solvable by direct integration - First order linear partial differential equations - Lagrange's linear equations.
	<u>UNIT – VI</u> Applications of Partial Differential Equations: Methods of Separation of Variables - One dimensional Wave equation - One dimensional Heat flow equation - Two dimensional Laplace equations.
Text Books	 Probability and for engineers- G. S. S. Bhishma Rao, Scitech Publications (India) Pvt. Ltd., New Delhi. Probability and statistics- Dr.T.K.V. Iyengar, Dr.B. Krishna Gandhi, S.Ranganatham, Dr.M.V.S.S.N. Prasad, S. Chand Publication, New Delhi. Probability and statistics for engineers and scientists – Ronald E. Walpole, Sharon L. Myers and Keying Ye, Pearson 8th edition Higher Engineering Mathematics-B.S. Grewal, Kanna Publishers, New Delhi.
References	 Engineering Mathematics- B. V. Ramana, TMH, New Delhi. J. L. Devore, Probability and Statistics for engineering and sciences, 8th edition, Ceneage Learning, (2011). Probability & Statistics by E. Rukmangadachari & E. Keshava Reddy, Pearson Publisher. Probability & Statistics for Engineers- Miller and John Freund. E, Pearson Education, New Delhi

17ME2201-HYDRAULIC MACHINERY

Course	Program Core	Credits:	3
Category:			
Course Type:	Theory	Lecture-Tutorial-Practical:	2-2-0
Pre-requisite:	Engineering mechanics	Sessional Evaluation:	40
	and Fluid Mechanics	External Exam Evaluation:	60
		Total Marks:	100
		External Exam:	3 hrs

Course	Students undergoing this course are expected to:		
Objectives	Gain knowledge, handle and analyse problems related to impact of jets,		
	impulse and reaction turbines, centrifugal and reciprocating pumps and		
	hydraulic systems.		
	Upon successful completion of the course, the students will able to:		
Course Outcomes	CO1 Recall classifications, theories and working principles of hydraulic machinery.		
	CO2 Demonstrate the method to find the work done and efficiency of impact of jets for different configurations.		
	CO3 Solve problems on impulse and reaction turbines using analytical and graphical approach.		
	CO4 Evaluate performance characteristics of centrifugal and reciprocating pumps.		

	<u>UNIT –I</u> Impact of Jets: Impact of water jets - Hydrodynamic forces of jets on stationary and moving flat, inclined and curved vanes – Jet striking centrally and at tip- Velocity triangle at inlet and outlet –work done and efficiency. <u>UNIT –II</u>		
	Impulse Turbines: Classification of turbines, Pelton Wheel - working principle, Velocity triangle, work done and efficiency, conditions for maximum efficiency.		
Course	UNIT –III		
Content	Reaction Turbine: Francis and Kaplan turbines - Working principle, Velocity triangle, work done and efficiency. degree of reaction, Draft tube, Specific speed, unit quantities, performance characteristics. UNIT –IV		
	Centrifugal Pumps : Centrifugal pumps – Classification of pumps, Working of a centrifugal pump, work done by the impeller on liquid, Heads and efficiencies, Multi–stage centrifugal pumps – Specific speed, Performance characteristics, Model testing. UNIT –V		
	Reciprocating Pumps: Classification of Reciprocating Pumps, Working of a reciprocating pump, Coefficient of discharge and slip, Single acting and double acting reciprocating pumps. UNIT –VI		
	Hydraulic Systems: Hydraulic devices - Hydraulic accumulator, Hydraulic intensifier, Hydraulic press, Hydraulic ram, Hydraulic crane and Hydraulic lift, Hydraulic coupling, Hydraulic torque converter.		
TEXT BOOKS:	 Fluid mechanics with engineering applications: Daugherty R.L and J. B. Franzini TMH, 10th ed. Fluid mechanics and fluid machinery : Rajput R. K.; S. Chand 		
	 publications 3. Fluid mechanics and fluid machinery: Bhansal R. K.; Laxmi Publications, 9th ed 		
REFERENCES:	 Hydraulic and Fluid mechanics: Modi and Seth, Standard Book House, 2002 Theory and applications of Fluid Mechanics: Subramanyam k.; Tata Mcgraw-Hill 		

17ME2202-KINEMATICS OF MACHINERY

Course Category:	Program core	Credits:	3
Course Type:	Theory	Lecture-Tutorial-Practical:	2-2-0
Pre – requisite:	Engineering Mechanics-	Sessional Evaluation:	40
	Statics and Dynamics	External Exam Evaluation:	60
		Total Marks:	100
		External Exam:	3 hrs

	 Students undergoing this course are expected to: Understand Kinematic links, Pairs, chains and mechanisms. 				
Course	 Construct velocity and acceleration diagrams for simple mechanisms. 				
Objectives		Synthesize the simple mechanisms.			
		Understand the gear terminology and apply for different gear trains.			
	After CO1	completing the course the student will be able to: Grasp knowledge on basic terminology and working of simple			
	COI	mechanisms.			
Course Outcomes	CO2	Generate velocity and acceleration diagrams for simple mechanisms.			
Outcomes	CO3	Dimensional analysis of simple mechanisms using synthesis technique.			
	CO4	Demonstrate law of gearing for involute gear teeth profile.			
	CO5	Design a gear train for the stated torque.			
		<u>UNIT – I</u>			
	Kinematic Links & Pairs: Element, link, types of links – rigid link, flexible				
	link, fluid link. Constrained relative motions –completely, successfully and				
	incompletely type. Kinematic pair, classification of kinematic pairs - lower,				
	higher, sliding, turning, rolling, screw, spherical, Degrees of freedom- Grubler				
	criter	ia.			
Course Content	UNII - II				
	Kine	matic Chain: Kinematic chain, types- four bar chain, single slider-crank			
	chain	and double slider-crank chain. Grashoff's law, inversions of four bar			
	chain	, single slider-crank chain and double slider-crank chain.			
	Mech	nanisms: Introduction, mechanism, machine, Crank & Slotted lever quick			
		n motion mechanism, condition for correct steering, Davis steering gear.			
	<u>UNIT – III</u>				
	Kine	matic Synthesis of Mechanisms: Introduction, function generation, path			
	-	ration, rigid body guidance, Chebychev spacing of precision points, two			
	-	on synthesis four bar mechanism, three position synthesis four bar anism, overlay method. Frudenstein method for four bar linkage.			

	Mechanism defects – branch defect, order defect, Greshoff defect.		
	<u>UNIT – IV</u>		
	Velocity Analysis: Absolute and Relative Motions, motion of a link, velocity of rubbing, velocity diagrams for four bar mechanism, single slider mechanism and quick return motion mechanisms, Instantaneous Center, Kennedy's theorem.		
	Acceleration Analysis: Acceleration diagrams for four bar and single slider mechanism, Coriolis component of acceleration, acceleration diagrams for crank and slotted lever mechanism.		
	<u>UNIT – V</u>		
Gears: Classification of Gears, gear terminology, law of gearing, we sliding, path of contact, arc of contact, number of pairs of teeth is forms of teeth, interference in involute gears and minimum number of avoid interference			
	<u>UNIT – VI</u>		
	Gear Trains: Simple gear train, compound gear train, reverted gear train, planetary or epicyclic gear train, velocity ratio of epicyclic gear train (tabular method) and torques in epicyclic trains. Simple problems on gear trains		
Tout	 TEXTBOOKS: 1. S. S. Rattan, Theory of Machines, TMH Publishers, New Delhi. 2. Sadhu Singh[2012], Theory of Machines, Pearson Education, New Delhi. 3 C.S.Sharma and K.Purohit [2010], Theory of Mechanisms and Machines , PHI publishers. 		
Text Books and Reference Books	 REFERENCE: 4. Ashok G Ambekar, Mechanism and Machine Theory, PHI Publichers. 5. Ballaney [2005], Theory of Machines, Khanna Publishers, New Delhi. 6. Thomas Bevan[2005], Theory of Machines, CBS Publishers, New Delhi. 7. J.S. Rao and R.V Dukkipati [2008], Mechanisms and Machine Theory, NAI Publishers. 8. J.E. Shigley [2010], Theory of Machines and Mechanisms, McGraw Hill Publishers. 		

17ME2203-MACHINE TOOLS

Course Category:	Pr	ogram Core	Credits:	3	
Course Type:		neory	Lecture-Tutorial-Practical:	3-0-0	
	Er	ngineering Workshop,	Sessional Evaluation:	40	
	Ba	asic manufacturing	External Exam Evaluation:	60	
	pr	ocesses.	Total Marks:	100	
Pre-requisite:			External Exam:	3 hrs	
				<u>.</u>	
	Stude	nts undergoing this c	ourse are expected to understand:		
	✤ Th	e constructional deta	ils and working of various maching	ne tools such	
Course			otter, Drilling, Boring, Milling		
Objectives:	Br	oaching.			
		•	oplications of Non-Conventiona	1 machining	
			I, WJM, USM, CM, ECM, EDN	-	
	ĒE	BM.			
	🛠 Ap	ply the fundamentals	s and principles of metal cutting	to practical	
			tiple labs using lathes, milling mach		
		•	es, Computer Numerical Control etc.,		
	After	completing the cours	e the student will be able to:		
	CO1	Understand the	classifications, specifications, w	vorking and	
Course		functionalities of vari	ous machine tools.		
Outcomes:	CO2	E I			
o uteonico.		tools.			
	CO3		and importance of metal cutting para		
	CO4		on tool geometry, tool holding device	s, work	
	~~-	holding devices, abrasives.			
	CO5	CO5 Understand the mechanism of metal removal in Non-Conventional machining process.			
	CO6		on Automated systems		
	CO6 Grasp the knowledge on Automated systems. UNIT I				
	Lathe: Specification of lathe, types of lathes, work holders, tool holders,				
	Lathe operations and attachments for Lathes, Machining Time				
	calculations.				
	Turret and capstan lathes – Comparison with engine lathe, difference				
	between turret and capstan lathes, work holding devices and tool holding				
	devices.				
	LINUT H				
Course Content:	UNIT II				
Course Content:	Shaping, Slotting and Planing: Principles of working, Principal parts,				
	specification, classification, Operations performed. Shaper Mechanism,				
	Machining time calculations.				
	Drilling and Boring: Specifications, types, operations performed, tool				
	holding devices, twist drill terminology, Boring machines, Jig Boring				
	machines.				
	Millir	ng: Specifications, c	lassifications of milling machin	es, Principal	

	features of horizontal, vertical and universal milling machines, milling operations, Types and geometry of milling cutters, methods of indexing. Gear shaping & gear hobbing, Machining Time calculations. UNIT IV
	Grinding: Classification of grinding machines, Cylindrical and surface grinding machines, Tool and cutter grinding machines, Grinding wheel-Different types of abrasives, bonds, designation, selection of a grinding wheel.
	Broaching: Classification, constructional features, broaching operations. Lapping and Honing operations UNIT V
	Non-conventional Machining processes: Principle and applications of AJM, WJM, USM,CM, ECM, EDM, LBM, EBM. UNIT VI
	Automation: Need, types and basic elements of an automated system. Levels of automation. Hardware components for automation. Automatic lathes: Classification, Single spindle and multi-spindle automatic lathes.
Text Books &	Text Books: 1. Production Technology :R.K. Jain and S.C. Gupta, New Delhi, 5 th ed., Khanna Publishers, 2010
Reference Books:	2. Workshop Technology – Vol II : Hazra Chowdary, S.K. Bose & A.K. Bose, Media publishers,2005
	3. Automation, production systems and CIM : M.P.Groover, pearson Education, 2008
	Reference Books: .Manufacturing Engineering Technology : Kalpakjian, 2 nd edition ,New Jersey, USA. Pearson Stores, Prentice hall Publication,2010
	2. Production Technology, H.M.T. : 2 nd edition Tata Mc.graw Hill, Noida-India, 1986.
	3. Introduction to Manufacturing Technology: Prashant T. Data, 2 nd ed., JaicoPublication House,2010.
	4. Workshop Technology – Vol II : B.S. Raghuwanshi, New Delhi, 10 th ed.,Dhanpathrai&Co, 2010.
E-Resources:	http://nptel.ac.in/courses http://iete-elan.ac.in http://freevideolectures.com/university/iitm

<u>17ME2204-APPLIED THERMODYNAMICS - I</u>

Course	Programme core	Credits	3
Category			
Course type	Theory	Lecture- Tutorial-Practical	2-2-0
Prerequisite	Basic knowledge in physics,	Sessional Evaluation:	40
	Basic thermo dynamics	External Exam Evaluation:	60
		Total Marks:	100
		External Exam:	3 hrs

Course	Studar	ate undergoing this course are expected to understand:			
Objectives	Students undergoing this course are expected to understand:				
Objectives		e steam formation and properties of steam.			
		plain the working of steam generators.			
		plain the working of steam turbines, nozzles and condensers.			
		alyze the performance of steam turbines, nozzles, condensers.			
0		Explain, analyze and design the steam turbines. At the and of the course the student will be able to:			
Course		end of the course the student will be able to:			
Outcomes	COI	CO1 Understand steam formation, properties, generation and boiler			
	CO2	accessories.			
	CO2	Grasp knowledge on steam nozzles, condensers and turbines.			
	CO3	Solve problems on steam nozzles and condensers using relevant			
	<u> </u>	principles.			
	CO4	Use methods and concepts to construct velocity diagrams of steam			
		turbines.			
	CO5	Determine the performance of steam turbines.			
Course	Steam Properties and Power Cycles: Properties of steam, use of steam tables – PV, TS, HS diagrams, Steam Processes – Constant volume, constant pressure, isothermal, adiabatic and hyperbolic processes. Basic Steam Power cycles: Carnot cycle, Rankine cycle and modified Rankine cycle. UNIT – II Steam Generators: Classification of boilers, Cochran, Babcock and Wilcox, Lamont, Benson boilers. Boiler mountings: Water level indicator, pressure gauge, safety valve, fusible plug				
Content	Boiler accessories: Air pre-heater, economiser, super heater.				
	<u>UNIT – III</u> Steam Nozzles: Types, isentropic flow of steam through nozzles, velocity &				
	enthalpy drop, variation of velocity, area & specific volume, critical pressure				
	ratio for maximum discharge, effect of friction, supersaturated flow.				
	Steam Condensers: Functions of a condenser, classification, jet condenser –				
	parallel flow arrangement and counter flow arrangement, surface condenser,				
	vacuum efficiency – loss of vacuum & air leakage, air removal.				
		$\frac{\mathbf{UNIT} - \mathbf{IV}}{\mathbf{I} + \mathbf{IV}}$			
		se Turbine: Introduction, classification of steam turbines, Simple, De			
	Laval, pressure and velocity of steam in an impulse turbine, velocity triangles				
	for moving blade of an impulse turbine, combined velocity triangle for				

	moving blade, power produced by an impulse turbine, effect of friction on the combined velocity triangle, combined velocity diagram for axial discharge.		
	$\underline{\text{UNIT} - \text{V}}$ Reaction Turbine: Introduction, Parson's reaction turbine, pressure and velocity in a reaction turbine, comparison between impulse and reaction turbine, velocity triangles for moving blades of a reaction turbine, combined		
	velocity triangle for moving blades, power produced and degree of reaction.		
	<u>UNIT – VI</u>		
Text Books	 Performance of Steam Turbines: Introduction, efficiencies of steam turbine, condition for maximum efficiency of an impulse turbine and reaction turbine, compounding of steam turbines - velocity compounding, pressure compounding & pressure - velocity compounding, governing of steam turbines - throttle governing. Reheating of steam - advantages of reheating, reheat cycle, reheat factor. Regenerative cycle, bleeding, multi-stage turbine, efficiencies of multi-stage turbines. 1. Heat Engineering : Vasandani V.P and Kumar D.S., Metropolitan Book 		
	Company, 2006 2. Thermal Engineering (Engineering Thermodynamics and Energy Conversion Techniques) : Ballaney P.L., Khanna Publishers, 5th ed., 2010		
Reference Books	 A course in Thermal Engineering : Domukundwar & Kothandaraman, Dhanapat Rai and Co. 2010 Thermal Engineering : R.K. Rajput, Laxmi Publications, Text book of Thermal Engineering: R.S. Khurmi, J.K.,Gupta, S.CHAND Publications. 		
e-resources	 <u>https://nptel.ac.in/courses</u> <u>https://freevideolectures.com/university/iitm</u> 		

17ME2205-MATERIAL SCIENCE AND METALLURGY

Course	Programme core	Credits	3
Category			
Course type	Theory	Lecture-Tutorial-Practical	3-0-0
Prerequisite	Basic knowledge in Physics,	Sessional Evaluation:	40
	chemistry and Basic	External Exam Evaluation:	60
	manufacturing processes.	Total Marks:	100
		External Exam:	3 hrs

Course	Students undergoing this course are expected to understand:	
Objectives	 Students undergoing this course are expected to understand: Crystal structure, engineering materials, equilibrium diagrams, extractive metallurgy, heat treatment, powder metallurgy and advanced materials. Introduce the concept of structure property relations. Lay the groundwork for studies in fields such as solid-state physics, mechanical behaviour of materials, phase & phase diagram, heat treatment, failure of materials & their protection, applications of recent materials. 	
Course	At the end of the course, the student will be able to:	
Outcomes	CO1 Recall methodology and theories in the field of material science and	
	metallurgy.	
	CO2 Understand various material testing methods.	
	CO3 Use methods to draw equilibrium diagrams.	
	CO4Describe extraction procedure for ferrous and non-ferrous materials.	
	CO5 Summarize the applications of Powder metallurgy and Advanced	
	materials.	
Course Content	UNIT -1 Crystal structure: Space lattice and unit cells, Crystal structures of common metallic materials – BCC, FCC, HCP. Atomic packing factor, Miller indices, spacing of lattice planes, Properties of Engineering Materials. mperfections in solids - Crystal imperfections –p oint, line and surface lefects. Edge and screw dislocations, Burger's vector. Plastic deformation by slip and twinning. Critical resolved shear stress or slip. Work hardening. Event Materials: Testing of Engineering materials: Tengine of Creep. Fatigue – fatigue stress cycles, fatigue est, S-N curve. Ductile fracture and brittle fracture - Griffith's criterion. NDT : Fluorescent Inspection, Radiography, Magnetic particle Inspection, Ultrasonic Inspection.	
	<u>UNIT – III</u>	

	Equilibrium Diagrams: Construction of cooling survey for a sure motal		
	Equilibrium Diagrams: Construction of cooling curves for a pure metal and a solid solution/alloy – Gibb's phase rule for a metal system.		
	Construction and interpretation of binary phase diagrams -Types of phase		
	diagrams – Eutectic, Eutectoid, Peritectic, Peritectoid. Iron - Carbon system		
	– cooling curve of pure iron. Iron–carbide equilibrium diagram.		
	= cooling curve of pure non. non-carolae equilibrium diagram.		
	<u>UNIT – IV</u>		
	Extractive Metallurgy:		
	 Ferrous Materials: Production of Pig Iron in the Blast furnace. Production of steel in Bessemer, and Basic Oxygen steel making. Plain carbon steels – Uses and limitations of plain carbon steels. 		
	Alloy steels: Effect of alloying elements in steels. High speed tool steel, stainless steels, High nickel and High chromium steels.		
	Cast iron: grey, white, malleable and SG irons.		
	Non-Ferrous Materials: Introduction- Extraction of Aluminum and Copper, Properties and applications of Aluminum and copper alloys. <u>UNIT – V</u>		
	Heat Treatment: Construction of TTT diagram. Heat treatment of steels –		
	Annealing, Normalizing, Hardening, Tempering, Austempering, Mar tempering. Surface hardening of steels – Carburizing, Nitriding, Cyaniding, Flame Hardening and Induction Hardening. <u>UNIT –VI</u>		
	Powder Metallurgy: Production of metal powders, basic steps in powder metallurgy, advantages limitations and applications of powder metallurgy.		
	Advanced materials: Introduction and applications to super alloys, Smart materials and Nano materials		
Text Books	1. Introduction to Physical Metallurgy: Avner, 2 nd ed., Tata McGraw-Hill ducation, 2010.		
	2. Materials Science and Metallurgy : Kodgire V.D. 25 th ed., Everest ublishing House, 2009		
Reference	1.Physical Metallurgy : Raghavan V., 2 nd ed., PHI, 2006.		
Books	2. Principles of Engineering Metallurgy : Krishna Reddy. L., New Age		
	 International, 2007. 3. Materials Science and Metallurgy : Khanna O.P. 5th ed., Dhanpat Rai and Sons, 2009. 		

17MC2202 - ENVIRONEMNTAL STUDIES

(For ME and CE Branches)

Course category:Mandatory CourseCredits:Course Type:TheoryLecture - Tutorial - Practical:Prerequisite:Basic knowledge in Social Sciences andSessional Evaluation: External Exam Evaluation:	3 3-0-0		
Prerequisite:Basic knowledge in Social Sciences andSessional Evaluation: External Exam Evaluation:	3-0-0		
Social Sciences and External Exam Evaluation:	10		
	40		
	60		
chemistry Total Marks:	100		
External Exam Duration:	3 hrs		
Course Students undergoing this course are expected to understand:			
Objective \bigstar The multidisciplinary nature of environmental studies and f	eatures of		
ecosystem and bio-diversity.			
 The management of major natural resources. 			
✤ Recognize the causes, effects and remedial measures of env	ironmental		
pollution and outline the disaster management.			
 Various environmental cases-studies and classify different env 	ironmental		
acts.			
Course At the end of the course the student will be able to:			
Outcomes			
CO1 Understand multidisciplinary nature of environmental studies	•		
CO2 Understand the features of ecosystem and bio-diversity.			
CO3 Understand the management of major natural resources.			
CO4 Understand the causes, effects and remedial measures of env	ironmental		
pollution.			
CO5 Understand effectives of elements on environment an	d disaster		
management.			
CO6 Familiar with environmental acts and must be able to			
knowledge of environmental studies to certain case studies.			
<u>UNIT- I</u>	<u>UNIT- I</u>		
Introduction:			
Definition, Scope and Importance of Environmental Studies			
Components of Environment-Atmosphere, Biosphere, Hydrosp			
Lithosphere. Multidisciplinary nature of Environmental Studies	and public		
awareness.	awareness.		
<u>UNIT-II</u>			
Ecosystems: Concept, Structure and function, Producers comp			
	decomposers, Energy flow, Ecological succession, Food chains, webs and		
Content ecological pyramids, Characteristics structures and functions of e	ecosystems		
	such as Forest, Grassland, Desert, Aquatic ecosystems.		
<u>UNIT- III</u>			
Natural Resources and associated problems			
Land Resources: Land as a resource, land degradation, man induces	landslides,		
soil erosion, and desertification.			
Forest resources: Use and over-exploitation, deforestation, cas			
Timber extraction, mining, dams and their effects on forests and triba			
	Water resources: Use and over-utilization of surface and groundwater,		
conflicts over water sharing and watershed management.			

	Mineral Resources: Use and exploitation, environmental effects of extracting
	and using mineral resources.
	Food Resources: World food problems, changes caused by agriculture and
	over grazing, effects of modern agriculture, fertilizers- pesticides problems,
	water logging, salinity,
	Energy Resources: Growing energy needs renewable and non-renewable
	energy sources use of alternate energy sources.
	<u>UNIT- IV</u>
	Biodiversity and Conservation: Definition, Genetic, Species, and Ecosystem
	diversity, Value of biodiversity at global, national, local levels, Hot spots of
	biodiversity, Threats to Biodiversity, Endangered and endemic species of India,
	In-situ and ex-situ conservation of biodiversity.
	Case Studies: Silent Valley Project, Mathura Refinery and Tajmahal, Tehri
	Dam, Kolleru Lake Aquaculture, Fluorosis in Andhra Pradesh.
	<u>UNIT- V</u>
	Environmental Pollution- Definition, Causes, effects and control of air
	pollution, water pollution, soil pollution, marine pollution, noise pollution,
	thermal pollution, nuclear hazards, Ozone layer depletion, Global Warming and
	Acid Rains. Solid waste management methods-Composting, Vermi composting,
	Landfill. Disaster management, floods, earthquake, cyclone and landslides.
	<u>UNIT- VI</u>
	Environmental Problems in India:
	Effect of Urbanization, Industrialization and Transportation on quality
	environment and public health. Drinking water, Sanitation for good health.
	Green revolution.
	Social, Economic and Environmental interaction for sustainable development.
	Environmental Acts: Water act, Air act, Environment protection act, Wildlife
	protection act, Forest conservation act. Coastal Regulation Zones (CRZ),
	Special Economic Zones (SEZ).
	Field Work: Visit to a local area having river / forest / grassland / hill/
	mountain to document and environmental assets. Study of local environment-
	common plants, insects, birds. Study of simple ecosystems-pond, hill slopes,
	etc. Visits to Industries, water treatment plants, effluent treatment plants.
	Text Books:
	1. Bharucha Erach, Biodiversity of India, Map in Publishing Pvt. Ltd.,
Text	Ahmadabad, 2002.
Books and	2 .Environmental Science by Anubha Kaushik and C.P. Kaushik
reference	Reference Books:
Books:	1. Introduction to Environmental science by Y. Anjaneyulu.
	2. Environmental Studies by Dr. B.S. Chauhan.
	3.Environmental Science by M. Chandra Sekhar.
L	

17ME22P1-MACHINE TOOLS LABORATORY

Course Cat	tegory	Program Core	Credits	2
Course type		Practical	Lecture-Tutorial-Practical	0-0-3
Prerequisite		Machine Tools Theory	Sessional Evaluation:	40
			External Exam Evaluation:	60
			Total Marks:	100
	1		External Exam Duration:	3 hrs
Course		nts undergoing this laboratory and	1	
Objective			aper, milling and drilling machine	es.
		Calculate force & power meas		
		Produce single point cutting to		
Course	At the end of the laboratory the student will be able to:			
Outcomes	CO1	Understand various machine tools and cutting tools.		
	CO2	-		
	CO3	-	tools and cutting tools throug	h simple
		models.	8	I.
	CO4	Measure force and power of a	athe during turning operation.	
	CO5	Demonstrate alignment test on	Lathe.	
	LI	LIST OF EXPERIMENTS		
		Internal and External Taper Fi	tting	
		External Thread cutting Fit Exercise on Capstan lathe		
	5. 4.	Indexing using Universal Divi	ding Haad	
		U		
		 Spur Gear Cutting on Milling Machine Shaping Job 		
Commo	7. Production of Single Point Cutting Tool			
Course7. Production of Single FContent8. Alignment Tests on La				
Content		Force Measurement in Turning	5	
		. Power Measurement in Turning		
	1			

17CE22P3-STRENGTH OF MATERIALS LABORATORY

Course	Program core	Credits:	2
category:			
Course Type:	Theory	Lecture - Tutorial - Practical:	0 - 0 - 3
Prerequisite:	Knowledge on Strength of	Sessional Evaluation:	40
-	materials	External Exam Evaluation:	60
		Total Marks:	100
		External Exam:	3 hrs

	Students undergoing this laboratory course are expected to:		
en	Understand the mechanical testing procedures for evaluation of engineering properties of materials and to present a detailed technical report on the same.		
At the e	At the end of the laboratory course the student will be able to:		
	Conduct test on mild steel for tension, direct shear, hardness, torsion and impact load.		
	Conduct test on HYSD bar for tension, hardness and wood for compression test.		
CO3	Conduct test on springs and rolled steel joist for bending.		
CO4	Conduct test on beams for deflection and elastic modulus.		
CO5	Document results in detailed technical report.		
LIS	ST OF EXPERIMENTS		
1.	Tension test on Mild Steel bar.		
2.	2. Tension test on HYSD bar.		
3.	3. Compression test on wood.		
4.			
5.	Rockwell and Brinell Hardness tests.		
6.			
7.	6		
Course	Bending test on carriage springs.		
Content	9. Torsion test-Determination of Rigidity modulus (G).		
10.	. Deflection test on simply supported beam-Determination of Elastic modulus (E).		
11.	. Deflection test on fixed beam- Determination of Elastic modulus (E).		
12.	. Deflection test on close-coiled helical springs.		
	. Deflection test on over hanging beam - Determination of Elastic modulus (E).		

17EE22P2-ELECTRICAL & ELECTRONICS ENGINEERING LABORATORY

Course Category:	Profess	sional core	Credits:	2			
Course Type:	Practic	al	Lecture-Tutorial-Practical:	0-0-3			
Pre-requisite:	Basic concepts of Kirchhoff's Laws, Electronic Devices & controllers. Fundamentals of DC machines.Sessional Evaluation: External Exam Evaluation:40Total Marks: External Exam:60Total Marks: Sternal Exam:100						
Course Objectives:	 Students undergoing this laboratory course are expected to: Learn design and analysis of electrical circuits. Learn the basic concepts of the Electrical Machines. Learn the characteristics & operation of 1- φ Transformer. Learn the characteristics of various Electronic Devices. Learn the basic concepts of the Controllers. 						
	At the	end of the laboratory course th	e student will be able to:				
	CO1	Analyze and design electric	cal circuits using circuit elements	s.			
Course	CO2	Understand power and pov	ver factor concepts practically.				
Outcomes:	CO3						
	CO4		teristics of DC Motors and Gene	erators.			
	CO5 Understand the concepts of semiconductor devices.						
Course Content:	LIST 1. V 2. N 3. C 4. I 5. I 6. E a. S b. S 7. F 8. Z 9. E 10. I 11. I	OF EXPERIMENTS Verification of Kirchhoff's L Measurement of Power using Open Circuit and Short Circu Load test on 1- φ Transforme Load test on DC Shunt Moto Excitation Characteristics of Separately Excited DC Gener Self-Excited DC Shunt Gener P-N Junction Diode Character Zener Diode Characteristics	g Wattmeter it test on 1-φTransformer or rator rator ristics (Ge & Si) Characteristics (CE Configuration Filter ter	on)			

Vision and Mission of the INSTITUTE

Vision:

To emerge as a comprehensive Institute that provides quality technical education and research thereby building up a precious human resource for the industry and society.

Mission:

- To provide a learner-centered environment that challenges individuals to actively participate in the education process.
- To empower the faculty to excel in teaching while engaging in research, creativity and public service.
- To develop effective learning skills enabling students pick up critical thinking thus crafting them professionally fit and ethically strong.
- To reach out industries, schools and public agencies to partner and share human and academic resources.

Vision and Mission of the Department

Vision:

To become an excellent centre for technical education and research in the field of mechanical engineering to meet the societal, regional, national and global challenges.

Mission:

- > To impart quality technical education and transform bud engineers into an effective and responsible engineers to work with the current technologies in multi-cultural and multi-discipline environment.
- ➤ To encourage the students to develop their creativity in the field of mechanical engineering by providing modern laboratory facilities with hands on training and contemporary curriculum.
- > To develop the interaction with the Industry, experts in order to technical mastery.
- To provide best teaching & learning practices as well as creating opportunities for Research, maximise student results and placements
- To inculcate and promote lifelong learning skills, problem solving skills, leadership qualities and team work.

PROGRAM EDUCATIONAL OBJECTIVES

- > **PEO1:** A strong foundation to access, analyze, plan and implement their knowledge in basic sciences & mathematics, core and interdisciplinary courses.
- > **PEO2:** Graduate will be in a position to work with the members of multi-disciplinary teams and can play a leading role in handling the technical issues.
- ▶ **PEO3:** Graduates will have capability to work with modern engineering tools, software and equipment under the realistic constraints.
- > **PEO4:** Graduates will engage in lifelong learning skills with research attitude and social responsibility.

PROGRAM OUTCOMES

Engineering Graduates will be able to:

PO1. **Engineering knowledge:** The Graduate will be able to solve mechanical engineering related problems through the application of knowledge in mathematics, science and engineering.

PO2.Problem analysis: The graduate will be able to identify, formulate and solve complex engineering problems through literature reviews/surveys and fundamentals of mathematics, sciences and engineering.

PO3.Design/development of solutions: The graduate will be able to design and develop solution for complex engineering problems and systems or processes for specific needs within the realistic constraints of the civil society..

PO4.Conduct investigations of complex problems: The graduate will be able to investigate the complex engineering problems through research methodologies.

PO5.Modern tool usage: The graduate will be able to use modern engineering tools, techniques and skills necessary for engineering practice to obtain solution to the problems

PO6.The engineer and society: The graduate will be able to work as responsible professional engineer with contextual knowledge of the civil society.

PO7.Environment and sustainability: The graduate will be able to develop sustainable engineering solutions with environmental and societal context.

PO8.Ethics: The graduates will be able to work with professional ethics and commitment

PO9.Individual and team work: The graduate will be able to associate with the multi-disciplinary teams or lead the people associated with.

PO10.Communication: The graduates will be able to communicate effectively with appropriate representation of their views or ideas.

PO11.Project management and finance: The graduate able to execute the project effectively in multidisciplinary environments as a member or leader through knowledge acquired in engineering.

PO12.Life-long learning: Graduate will have an ability to engage in life-long learning of knowledge on contemporary issues.

NBKR INSTITUTE OF SCIENCE & TECHNOLOGY :: VIDYANAGAR (AUTONOMOUS) (AFFILIATED TO JNTUA ANANTAPURAMU) SPSR NELLORE DIST III YEAR OF FOUR YEAR B.TECH DEGREE COURSE – I SEMESTER MECHANICAL ENGINEERING SCHEME OF INSTRUCTION AND EVALUATION (With effect from the academic year 2017-2018)

]	Evaluation					
S. N	Course Code	Course Title		struction urs/Weel		Credits	Sessic Test		Sessio Test		Total Sessional Marks (Max. 40)	End Se Exami		Maximum Total Marks
0		THEORY	L	Т	D/P		Duration In Hours	Max. Marks	Duration In Hours	Max. Marks		Duration In Hours	Max. Marks	100
1	17ME3101	Industrial Engineering and Management	3	0	0	3	2	40	2	40		3	60	100
2	17ME3102	Dynamics of Machinery	2	2	0	3	2	40	2	40		3	60	100
3	17ME3103	Design of Machine Elements–I	2	2	0	3	2	40	2	40	0.8*Best of two+0.2*lea st of two	3	60	100
4	17ME3104	Applied Thermodynamics–II	2	2	0	3	2	40	2	40		3	60	100
5	17ME3105	Mechanical Measurements	3	0	0	3	2	40	2	40		3	60	100
6	17ME31EX	Core Elective – I	3	0	0	3	2	40	2	40		3	60	100
		PRACTICALS												
7	17ME31P1	Materials Science & Metallurgy Laboratory	-	-	3	2	-	-	-	40	Day to Day	3	60	100
8	17CE31PX	Fluid Mechanics and Hydraulic Machinery Laboratory	-	-	3	2	-	-	-	40	Evaluation and a test (40 Marks)	3	60	100
9	17ME31P2	Thermal Engineering Laboratory	-	-	3	2	-	-	-	40		3	60	100
1 0	17ME31MP	Mini Project	0	0	0	2				40			60	100
		TOTAL	15	06	09	26	-	-	-	400		-	600	1000

17ME3101- INDUSTRIAL ENGINEERING AND MANAGEMENT

Course category:	Humanities	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3-0-0
Prerequisite:	Economics and accountancy	Sessional Evaluation :	40M
		Univ. Exam Evaluation:	60M
		Total Marks:	100M

Course	1. ide	entify and implement effective solutions to real problems by applying.			
Objectives	2. com	ntemporary industrial engineering tools and cutting-edge technology in production.			
		aduates will be able to formulate problems accurately, alternatives, and decision makers in ashion that facilitates decision-making processes.			
		aduates will be able to assume leadership roles with strong communication skills and will			
		able to work competently and ethically alone and as team members			
Course		Upon successful completion of the course, the students will able to:			
Outcomes	CO1	apply knowledge of science & engineering in industrial management			
	CO2	to take the right decisions to optimize resources utilization by improving productivity of the Lands, Buildings, People, Materials, Machines, Money, Methods and Management effectively.			
	CO3	to eliminate unproductive activities under the control of the Management, Supervisor, worker and the Design of Products and Processes			
	CO4	to use the Charts to record the Activities of the people, materials and Equipment to find alternative methods which minimize waste and to implement the best method.			
	CO5	to improve the processes and find the Standard Time.			
	CO6	to design the Man – Machine System to improve Human Efficiency and reduce the effort of the workers.			
	UNIT – I				
	manag	AGEMENT CONCEPT: Administration, management and organization. Scientific gement, functions of management, principles of management, types of organizations, bles of organization, Fayol's and Taylor's contributions to management.			
	UNIT – II				
	SALES FORECASTING: Need, classification. Methods - moving average, exponential smoothing and linear regression. Measures of forecast accuracy.				
Course content	MARKETING: Definition, principles and functions, marketing management, marketing research.				
	UNIT – III				
		T LOCATION: Influencing factors, Weber's theory. Choice of city, suburban and y locations.			
	PLANT LAYOUT: Definition, objectives. Types – Product, process and fixed position layouts.				

	PLANT MAINTENANCE: Importance, Types – Preventive, predictive and breakdown maintenance. Introduction to total productive maintenance (TPM).
	UNIT – IV
	WORK STUDY: Basic procedure. Method study – definition, objectives and procedure.
	WORK MEASUREMENT: Objectives. Techniques of work measurement – Time study, work sampling, analytical sampling and Predetermined Motion Time Systems (PMTS). Determination of standard Time.
	UNIT – V
	PERSONNEL MANAGEMENT: Functions of personnel management. Methods of Job evaluation. Methods of merit rating. Incentive plans – Piece rate system, Taylor's differential piece rate system, Halsey 50-50 plan, Rowan plan and Bedaux system.
	UNIT – VI
	QUALITY CONTROL: Introduction to inspection and quality control. Variables and Attributes. Acceptance sampling for attributes – description, advantages and disadvantages of sampling, types of sampling plans, OC curve for single and double sampling plans. Design of sampling plans.
	TOTAL QUALITY MANAGEMENT: Introduction, Six Sigma concept, tools for continuous quality improvement.
	TEXT BOOKS:
Text Books	Industrial Engineering and Management : Khanna O P, Dhanpat Rai & Sons, 2018
and	Principles of Motion and Time Study : Ralph Barnes, John Wiley, 2003
reference	Quality control: Dale H Besterfield, Pearson Education, 2009 REFERENCES:
Books:	
	Production and Operations Management : R. Panneerselvam, PHI Publications, 2012 Modern Production/Operations Management: Buffa E S, John Wiley & Sons. 2007
E-Resources	1.https://nptel.ac.in/courses
	2.https://freevideolectures.com/university/iitm

17ME3102 -DYNAMICS OF MACHINERY (SI UNITS)

Course category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	2 - 2 - 0
Prerequisite:	Engineering mechanics, KOM	Sessional Evaluation : Univ.Exam Evaluation:	
		Total Marks:	

Course Objectives		1 .To equip the student with fundamental knowledge of dynamics of machines so that student can appreciate problems of dynamic force balance, transmissibility of forces, isolation of systems, vibrations.								
		2. Develop knowledge of analytical and graphical methods for calculating balancing of rotary and reciprocating masses.								
	3. Develo	3. Develop understanding of vibrations and its significance on engineering design.								
	4. Develo	op understanding of dynamic balancing, flywheel analysis, gyroscopic forces and moments.								
Course		Upon successful completion of the course, the students will able to:								
Outcomes	CO1	Understand free and forced vibrations of single degree freedom systems								
	CO2 Analyze balancing problems in rotating and reciprocating machinery									
	Characterize and design flywheels									
	Understand the gyroscopic effects in ships, aero planes and road vehicles									
	Analyze and design centrifugal governors									
	CO6 Explain the principles in mechanisms used for speed control and stability control									
	UNIT – I FRICTION: Inclined planes, friction of screws and nuts, pivot and collar, uniform pressur uniform wear, friction circle and friction axis. Lubricated surfaces- boundary friction, fil lubrication. CLUTCHES: Single disc or plate clutch, multiple disc clutches, cone clutch and centrifug clutch. UNIT – II BRAKES: Simple shoe brake, block brake, band brake and disc brake. DYNAMOMETERS: Absorption- rope, belt. Transmission - torsion and epi-cyclic.									
Course content		-								

	UNIT – IV TURNING MOMENT DIAGRAMS AND FLYWHEEL: Turning moment diagrams for steam engine, I.C. engine and multi cylinder engine. Crank effort - fluctuation of energy, coefficient of fluctuation of speed – flywheel of a punching press.
	UNIT – V GYROSCOPIC COUPLE AND PROCESSIONAL MOTION: Gyroscopic couple, effect of precession on stability of moving vehicles- motor cycles, motor cars, aero-planes and ships.
	UNIT – VI CAMS: Classifications of cams and followers, displacement, velocity & acceleration diagrams when the followers move with uniform velocity, S.H.M., uniform acceleration & retardation, construction of cam profiles for radial cam with knife edge follower, roller follower. Cams with specified contours-tangent cam.
Text Books and reference Books:	 TEXT BOOKS: 1. Theory of Machines: R.S.Khurmi and J K Gupta., S.Chand, 2015 2. Theory of Machines: Thomas Bevan, 3rd ed., Pearson Education India, 2010. 3. Theory of Machines: S. S. Rattan, 4th ed., Mc Graw Hill India Pvt. Ltd., 2014 REFERENCES: 1. Mechanisms and Machine Theory : Rao J. S. and Dukkipati R. V., 2nd ed., New Age, 2006 2. Theory of Machines: John J. Uicker, G. R. Pennock, Joseph Edward Shigley, Oxford University Press, 2003
E-Resources	1.https://nptel.ac.in/courses 2.https://freevideolectures.com/university/iitm

<u>17ME3103 - DESIGN OF MACHINE ELEMENTS-I</u>

Course category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	2-2-0
Prerequisite:	Engineering mechanics, SOM, KOM.	Sessional Evaluation : Univ. Exam Evaluation: Total Marks:	60

Course Objectives		1: To apply the concepts of stress analysis, theories of failure and material science to analyze, design and/or select commonly used machine components.					
	2: To ill learning	lustrate the variety of mechanical components available and emphasize the need to continue g.					
	3: To apply mechanical engineering design theory to identify and quantify machine elemetric design of commonly used mechanical systems.						
Course	design	Upon successful completion of the course , the students will able to:					
Outcomes	CO1	Formulate and analyze stresses and strains in machine elements subjected to different loads.					
	CO2	Understand component behavior subjected to loads and identify the failure criteria					
	CO3	CO3 Analyze the stresses and strains induced in a machine element					
	CO4 Design a machine component using theories of failure						
	CO5	Analyses and apply design procedure for welded joints.					
	CO6	Design knuckle and cotter joints for various engineering applications.					
		UNIT – I					
Course content	of desig Machi	tering Design: What is designing? The process of design, Design by evolution, morphology gn, Identification of need, true need, brain storming, economic and financial feasibility. ne Design: Basic procedure of machine design– Design considerations and standards; ering materials- classification and selection, mechanical properties of materials. UNIT – II					
	Design For Static Strength: Modes of failure; factor of safety; Simple stresses in machine parts- Stresses due to bending moment, Stresses due to torsional moment – Eccentric axial loading- Design for impact loads						
	UNIT – III						
	 Design For Fatigue Strength: Stress concentration – Stress concentration factors - Reduction of stress concentration- Fluctuating stresses – Fatigue failure – Endurance limit – Notch sensitivity– Soderberg, Goodman and modified Goodman diagrams – Design for infinite life. 						

	UNIT-IV
	Riveted Joints : Types of riveted joints - efficiency of riveted joint – eccentrically loaded riveted joints.
	Welded Joints: Types of welded joints; stresses in butt and fillet welds; strength of welded joints;
	eccentricity welded joint; weld joint subjected to bending moment. UNIT - V
	Threaded Joints: Terminology of screw threads, Bolted joint -Eccentrically loaded bolted joints in shear - Eccentric load perpendicular to axis of bolt -Bolts of uniform strength. UNIT – VI
	Shafts: Introduction-Design of solid and hallow shafts for strength and rigidity, Shaft materials, Shaft sizes- BIS Codes. Design of shafts for combined bending and axial loads.
	TEXT BOOKS:
Text Books	 Design of Machine Elements: Bhandari V. B., 4th ed.McGraw Hill education,2017 Machine Design: Khannaiah P., Scitech Publications. 4th edition, 2010
and reference Books:	3. Machine Design: Sharma P.C. & Aggarwal D.K., S. K. Kataria & Sons, 2006
	REFERENCES:
	1. Machine Design : Khurmi R.S., S. Chand Publisher, 14 th ed., 2010.
	2.Mechanical Engineering Design: Shigley J. E., 9 th ed., Tata McGraw-Hill Education 2010
	3. Balaveera Reddy & Mahadevan, Design Data Handbook for Mechanical Engineers, CBS publishers, 4th Edition, 2013.
	NOTE: Balaveera Reddy & Mahadevan, Design Data Handbook for Mechanical Engineers, CBS publishers, 4th Edition, 2013
E-Resources	1.https://nptel.ac.in/courses 2.https://freevideolectures.com/university/iitm

17ME3104 - APPLIED THERMODYNAMICS-II

Course category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	2-2-0
Prerequisite:	BTD, ATD-1	Sessional Evaluation : Univ. Exam Evaluation: Total Marks:	60

Course	Students undergoing this course are expected to				
Objectives	1. Und	lerstand operation of IC engines.			
	2. Perform theoretical calculations to obtain thermodynamic efficiencies and then asses operating losses.				
		iliarize with the types of air compressors, working principle and operating characteristics.			
		cribe basic working principle of gas turbine plant. Define the performance characteristics.			
		blish understanding of propulsion systems in aircraft that are essential to graduate.			
		neers who are intended to work in aircraft system/component manufacturing/maintenance			
	-	ronments.			
Course	urse Upon successful completion of the course , the students will able to:				
Outcomes	CO1	Differentiate the internal combustion engines based on the classification parameters.			
	CO2	Analyze the internal combustion engine cycles and performance parameters.			
	CO3	Describe the working of reciprocating air compressors along with their performance parameters.			
	CO4	Discuss the operation of centrifugal and axial flow compressors.			
	CO5	Express the basic cycles and calculations involved in the operation of gas turbines.			
	CO6	Gain skills in problem solving for aircraft propulsion systems, in particular gas turbine engines.			
	UNIT – I				
Course content	INTERNAL COMBUSTION ENGINES: Classification, SI and CI engines - principles operation, methods of fuel supply, ignition, cooling, lubrication and methods of governing.				
	UNIT – II PERFORMANCE OF IC ENGINES: Valve and port time diagrams, indicator diagrams. Testing of engines – indicated power, brake power, efficiencies, air-fuel ratio and heat balance.				
	UNIT – III RECIPROCATING COMPRESSORS: Mechanical details, methods of compression, shaft work and isothermal efficiency of a single-stage compressor, indicator diagram, effect of clearance, volumetric efficiency, losses during compression, multi-stage compression - optimum pressure condition in two-stage compression, inter coolers and after coolers.				

	UNIT – IV
	ROTARY COMPRESSORS: Classification – positive displacement and rotary dynamic (non-
	positive displacement) compressors, fans and blowers. static and total head.
	CENTRIFUGAL COMPRESSORS: Velocity diagrams, type of impeller vanes, slip factor,
	diffuser isentropic efficiency.
	AXIAL FLOW COMPRESSORS: Velocity diagrams, degree of reaction, isentropic efficiency.
	UNIT – V
	GAS TURBINES: Simple gas turbine cycle, open and closed cycle, constant volume cycle,
	constant pressure cycle, efficiency and work output, inter coolers, reheat and regeneration cycles, losses in turbine.
	UNIT – VI
	JET PROPULSION: Specific thrust, thermal efficiency, propulsion efficiency, turbo prop, turbo jet, rocket propulsion, performance evaluation.
	TEXT BOOKS:
Text Books and reference Books:	1. Heat Engineering: Vasandani V.P & Kumar D.S., Metropolitan book Co Pvt Ltd , 20002. Heat Engines: Ballaney P.L., Khanna Publishers, 20053. Thermal Engineering : R.K. Rajput., Laxmi Publications, 2018
	REFERENCES:
	3. Engineering Thermodynamics : Nag P. K., McGraw Hill Publication, 5 th ed., 2013
E-Resources	1.https://nptel.ac.in/courses
	2.https://freevideolectures.com/university/iitm

17ME3105 - MECHANICAL MEASUREMENTS

Course category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3 -0 - 0
Prerequisite:	Metrology	Sessional Evaluation : Univ. Exam Evaluation: Total Marks:	60

Course Objectives			
Course		Upon successful completion of the course, the students will able to:	
Outcomes	CO1	An ability to apply the principles of uncertainty to data analysis from instrument measurement of a variety of properties.	
	CO2	An ability to analyze the response of instruments that are first order systems.	
	CO3	An ability to operate instruments and measurement systems to measure the Flow, Temperature, Force and Torque.	
	CO4	An ability to apply the principles of Strain Measurement, digital sampling and signal conditioning to measurement instruments.	
	CO5	An ability to write reports describing experimental setups, data collection, data analysis and data presentation.	
		UNIT – I	
Course content	BASIC CONCEPTS: Introduction, definition of terms – span and range, readability, sensitivity, accuracy, precision, threshold, resolution and hysteresis. calibration standards, the generalized measurement system.		
	 DYNAMIC MEASUREMENT: Amplitude response, frequency response, phase response, delay time and time constant. Analysis of experimental data and types of experimental errors, combination of component errors in overall system accuracy. 		
	UNIT – II		
	TRANSDUCERS: Introduction, loading of the signal source, impedance matching, piezoelectric, inductive, capacitance, resistance, ionization and photoelectric transducer, calibration procedures. UNIT – III		
	MEASUREMENT OF PRESSURE AND VACUUM: Pressure measurement – Bourdon pressure gauge, Bellows and Diaphragm gauge. High vacuum measurement – McLeod gauge, Pirani gauge and Thermocouple vacuum gauge.		
	UNIT – IV		
	MEASUREMENT OF FLOW : Ultrasonic flow meters, Rotameters, turbine flow meter and magnetic flow meter, measurement of fluid velocities – hot wire anemometer. UNIT - V		
	MEAS	UREMENT OF TEMPERATURE: Electrical thermometers, resistance thermometers and	
		ters. non-contact devices.	
		UREMENT OF FORCE AND TORQUE: Basic force measurement methods-hydraulic sumatic load cells, Electric Dynamometers, Eddy-current Dynamometers. UNIT – VI	
	STRAI	N MEASUREMENT: Strain measurement by Electrical Resistance. Strain gauges for	

	bending, compressive and tensile strains. VIBRATION AND ACCELERATION MEASUREMENT: Seismic instruments–Principle, application in the measurement of vibration ACCELERATION: Piezoelectric accelerometers, Strain gauge accelerometer.
Text Books and reference Books:	 TEXT BOOKS: 1. Mechanical measurements and Control: Kumar D.S., Metropolitan Book Company, 2006. 2. Mechanical measurements: Beckwith T.G. & Lewis Buck N., Addison-Wesley Longman, 2002. 3. Control systems: A Nagoor Kani, RBA Publishers, 2006
	 REFERENCES: 1. Mechanical measurements: Sirohi R.S. & Radha Krishna H.C., 3rd ed., New Age International, 2009. 2. Experimental methods for Engineer: Holmen J.P., 8th ed., Tata McGraw-Hill 2009. 3. Basic Instrumentation: Higgins O., McGraw-Hill, 2000.
E-Resources	1.https://nptel.ac.in/courses 2.https://freevideolectures.com/university/iitm

17ME31E1 - COMPOSITE MATERIALS (CE-1)

Course category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3 -0 - 0
Prerequisite:	Metallurgy& material science	Sessional Evaluation : Univ. Exam Evaluation: Total Marks:	60

Course	1. Explain the behavior of constituents in the composite materials.		
Objectives	2. Enli	ighten the students in different types of reinforcement.	
	3. Dev	velop the student's skills in understanding the different manufacturing methods available	
	for c	composite material.	
	4. Illur	minate the knowledge and analysis skills in applying basic laws in mechanics to the	
		posite materials.	
	5. To know the industrial applications of composite materials.		
Course	Upon successful completion of the course , the students will able to:		
Outcomes	CO1	Recall of information like, technical terms, classifications, categories, and criteria	
	CO1	Explain the mechanical behavior of composites compared to isotropic materials	
	CO3	Apply constitutive equations of composite materials and understand mechanical	
		behavior at micro and macro levels.	
	CO4	Determine stresses and strains relation in composites materials.	
	CO5	Demonstrating correct usage of a method or procedure for producing different	
		composites.	
	CO6	Identify the industrial applications of composite materials in various fields.	
	UNIT – I		
Course	INTRODUCTION TO COMPOSITE MATERIALS: Introduction, Classification- Polym		
content	Matrix Composites, Metal Matrix Composites, Ceramic Matrix Composites, Carbon-Carbon		
	Composi	tes, Fiber Reinforced Composites, and nature-made composites, advantages of composites.	
		UNIT – II	
	REINFC	DRCEMENTS: classification of reinforcements- Fibers reinforcements, - Glass Fibers,	
	Boron F	ibers, Carbon Fibers, Organic Fibers, Ceramic Fibers, Metallic Fibers, Comparison of	
	Fibers P	Particulate reinforcements, fabrication and properties	
		UNIT – III	
	Metal Matrix Composites: Fabrication of MMCs-Solid State Fabrication, Liquid State Fabrication,		
	In Situ Fabrication Techniques. Interface in Metal Matrix Composites- Mechanical Bonding,		
	Chemical	l Bonding, Interfaces in Situ Composites. Discontinuous Reinforcement of MMCs.	
		UNIT-IV	
	Polymer	Matrix Composites: Fabrication of PMCs, Autoclave, tape production, moulding	
	•	, filament winding, manual layup, pultrusion, RTM. Properties of PMCs, Interface in	

	Ceramic Matrix Composites: Fabrication of CMCs, Properties of CMCs, Interface in CMCs,
	Toughness of CMCs.
	UNIT – V
	Interfaces: Wettability and Bonding, Types of Bonding, Interface in Composites, Interactions, Tests
	and measurement of Interfacial Strength.
	Strength and stiffness of single layer fiber reinforced composite- Voight's rule for volume and
	weight fraction, longitudinal strength and stiffmness, transverse modules, in plain shear modules, poisons ratio.
	UNIT – VI
	INDUSTRIAL APPLICATION OF COMPOSITE MATERIALS: Civil constructions of
	structures/panels, Aerospace industries, Automobile and other surface transport industries,
	Packaging industries, House hold and sports components and case studies composite material
	applications.
	Text Books:
	1. K.K. Chawla, Composite materials, 3 rd ed., Springer, NewYork, 2012.
Text Books	2. R. M. Jones, Mechanics of Composite Materials, 2 nd ed., McGraw Hill, 1999.
and reference Books:	3. Mechanics of composite materials and structures, madhujit mukhopadhyay, universities pres,2017.
	References:
	1. B. D. Agarwal, L.J. Broutman and K. Chandrashekhara, Analysis and performance of fibre
	Composites, 3 rd ed., John Wiley and Sons, New York, 2006.
	2. Autar K. Kaw, Mechanics of Composite Materials, (Mechanical Engineering), London,
	2 nd ed., CRC Publication, Taylor &francis group, 1993.
E-Resources	1.https://nptel.ac.in/courses
	2.https://freevideolectures.com/university/iitm

17ME31E2- INTERNAL COMBUSTION ENGINES (CE-1)

Course category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3 -0 - 0
Prerequisite:	Basic thermodynamics Applied Thermodynamics-I	Sessional Evaluation : Univ. Exam Evaluation: Total Marks:	60

Course	1. To understand the operation of internal combustion engines.			
Objectives	2. To perform theoretical calculations to obtain thermodynamic efficiencies and then assess			
	operating losses.			
		lculate engine operating parameters.		
		nderstand the implications of a tradeoff between performance, efficiency, emissions.		
	5.To ass	sess the relation between engine power output to the required power for vehicle propulsion.		
Course		Upon successful completion of the course, the students will able to:		
Outcomes	C01	Understand working and performance of IC Engines through thermodynamic cycles		
	CO2	Understand combustion phenomena in SI and CI engines and factors influencing combustion chamber design.		
	CO3	Outline emission formation mechanism of IC engines, its effects and the legislation standards		
	CO4	Describe the properties of various alternative fuels, engine modification required and emission characteristic of alternative fuels.		
	CO5	Evaluate methods for improving the IC engine performance		
	CO6	Understand the latest developments in IC Engines and alternate fuels		
		UNIT – I		
Course	INTRODUCTION : Historical development of internal combustion engines – basic engine types			
content	and their operation, comparison of S.I and C.I engines, working of four stroke engines, valve and			
	port timing diagrams			
	UNIT – II			
	COMBUSTION IN SI ENGINES: Stages of combustion in SI engines, abnormal combustion and			
	knocking in SI engines, factors affecting knocking, control of knocking and combustion chambers			
	for SI engines, engine emissions.			
	UNIT – III			
	COMBUSTION IN CI ENGINES : Stages of combustion in CI engines, detonation in CI engines,			
	factors affecting detonation, controlling of detonation, importance of proper air movements,			
	combustion chambers for CI engines, engine emissions.			
	.UNIT – IV			
	SUPERCHARGING: Objectives of supercharging, supercharged S.I. engines, supercharged C.I.			
	engines, effects of supercharging on engine performance, methods of supercharging, superchargers,			

	turbo charging – method of turbo charging, limitations of turbo charging.
	UNIT – V
	FOSSIL FUELS: Requirements of I.C. engine fuels - Hydrocarbon fuels their nature and
	properties, calorific value, volatility and vapour lock, fuel ratings for S.I engines and C.I. engines, additives.
	ALTERNATIVE FUELS: Alcohol, Hydrogen, Compressed Natural Gas, Liquefied Petroleum
	Gas and Bio Diesel – Properties, Suitability, Merits and Demerits. UNIT – VI
	DEVELOPMENTS IN I.C. ENGINES : Air assisted Combustion, Homogeneous charge compression ignition engines – Variable Geometry turbochargers – Common Rail Direct Injection Systems - Hybrid Electric Vehicles, MPFI.
	TEXT BOOKS:
Text Books and reference Books:	 A course in Internal Combustion Engines: Mathur, M.L.& Sharma, R.P., Dhanpat Rai, 1999 Internal Combustion Engines Fundamentals: Heywood, J.V., McGraw-Hill, 1988 Internal Combustion Engines :V.Ganeshan, 5th edition, TMH Publication, 2012 Ramalingam. K.K., "Internal Combustion Engine Fundamentals", Scitech Publications, 2002.
	REFERENCES: 1. Internal Combustion Engines : Maleev, V.L., McGraw-Hill, 1945 2. Internal Combustion Engines& Air Pollution : ObertE.F., Harper & Row, 1973 3. Internal Combustion Engines : Lichty, McGraw-Hill, 1951
E-Resources	1.https://nptel.ac.in/courses 2.https://freevideolectures.com/university/iitm

17ME31E3- METAL FORMING PROCESSES (CE-1)

Course category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3 -0 - 0
Prerequisite:	Basic manufacturing process	Sessional Evaluation : Univ. Exam Evaluation: Total Marks:	60

Course	1. Understand the overview and fundamentals metal forming				
Objectives		Understand the fundamentals of rolling			
		Understand the fundamentals of extrusion and types of extrusion			
		Understand the fundamentals of forging and types of forging			
	5. Understand the fundamentals of high energy rate forming process.				
Course Outcomes		Upon successful completion of the course , the students will able to:			
Outcomes	CO1	Determine major process/processes of manufacturing used for given application.			
	CO2	Explain when and why metal forming is chosen compared to other compatible methods.			
	CO3	Analyze effect of parameters influencing metal forming and compare hot working and cold working with applications.			
	CO4	Explain capabilities and applications of bulk metal forming processes and sheet metal work.			
	CO5	Outline tooling and equipment required for important metal forming processes.			
	CO6	Examine effects of friction & lubrication and causes of common defects in metal			
	forming.				
		UNIT – I			
Course		RETICAL BASIS FOR METAL FORMING : Engineering stress-strain curve, true stress-			
content	strain curve, general state of stress at a point, yielding under complex stresses. Flow rules: lever mises equations and Prandtl - Reuss equations. Strain hardening, recovery, recrystallisation are grain growth. Hot working, cold working and warm working. Comparison of properties of cold are hot worked parts, methods used in forming.				
	UNIT – II				
	ROLLING : Principles and theory of rolling, types of rolling mills and products. Forces in rolling and power requirements, process variables in rolling, roll camber, defects in rolled products, automatic gauge control.				
		UNIT – III			
	FORGING PROCESSES : Principles of forging, types of forging – smith forging, drop forg press forging, roll forging. Forging hammers, analysis of plane strain forging, forging defects. UNIT – IV				
	WIRE	DRAWING : Wire drawing die, preparation of wire, lubrication, wire drawing bench. Tube			
		g processes.			
	and bac	USION PROCESSES : Basic extrusion process and its characteristics. Forward extrusion kward extrusion, impact extrusion, hydrostatic extrusion, calculation of extrusion load, flow in extrusion, defects in extruded parts.			

	UNIT – V			
	SHEET METAL WORKING: Press working operations, blanking and piercing – forces and			
	centre of pressure, strip layout.			
	Bending : Terminology, bending methods, bend allowance, Spring back and bending pressure. Cup drawing, simple die, progressive die compound die and combination die.			
	UNIT – VI			
	OTHER FORMING METHODS : Hot and cold spinning, coining, embossing, rubber pad forming, stretch forming.			
	HIGH ENERGY RATE FORMING METHODS: Explosive forming method, electro hydraulic			
	forming, electromagnetic forming.			
	TEXT BOOKS:			
Text Books	1. Manufacturing Technology, Foundry forming and welding, Vol I : P.N. Rao, TMH, 5 th ed., 2018			
and reference Books:	2. Metal forming technology, Dr. R.Narayana Samy. Ahuja Book Company, 2000.			
DUUKS.	REFERENCES:			
	1. Process and Materials of Manufacturing : Lindberg, Pearson India, 2015			
	2. Manufacturing Technology : Schmid and Kalpakiian, Pearson Education, 2014			
	3. Fundamentals Metal Forming Processes : B.L.Juneja New age International			
	publishers, 2018			
	4. Manufacturing Technology : M. Adithan, A.B.Gupta New Age International			
	Publishers, 2012.			
E-Resources	1.https://nptel.ac.in/courses			
	2.https://freevideolectures.com/university/iitm			

17ME31E4-NON - DESTRUCTIVE TESTING (CE-1)

Course category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3 -0 - 0
Prerequisite:	Fundamentals of Materials Science and Engineering.	Sessional Evaluation : Univ. Exam Evaluation: Total Marks:	40 60 100

Course	1. To introduce the basic principles, techniques and equipment of NDT method	introduce the basic principles, techniques and equipment of NDT methods		
Objectives	2. applications and limitations of NDT methods.			
	3. To enable selection of appropriate NDT methods.			
	4. To identify advantages and limitations of nondestructive testing methods			
	5. To make aware the developments and future trends in NDT.			
Course	Upon successful completion of the course , the students will able to:	L		
Outcomes	CO1 apply scientific and technical knowledge to the field of non-destructive	vo tosting		
	CO2 use the relevant non-destructive testing methods for various engineer	Ū Ū		
		01		
	CO3 differentiate various defect types and select the appropriate NDT met	thods for the		
	specimen.			
	CO4 View and evaluate the test specimen.			
	CO5 recognize and achieve high levels of professionalism in their work.	recognize and achieve high levels of professionalism in their work.		
	CO6 Recognition of the need and ability to engage in lifelong learning, the	Recognition of the need and ability to engage in lifelong learning, thought process and		
	development			
	UNIT – I			
Course content	NON-DESTRUCTIVE TESTING: Introduction, NDT methods, comparison of destructive and nondestructive testing, visual inspection, optical aids used for visual inspection, applications. UNIT – II			
	 LIQUID PENETRANT TESTING: Physical principles, procedure for penetrant testing, penetrant testing materials, penetrant testing methods – water washable, post-emulsifiable method, applications. EDDY CURRENT TESTING: principles, instrumentation for ECT & techniques 			
	UNIT – III			
	 ACOUSTIC EMISSION: Technique, instrumentation, sensitivity and applications. THERMOGRAPY: Basic principles, detectors & equipment, techniques & applications. LEAK TESTING: Measurement of leakage, leak testing methods, detection – Bubble & Helium leak testing. 			
	UNIT – IV			
	ULTRASONIC TESTING: Basic properties of sound beams, ultrasonic transducers, inspection methods, techniques for normal beam inspection & angle beam inspection, flaw characterization and detection, modes of display, immersion testing, applications, advantages and limitations.			

	UNIT - V RADIOGRAPHY: Basic principle, electromagnetic radiation sources, radiation attenuation in the specimen, effect of radiation in film, radiographic imaging, inspection techniques, applications, limitations.
	UNIT – VI
	MAGNETIC PARTICLE TESTING: Definition and principle, techniques, testing procedures & equipment, limitations.
Text Books and reference Books:	 TEXT BOOKS: Practical Nondestructive Testing : Baldev Raj, T. Jayakumar, M. Thavasimuthu Narosa publishing house 1997. Hand Book of Nondestructive Evaluation: Charles Hellier, McGraw Hill Publishing House, 2003.
	 REFERENCES: 1. Manufacturing Technology : Kalpak Jain, Pearson Education, 2005 2. Nondestructive Evaluation – Theory and Applications : Shull, P.J., , Marcel Dekker, New York, NY, 841 pages, 2002
E-Resources	1.https://nptel.ac.in/courses 2.https://freevideolectures.com/university/iitm

<u>17ME31P1- MATERIALS SCIENCE & METALLURGY LABORATORY</u>

Course category:	Program core	Credits:	2
Course Type:	Practical	Lecture - Tutorial - Practical:	0-0-3
Prerequisite:	Fluid Mechanics. Engineering Mathematics	Sessional Evaluation : Univ. Exam Evaluation: Total Marks:	60

Course Objectives	 To recognize the process of specimen preparation for testing of materials To acquire knowledge on basic elements of materials microstructures To know various testing methods for materials 		
Course		On successful completion of the course, the student will be able to,	
Outcomes	CO1	Prepare specimen for metallographic observation.	
	CO2	Identify the microstructure of various metals.	
	CO3	Explain the various testing methods for materials.	
Course content	 Preparati Study on Study on Study on Determine Non-dest Non-dest Study of Study on Construt Study an a) Graine 		

	a) Nodularity b) porosity measurements c) Graphite flake analysis		
Text Books and reference Books:	TEXT BOOKS: 1. Physical Metallurgy 2. Principles of Engineering Metallurgy 3. Materials Science and Metallurgy: Raghavan V., 2 nd ed., PHI, 2006 : Krishna Reddy. L., New Age International, 2007 : Khanna O.P. 5 th ed., Dhanpat Rai and Sons, 2009		
E-Resources	1.https://nptel.ac.in/courses 2.https://freevideolectures.com/university/iitm		

17ME31P2 - THERMAL ENGINEERING LAB

Course category:	Program core	Credits:	2
Course Type:	Practical	Lecture - Tutorial - Practical:	0-0-3
Prerequisite:	BTD, ATD-1	Sessional Evaluation : Univ.Exam Evaluation: Total Marks:	

Course Objectives	Students undergoing this course are expected to			
		monstrate and conduct experiments, interpret and analyze data and report results of IC		
		gine testing		
		ady and performance testing of air compressor and air blower.		
		part training to draw valve timing diagrams & port timing diagrams on IC engine odels.		
		monstrate and conduct experiments, interpret and analyze data and report results of		
	4. Demonstrate and conduct experiments, interpret and anaryze data and report results of Computerized VCR IC Engine testing			
Course				
Outcomes	C01	Upon successful completion of the course , the students will able to:		
	CO1 CO2	conduct performance test on I.C. Engines		
	CO2 CO3	Compare various methods used to determine frictional horse power of the engine		
	CO4	identify parts, mechanisms of an IC Engine and the significance of IC Engines		
	C04	conduct performance test on reciprocating compressor		
	CO5	conduct performance test on reciprocating compressor conduct load test on air blower and plot characteristic curves		
	 List of Experiments: Load Test and Smoke Test on I.C. Engines. 			
		-		
		3. Heat balance sheet on I.C. Engines.		
		ady of Automobile Mechanisms.		
		draw the crank angle vs. pressure diagram for an I.C. engine using pressure		
C		er and cathode ray oscilloscope.		
Course		ad Test and Emission Test with 3-Gas Analysis & smoke meter on four stroke		
content		ine with Bio-diesel fuel.		
	U	6		
C C		onomical Speed Test & volumetric efficiency test on I.C engine.		
		Test for optimum flow rate of cooling water for an I. C. Engine.		
		VTD on 4 Stroke Diesel Engine model		
		TD on 4 Stroke Petrol Engine model		
		D on 2 Stroke Diesel Engine model		
	1.5. 11	D on 2 outre Dieber Englie model		

Text Books and reference Books:	TEXT BOOKS: 1. A course in Internal Combustion Engines: Mathur, M.L.& Sharma, R.P., Dhanpat Rai, 2. Internal Combustion Engines Fundamentals: Heywood, J.V., McGraw-Hill, 1988 3. Internal Combustion Engines :V.Ganeshan, 4 th edition, 2005
E-Resources	1.https://nptel.ac.in/courses 2.https://freevideolectures.com/university/iitm

17CE31PX- FLUID MECHANICS AND HYDRAULIC MACHINERY LABORATORY

Course category:	Program core	Credits:	2
Course Type:	Practical	Lecture - Tutorial - Practical:	0-0-3
Prerequisite:	FM, HM	Sessional Evaluation : Univ.Exam Evaluation: Total Marks:	60

Course Objectives							
Course		Upon successful completion of the course, the students will able to:					
Outcomes	CO1	CO1 To provide the students with a solid foundation in fluid flow principles					
	CO2	To provide the students knowledge in calculating performance analysis in turbines and					
		pumps and can be used in power plants					
	CO3	Students can able to understand to analyze practical problems in all power plants and					
		chemical industries					
	CO4	Conduct experiments (in teams) in pipe flows and open-channel flows and interpreting					
	data from model studies to prototype cases, as well as documenting them in engine						
		reports.					
	CO5	Analyze a variety of practical fluid-flow devices and utilize fluid mechanics principles					
		in design					
	List of	Experiments:					
Course							
content	1. Discharge Measurements:						
	(a) Small Orifice						
	(b)	Venturi Meter					
	(c)	Orifice Meter					
	(d) Triangular Notch						
	(e) Rectangular Notch (f) Elbow Mater (Ding hand Mater)						
	(f) 2.	Elbow Meter (Pipe-bend Meter) Losses in Pipes:					
	2. (a)	Pipe Friction					
	(b) Sudden Contraction						
	(c) Sudden Expansion						
	(d)	Gate Valve					
	(e)	Bend Loss					
	3.	Determination of Efficiency in Pumps and Turbines:					
	(a)	Centrifugal Pump					
	(b)	(b) Francis Turbine					
	(c) Kaplan Turbine						
Text Books	TEXT	BOOKS: Fluid mechanics and hydraulic machines : R.K. Bansal, Lakshmi					
and reference Books:	Public	cations,2015					

E-Resources	1.https://nptel.ac.in/courses 2.https://freevideolectures.com/university/iitm

<u>17ME31MP - MINI PROJECT</u>

Course category:	Program core	Credits:	2
Course Type:	Practical	Lecture - Tutorial - Practical:	0-0-0
Prerequisite:		Sessional Evaluation : Univ.Exam Evaluation: Total Marks:	60

Course	1. To off	fer students a glimpse into real world problems and challenges that need technical based							
Objectives	solutions	5.							
	2. To enable students to create and design very precise specifications in the field of mechanical								
	engineering.								
	3. To introduce students to the vast array of literature available of the various research challenges								
	in the fie	eld.							
		eate awareness among the students of the characteristics of several domain areas.							
		able students to use all concepts of creating a solution for a problem							
	6. To im	prove the team building, communication and management skills of the students							
Course Outcomes	I I Y								
Outcomes	CO1	Discover potential research areas in the field of mechanical engineering.							
	CO2	Conduct a survey of several available literature in the preferred field of study.							
	CO3	Compare and contrast the several existing solutions for research challenge.							
	CO4	Demonstrate an ability to work in teams and manage the conduct of the research study.							
	CO5	Formulate and propose a plan for creating a solution for the research plan identified.							
	CO6	To report and present the findings of the study conducted in the preferred domain.							
Text Books	TEXT B	OOKS:							
and reference	REFERENCES:								
Books:									
E-Resources	1.https://	'nptel.ac.in/courses							
	2.https://	freevideolectures.com/university/iitm							

NBKR INSTITUTE OF SCIENCE & TECHNOLOGY :: VIDYANAGAR (AUTONOMOUS) (AFFILIATED TO JNTUA ANANTAPURAMU) SPSR NELLORE DIST III YEAR OF FOUR YEAR B.TECH DEGREE COURSE – II SEMESTER MECHANICAL ENGINEERING

SCHEME OF INSTRUCTION AND EVALUATION (With effect from the academic year 2017-2018)

										F	Evaluation			
	Course Code	Course Title	Instruction Hours/Week		Credits	Sessional Test-I		Sessional Test-II		Total Sessional Marks (Max. 40)	End Se Exami		Maximum Total Marks	
S.No		THEORY	L	Т	D/P		Duration In Hours	Max. Marks	Duration In Hours	Max. Marks		Duratio n In Hours	Max. Marks	100
1	17ME3201	Operations Research	2	2	0	3	2	40	2	40		3	60	100
2	17ME3202	Machine Dynamics and Vibration	2	2	0	3	2	40	2	40	0.8*Best of	3	60	100
3	17ME3203	Design of Machine Elements-II	2	2	0	3	2	40	2	40	two+0.2*least of two	3	60	100
4	17ME3204	Heat Transfer	2	2	0	3	2	40	2	40		3	60	100
5	17ME3205	Engineering Metrology	3	0	0	3	2	40	2	40		3	60	100
6	17ME32EX	Core Elective – II	3	0	0	3	2	40	2	40		3	60	100
		PRACTICALS												
7	17ME32P1	Dynamics Laboratory	-	-	3	2	-	-	-	40	Day to Day	3	60	100
8	17ME32P	Heat Transfer Laboratory	-	-	3	2	-	-	-	40	Evaluation and a test	3	60	100
9	17ME32P2	3D Modeling laboratory	-	-	3	2	-	-	-	40	(40 Marks)	3	60	100
		TOTAL	14	08	09	24	-	-	-	360		-	540	900
10	17ME32A C	Audit Course	2	0	0	0				40			60	100

17ME3201 - OPERATIONS RESEARCH

Course category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	2 - 2 - 0
Prerequisite:	Engineering Mathematics, Matrices and Numerical Methods.	Sessional Evaluation : Univ. Exam Evaluation: Total Marks:	60

Course	1. T	To analyze linear programming models in practical and their practical use.					
Objectives	2. To apply the Transportation, Assignment and sequencing models and their solution						
	methodology for solving problems						
		To apply the theory of games, Replacement, Inventory and Queuing models and their olution methodology for solving problems.					
Course	8						
Outcomes	<u> </u>						
	CO1	Understand the basic operations research concepts and terminology involved in optimization techniques					
	CO2	Formulate a real-world problem as a mathematical programming model					
	CO3	Understand how to model and solve problems using Simplex method for linear programming and perform iterations of it by hand					
	CO4	Understand the importance and function of inventory and to be able to apply selected techniques for its control and management under dependent and independent demand circumstances.					
	CO5	Evaluate the Problems using queuing theory					
	CO6	Model a dynamic system as a queuing model and compute important performance measures					
		UNIT – I					
	LINEAR PROGRAMMING-1: Introduction to general nature of operations research models, types of OR models. Linear programming – Formulation, graphical method, simplex method, degeneracy in LPP.						
	UNIT – II						
	LINEAR PROGRAMMING-2: Artificial variable techniques – Big M method, two-phase method. Dual simplex method.						
Course	NON-LINEAR PROGRAMING: Introduction to non-linear programming – Lagrangean multiplier technique. Introduction to Dynamic Programming.						
content	UNIT – III						
	TRANSPORTATION PROBLEMS : Formulation, different methods of obtaining initial basic feasible solution – North-West corner rule, least cost method, Vogel's approximation method. Optimal solution using MODI method. Special cases – Unbalanced transportation problem, degenerate problem.						
	ASSIGNMENT PROBLEMS: Formulation, optimal solution, unbalanced assignment problem. Travelling salesman problem.						

	UNIT – IV REPLACEMENT MODELS: Replacement of items that deteriorate with time – with and without change in money value, group replacement of items that fail suddenly. Sequencing Models: n jobs-two machines, n jobs-m machines and 2 jobs-m machines.
	UNIT - V INVENTORY MODELS: Costs used in inventory models, basic inventory models without shortages. Quantity discounts (price breaks)- Purchasing models with one price, two price and three price breaks. Single period models with probabilistic demand and without set up cost. ABC and VED analysis.
	UNIT – VI QUEUING THEORY: Basic structure of queuing models, single-server and multi-server models. Finite and Infinite applications. Game Theory: Two-person zero-sum games, saddle point, algebraic and arithmatic methods (2x2 Games), principle of dominance, graphical method. SIMULATION: Definition, steps in a simulation study, advantages, disadvantages and application of simulation.
Text Books and reference Books:	TEXT BOOKS:1. Introduction to Operations Research: Hamdy A Taha, Prentice Hall, 10 th ed., 20172. Introduction to Operations Research: S.D. Sharma, Kedar Nath, Ram Nath and Co., 20023. Introduction to Operations Research: D.S Hira and P. K. Gupta, S. Chand, 7 th Revised4. Introduction to Operations Research: Hillier and Lieberman, McGraw-Hill, 10 th ed., 20185. Operations Research: Panneerselvam R., 2 nd ed., PHI, 2011
E-Resources	1.https://nptel.ac.in/courses 2.https://freevideolectures.com/university/iitm

17ME3202- MACHINE DYNAMICS AND VIBRATION

Course category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	2 -2- 0
Prerequisite:	EM,KOM, DOM.	Sessional Evaluation : Univ.Exam Evaluation: Total Marks:	60

Course	At the en	nd of this course, the student will				
Objectives	1. fully understand and appreciate the importance of vibrations in mechanical design of machine parts that operate in vibratory conditions.					
		able to obtain linear vibratory models of dynamic systems with changing complexities.				
		able to write the differential equation of motion of vibratory systems.				
		able to make free and forced (harmonic, periodic, non-periodic) vibration analysis of single				
9	and	multi degree of freedom linear systems.				
Course		Upon successful completion of the course, the students will able to:				
Outcomes	CO1	Appreciating the need and importance of vibration analysis in mechanical design of machine parts that operate in vibratory conditions				
	CO2	analyze the mathematical model of a linear vibratory system to determine its response				
	CO3	obtain linear mathematical models of real life engineering systems				
	CO4	use Lagrange's equations for linear and nonlinear vibratory systems				
	CO5	determine vibratory responses of SDOF and MDOF systems to harmonic, periodic and non-periodic excitation				
	CO6	General notion on frequency and time response of vibratory systems				
		UNIT – I				
Course content	FORCE ANALYSIS: STATICS: Applied and constraints forces, Two, three and four force members, forces on					
content	reciprocating parts of engines. DYNAMICS: Inertia force analysis-determination of equivalent dynamical system, inertia forces in a reciprocating engine considering the weight of connecting rod.					
	UNIT – II					
	BALANCING OF ROTATING MASSES : Static and dynamic balance. Balancing of single rotating mass in the same plane, single rotating mass using two masses rotating in different planes, several masses rotating in the same plane and different planes - using analytical and graphical methods.					
		UNIT – III				
	BALANCING OF RECIPROCATING MASSES : Partial balancing of locomotives, variation of tractive effort, swaying couple and hammer blow, balancing of single cylinder.					
	LONGI	UNIT – IV TUDINAL AND TRANSVERSE VIBRATIONS: Introduction – Single degree of				
		system, differential equation of motion – free longitudinal vibrations, transverse vibrations				

	of beams with concentrated and distributed loads- energy method, Dunkerly's method Whirling of shafts.
	UNIT – V
	DAMPED VIBRATIONS : Introduction, types, free damped vibrations- under, critical and over damped systems, frequency, damping ratio and logarithmic decrement.
	UNIT – VI
	FORCED VIBRATIONS: Equations of motion, vibration analysis on one dof and two dof systems (simple treatment).
	TORSIONAL VIBRATIONS: Single, two and three rotor systems and torsionally equivalent shaft.
	shart.
	TEXT BOOKS:
Text Books and reference	 Theory of Machines: R.S.Khurmi and J K Gupta, S.Chand publication, 2015 Theory of Machines: Thomas Bevan, 3rd ed., Pearson Education India, 2010. Theory of Machines: S S Rattan, 4th ed., McGraw Hill Education., India Pvt. Ltd., 2014
Books:	REFERENCES:
	1. Mechanisms and Machine Theory: Rao J. S. and Dukkipati R. V., 2 nd ed., New Age, 20062. Theory of Machines: John J. Uicker, G. R. Pennock, Joseph Edward Shigley, Oxford University Press, 2003
E-Resources	1.https://nptel.ac.in/courses
	2.https://freevideolectures.com/university/iitm

17ME3203- DESIGN OF MACHINE ELEMENTS-II

Course category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	2 - 2 - 0
Prerequisite:	KOM, DOM-1	Sessional Evaluation : Univ.Exam Evaluation: Total Marks:	

Course Objectives		
Course Outcomes		Upon successful completion of the course, the students will able to:
	CO1	Develop an ability to apply knowledge of mathematics, science, and engineering
	CO2	To develop an ability to design a system, component, or process to meet desired needs within realistic constraints.
	CO3	To develop an ability to identify, formulate, and solve engineering problems
	CO4	To develop an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice
		UNIT – I
Course content	Keys and Couplings: Introduction-Types of keys- Design of square and flat keys; Design of splines. Types of couplings- Rigid couplings: Muff, split muff and Flange couplings.	
		UNIT – II
	Bearings: Introduction, Journal bearings – Lubrication – Bearing Modulus-bearing materials –	
	journal bearing design.	
	Ball and roller bearings: Static and dynamic loading of ball and roller bearings, bearing life and	
	reliability, selection of ball bearings.	
	Introduction to magnetic and ceramic bearings.	
		UNIT – III
	Mechanical Springs: Introduction - Classification of springs; Stress and deflections of helical springs; Springs for fatigue loading; Concentric springs; Design of multi-leaf springs.	
	UNIT – IV	
	Spur & Helical Gears : Types of gears and their applications, gear materials, allowable stresses, Spur gears: Terminology, force analysis, Design of spur gears – Lewis equation. Check for dynamic load and wear load. Helical Gears-Terminology, design of helical gears. Check for wear load.	
	UNIT – V	
	Bevel 8 bevel ge	Worm Gears : Bevel gears - Terminology, types of bevel gears, force analysis, design of

	Worm gears: Terminology, materials for gearing, force analysis, design of worm gears, check for wear and lubrication.
	UNIT-VI I.C. Engine Parts : Pistons, Forces acting on piston – Construction Design and proportions of piston. Connecting rod: Thrust in connecting rod – stress due to whipping action on Connecting rod ends.
	TEXT BOOKS:
	1. Design of Machine Elements : Bhandari V. B., 3 rd ed., Tata McGraw-Hill Education
	2. Machine Design: Khannaiah P., Scitech Publications.
Text Books and reference	REFERENCES:
Books:	1. Machine Design : Khurmi R.S., S. Chand Publisher, 14 th ed., 2010.
	2.Mechanical Engineering Design: Shigley J. E., 9 th ed., Tata McGraw-Hill Education 2010
	3. Machine Design : Sharma P.C. & Aggarwal D.K., S. K. Kataria & Sons, 2006
	4. Balaveera Reddy & Mahadevan, Design Data Handbook for Mechanical Engineers, CBS publishers, 4th Edition, 2013.
	NOTE: Balaveera Reddy & Mahadevan, Design Data Handbook for Mechanical Engineers, CBS
E-Resources	1.https://nptel.ac.in/courses
	2.https://freevideolectures.com/university/iitm

<u>17ME3204 - HEAT TRANSFER</u>

Course	Program core	Credits:	3
category:			
Course Type:	Theory	Lecture - Tutorial - Practical:	2 - 2 - 0
Prerequisite:	BTD,ATD-!, ATD-2	Sessional Evaluation :	40
		Univ. Exam Evaluation:	60
		Total Marks:	100

Course	1. Understand the fundamentals of Conduction heat transfer and measure the heat transfer through		
Objectives	Homogeneous slabs, hollow cylinders, sphere, extended surfaces and fins.		
	2. Understand the fundamentals of fins and measure the transient heat conduction thr	ougl	
	systems with negligible internal resistance and systems with negligible surface resistance		
	3. To measure convective mode of heat transfer and derive exact and approximate solution	ıs fo	
	convection problems		
	4. Understand the fundamentals of radiation heat transfer and measure heat transfer d	uring	
	radiation, boiling and condensation. To measure heat transfer through different types of	hea	
	exchangers		
Course	Upon successful completion of the course, the students will able to:		
Outcomes	CO1 Recall modes of heat transfer, dimensionless numbers and classifications of heat		
	exchangers		
	CO2 Understand laws of conduction, convection, radiation and predict the losses in heat		
	exchange components		
	CO3 Apply laws and concepts of conduction for 1D steady state heat conduction problem	ns	
	CO4 Apply laws and concepts of convection for simple geometries		
	CO5 Analyze and identify problems related to heat transfer in heat exchangers		
	CO6 Choose proper heat exchanger for heat exchange applications		
	UNIT – I		
Course	INTRODUCTION: Modes of heat transfer, basic laws of heat transfer, general heat condu	ctio	
content	equation in cartesian, cylindrical and spherical coordinate systems.	. –	
content	STEADY STATE HEAT CONDUCTION (without internal heat generation and for		
	Isotropic): Electrical analogy of heat conduction- Expressions for heat flow rate, temperature		
	distribution- Plane slab, hollow cylinder and sphere, composite wall, cylinder and sphere. Overall		
	heat transfer coefficient, critical thickness of insulation.		
	UNIT - II FINS: Fins of uniform cross section governing equation temperature distribution and heat		
	FINS: Fins of uniform cross section, governing equation, temperature distribution and heat dissipation rate for long fin, short fin-with insulated tip and convective <u>off</u> condition. Efficiency		
	and effectiveness of fins.		
	TRANSIENT HEAT CONDUCTION FOR 1D: Lumped heat analysis, significance of Bio	ot an	
	Fourier numbers, heat flow in an infinitely thick plate and chart solutions of transient condu		
	systems.		
	UNIT – III Forced convection:		

for horizontal pipe flow and annulus flow. UNIT – IV DIMENSIONAL ANALYSIS: Buckingham's <i>n</i> -theorem, Reynolds Number, Prandtl Nusselt Number, Grashoff Number and Stanton Number - their definition and significance. FREE CONVECTION: Development of hydrodynamic and thermal boundary layer vertical plate – Use of empirical relations for vertical plates and pipes. UNIT – V HEAT EXCHANGERS: Introduction, classification of heat exchangers, logarithmit temperature difference (LMTD), area calculation for parallel and counter flow heat excent effectiveness of heat exchangers, NTU method of heat exchanger design. UNIT – V RADIATION: Theories of thermal radiation- absorption, reflection and trans Monochromatic and total emissive power, black body concept, Planck's distribution law displacement law, Stefan Boltzmann law, Lambert's cosine law, Kirchhoff's law. Shap heat transfer between black and grey surfaces, radiation shields. Text Books and reference Books: TEXT BOOKS: 1. Heat Transfer : J.P. Holman, Tata McGraw-Hill Education, 2 2. Fundamentals of Engineering Heat & Mass Transfer: Sachadeva R.C, New Age Science, 3. Heat and Mass Transfer : D S Kumar, S. K. Kataria & Sons, 2009 REFERENCES: : D. Principles of Heat Transfer : Frank kreith, Cengage Learning, 2010 2. Fundamentals of Heat & Mass Transfer : Yonus Cengel, Tata McGraw-Hill Education 3. Heat and Mass Transfer : Yonus Cengel, Tata McGraw-Hill Education	empirical			
Internal Flows: Concepts of hydrodynamic and thermal entry lengths, use of empirical relation for horizontal pipe flow and annulus flow. UNIT – IV UNIT – IV DIMENSIONAL ANALYSIS: Buckingham's π -theorem, Reynolds Number, Prandtl Nusselt Number, Grashoff Number and Stanton Number - their definition and significance. FREE CONVECTION: Development of hydrodynamic and thermal boundary layer vertical plate – Use of empirical relations for vertical plates and pipes. UNIT – V HEAT EXCHANGERS: Introduction, classification of heat exchangers, logarithmit temperature difference (LMTD), area calculation for parallel and counter flow heat exceeffectiveness of heat exchangers, NTU method of heat exchanger design. UNIT – VI RADIATION: Theories of thermal radiation - absorption, reflection and trans Monochromatic and total emissive power, black body concept, Planck's distribution law displacement law, Stefan Boltzmann law, Lambert's cosine law, Kirchhoff's law. Shap heat transfer between black and grey surfaces, radiation shields. Text Books: I Heat Transfer : J.P. Holman, Tata McGraw-Hill Education, 2. Fundamentals of Engineering Heat & Mass Transfer: Sachadeva R.C, New Age Science, 3. Heat and Mass Transfer : D S Kumar, S. K. Kataria & Sons, 2009 REFERENCES: : D S Kumar, S. M. Kataria & Sons, 2009 1. Heat and Mass Transfer : Sransfer: Sachadeva R.C, New Age Science, 3. Heat and Mass Transfer : Sransfer: Sachadeva R.C, New Age Science, 3. Heat and Mass Transfer : Sons, New York, 2002. 3. Heat and Mass Transfer : Sransfer : Srank kreith, Cengage Learning, 2010 : F.P. Incropera & D.P Dewitt, 5 th ed., John W Sons, New York, 2002.	r			
for horizontal pipe flow and annulus flow. UNIT – IV DIMENSIONAL ANALYSIS: Buckingham's π-theorem, Reynolds Number, Prandtl Nusselt Number, Grashoff Number and Stanton Number - their definition and significance. FREE CONVECTION: Development of hydrodynamic and thermal boundary layer vertical plate – Use of empirical relations for vertical plates and pipes. UNIT – V HEAT EXCHANGERS: Introduction, classification of heat exchangers, logarithmit temperature difference (LMTD), area calculation for parallel and counter flow heat excent effectiveness of heat exchangers, NTU method of heat exchanger design. UNIT – V RADIATION: Theories of thermal radiation- absorption, reflection and trans Monochromatic and total emissive power, black body concept, Planck's distribution law displacement law, Stefan Boltzmann law, Lambert's cosine law, Kirchhoff's law. Shap heat transfer between black and grey surfaces, radiation shields. Text BOOKS: 1. Heat Transfer : J.P. Holman, Tata McGraw-Hill Education, 2 9. Heat and Mass Transfer : D S Kumar, S. K. Kataria & Sons, 2009 8. Heat and Mass Transfer : Frank kreith, Cengage Learning, 2010 9. Fundamentals of Heat & Mass Transfer : Frank kreith, Cengage Learning, 2010 9. Fundamentals of Heat & Mass Transfer : Yonus Cengel, Tata McGraw-Hill Education 9. New York,2002. : Yonus Cengel, Tata McGraw-Hill Education	Internal Flows: Concepts of hydrodynamic and thermal entry lengths, use of empirical relations			
Text Books and reference Books: TEXT BOOKS: 1. Heat and Mass Transfer I.P. Holman, Tata McGraw-Hill Education, 2 Sons, New York, 2002. Text Books and reference Books: I.P. Holman, Tata McGraw-Hill Education, 2 Sons, New York, 2002. 3. Heat and Mass Transfer I.S. P. Incropera & D.P. Dewitt, 5 th ed., John W Sons, New York, 2002.				
Text Books and reference Books:TEXT BOOKS: 1. Principles of Heat Transfer 2. Fundamentals of Heat & Mass TransferJ.P. Holman, Tata McGraw-Hill Education, 2 2. Fundamentals of Heat & Mass TransferJ.P. Holman, Tata McGraw-Hill Education, 2 2. Fundamentals of Heat TransferText Books and reference Books:Text and Mass Transfer: Frank kreith, Cengage Learning, 2010 2. Fundamentals of Heat Transfer 2. Fundamentals of Heat Transfer 2. Fundamentals of Heat Transfer: Frank kreith, Cengage Learning, 2010 2. Fundamentals of Heat Transfer 2. Fundamentals of Heat Transfer 3. Heat and Mass Transfer 3. Heat and Mass Transfer: Stumar, S. K. Kataria & Sons, 2009Reference Books:3. Heat and Mass Transfer 3. Heat and Mass Transfer: Frank kreith, Cengage Learning, 2010 3. Heat and Mass Transfer 3. Heat and Mass Transfer				
FREE CONVECTION: Development of hydrodynamic and thermal boundary layer vertical plate – Use of empirical relations for vertical plates and pipes. UNIT – V HEAT EXCHANGERS: Introduction, classification of heat exchangers, logarithmi temperature difference (LMTD), area calculation for parallel and counter flow heat exc effectiveness of heat exchangers, NTU method of heat exchanger design. UNIT – VI RADIATION: Theories of thermal radiation- absorption, reflection and trans Monochromatic and total emissive power, black body concept, Planck's distribution law displacement law, Stefan Boltzmann law, Lambert's cosine law, Kirchhoff's law. Shap heat transfer between black and grey surfaces, radiation shields.Text Books and reference Books:TEXT BOOKS: 1. Heat Transfer 2. Fundamentals of Engineering Heat & Mass Transfer: Sachadeva R.C, New Age Science, 3. Heat and Mass Transfer: J.P. Holman, Tata McGraw-Hill Education, 2 2. Fundamentals of Heat Transfer 2. Fundamentals of Heat Transfer 2. Fundamentals of Heat Transfer 3. Heat and Mass Transfer: Frank kreith, Cengage Learning, 2010 2. Fundamentals of Heat Transfer 3. Heat and Mass Transfer 3. Heat and Mass Transfer	Number,			
Text Books and reference Books: TEXT BOOKS: I. Heat Tansfer : J.P. Holman, Tata McGraw-Hill Education, 2 I. Heat and Mass Transfer : D S Kumar, S. K. Kataria & Sons, 2009 Reference Cless i. Principles of Heat Transfer Sons, New York, 2002. 3. Heat and Mass Transfer Sons, New York, 2002. Sons, New York, 2002. S. Heat and Mass Transfer : Yonus Cengel, Tata McGraw-Hill Education Wass Transfer				
Text Books and reference Books: TEXT BOOKS: I. Heat Transfer J.P. Holman, Tata McGraw-Hill Education, 2 Frank kreith, Cengage Learning, 2010 Fundamentals of Heat & Mass Transfer S. K. Kataria & Sons, New York, 2002. Heat and Mass Transfer Yonus Cengel, Tata McGraw-Hill Education 	along a			
HEAT EXCHANGERS: Introduction, classification of heat exchangers, logarithmit temperature difference (LMTD), area calculation for parallel and counter flow heat exchanger design. UNIT – VI RADIATION: Theories of thermal radiation- absorption, reflection and trans Monochromatic and total emissive power, black body concept, Planck's distribution law displacement law, Stefan Boltzmann law, Lambert's cosine law, Kirchhoff's law. Shap heat transfer between black and grey surfaces, radiation shields. Text Books and reference Books: TEXT BOOKS: I. Heat Transfer J.P. Holman, Tata McGraw-Hill Education, 2 Fundamentals of Engineering Heat & Mass Transfer: Sachadeva R.C, New Age Science, 3. Heat and Mass Transfer D S Kumar, S. K. Kataria & Sons, 2009 REFERENCES: I. Principles of Heat Transfer I. Principles of Heat & Mass Transfer : Frank kreith, Cengage Learning, 2010 S. Fundamentals of Heat & Mass Transfer : F.P. Incropera & D.P Dewitt, 5 th ed., John W Sons, New York,2002. B. Heat and Mass Transfer : Yonus Cengel, Tata McGraw-Hill Education				
Text Books and reference TEXT BOOKS: Books: 1. Heat Transfer Single Ference Books: 1. Principles of Heat Transfer Single Ference Books: 1. Principles of Heat Transfer Single	UNIT – V			
rest Books TEXT BOOKS: and reference I. Heat and Mass Transfer Books: I. Principles of Heat Transfer I. Principles of Heat Transfer I. Frank kreith, Cengage Learning, 2010 I. Principles of Heat Transfer I. Principles of Heat Transfer I. Principles of Heat Transfer I. Principles of Heat Transfer I. Principles of Heat Transfer I. Principles of Heat Transfer I. Principles of Heat Transfer I. Principles of Heat Transfer I. Principles of Heat Transfer I. Principles of Heat Transfer I. Principles of Heat Transfer I. Principles of Heat Transfer I. Principles of Heat Transfer I. Principles of Heat Transfer I. Principles of Heat Transfer I. Principles of Heat Transfer I. Principles of Heat Transfer I. Principles of Heat Transfer I. Principles of Heat Transfer I. Principles of Heat Transfer I. Principles of Heat Transfer I. Principles of Heat Transfer I. Principles of Heat Transfer I. Prover a Congel, Tata McGraw-Hill Education I. Heat and Mass Transfer I. Yonus Cengel, Tata McGraw-Hill Education				
UNIT – VIRADIATION: Theories of thermal radiation- absorption, reflection and trans Monochromatic and total emissive power, black body concept, Planck's distribution law displacement law, Stefan Boltzmann law, Lambert's cosine law, Kirchhoff's law. Shap heat transfer between black and grey surfaces, radiation shields.Text Books and reference Books:TEXT BOOKS: 1. Heat Transfer 2. Fundamentals of Engineering Heat & Mass Transfer: Sachadeva R.C, New Age Science, 3. Heat and Mass Transfer 2. Fundamentals of Heat Transfer 2. Fundamentals of Heat Transfer 3. Heat and Mass TransferREFERENCES: 1. Principles of Heat Transfer 2. Fundamentals of Heat & Mass TransferSons, New York, 2002. 3. Heat and Mass Transfer	changers,			
RADIATION: Theories of thermal radiation- absorption, reflection and trans Monochromatic and total emissive power, black body concept, Planck's distribution law displacement law, Stefan Boltzmann law, Lambert's cosine law, Kirchhoff's law. Shap heat transfer between black and grey surfaces, radiation shields.Text Books and reference Books:TEXT BOOKS: 1. Heat Transfer 2. Fundamentals of Engineering Heat & Mass Transfer: Sachadeva R.C, New Age Science, 3. Heat and Mass Transfer 2. Fundamentals of Heat Transfer 2. Fundamentals of Heat Transfer 3. Heat and Mass Transfer: Frank kreith, Cengage Learning, 2010 2. Fundamentals of Heat & Mass Transfer 3. Heat and Mass Transfer 3. Heat and Mass Transfer: Frank kreith, Cengage Learning, 2010 3. Heat and Mass Transfer 3. Heat and Mass Transfer	effectiveness of heat exchangers, NTU method of heat exchanger design.			
Monochromatic and total emissive power, black body concept, Planck's distribution law displacement law, Stefan Boltzmann law, Lambert's cosine law, Kirchhoff's law. Shap heat transfer between black and grey surfaces, radiation shields.Text Books and reference Books:TEXT BOOKS: 1. Heat and Mass Transfer: J.P. Holman, Tata McGraw-Hill Education, 2 2. Fundamentals of Engineering Heat & Mass Transfer: Sachadeva R.C, New Age Science, 3. Heat and Mass Transfer: D S Kumar, S. K. Kataria & Sons, 2009REFERENCES: 1. Principles of Heat Transfer 2. Fundamentals of Heat & Mass Transfer: Frank kreith, Cengage Learning, 2010 2. Fundamentals of Heat & Mass Transfer3. Heat and Mass Transfer: Stan Mass Transfer: Frank kreith, Cengage Learning, 2010 2. Fundamentals of Heat & Mass Transfer4. Heat and Mass Transfer: Yonus Cengel, Tata McGraw-Hill Education	UNIT – VI			
displacement law, Stefan Boltzmann law, Lambert's cosine law, Kirchhoff's law. Shap heat transfer between black and grey surfaces, radiation shields.TEXT BOOKS: 1. Heat Transfer: J.P. Holman, Tata McGraw-Hill Education, 2 2. Fundamentals of Engineering Heat & Mass Transfer: Sachadeva R.C, New Age Science, 3. Heat and Mass TransferText Books and reference Books: TEXT BOOKS: 1. Principles of Heat Transfer 2. Fundamentals of Heat & Mass TransferREFERENCES: 1. Principles of Heat Transfer 2. Fundamentals of Heat & Mass Transfer: Frank kreith, Cengage Learning, 2010 2. Fundamentals of Heat & Mass TransferResearch 3. Heat and Mass Transfer: Frank kreith, Cengage Learning, 2010 2. Fundamentals of Heat & Mass Transfer 3. Heat and Mass Transfer	RADIATION: Theories of thermal radiation- absorption, reflection and transmission.			
Text Books and reference Books:TEXT BOOKS: 1. Heat Transfer 2. Fundamentals of Engineering Heat & Mass Transfer: Sachadeva R.C, New Age Science, 3. Heat and Mass Transfer: J.P. Holman, Tata McGraw-Hill Education, 2 2. Fundamentals of Engineering Heat & Mass Transfer: Sachadeva R.C, New Age Science, 3. Heat and Mass TransferREFERENCES: 1. Principles of Heat Transfer 2. Fundamentals of Heat & Mass Transfer: Frank kreith, Cengage Learning, 2010 2. Fundamentals of Heat & Mass TransferReference Books:Mass Transfer 2. Fundamentals of Heat Transfer 2. Fundamentals of Heat & Mass Transfer 2. Fundamentals of Heat & Mass Transfer 3. Heat and Mass Transfer: Frank kreith, Cengage Learning, 2010 2. Fundamentals of Heat & Mass Transfer 2. Fundamentals of Heat & Mass Transfer 3. Heat and Mass Transfer: Fundamental McGraw-Hill Education 2. Fundamentals of Heat & Mass Transfer 3. Heat and Mass Transfer	Monochromatic and total emissive power, black body concept, Planck's distribution law, Wien's			
Text Books and reference Books:TEXT BOOKS: 1. Heat Transfer 2. Fundamentals of Engineering Heat & Mass Transfer: Sachadeva R.C, New Age Science, 3. Heat and Mass Transfer 2. Fundamentals of Heat Transfer 2. Fundamentals of Heat Transfer 2. Fundamentals of Heat Transfer 2. Fundamentals of Heat & Mass Transfer 2. Fundamentals of Heat Transfer 2. Fundamentals of Heat Transfer 2. Fundamentals of Heat & Mass Transfer 3. Heat and Mass Transfer 3. Heat and Mass Transfer1. Principles of Heat Transfer 2. Fundamentals of Heat & Mass Transfer 3. Heat and Mass Transfer2. Fundamentals of Heat & Mass Transfer 3. Heat and Mass Transfer3. Heat and Mass Transfer4. Fundamentals of Heat & Mass Transfer 3. Heat and Mass Transfer5. Fundamentals of Heat & Mass Transfer 3. Heat and Mass Transfer6. Fundamentals of Heat & Mass Transfer 3. Heat and Mass Transfer7. Fundamentals of Heat & Mass Transfer 3. Heat and Mass Transfer8. Heat and Mass Transfer 3. Heat and Mass Transfer9. Heat and Mass Transfer	displacement law, Stefan Boltzmann law, Lambert's cosine law, Kirchhoff's law. Shape factor,			
Text Books and reference Books:1. Heat Transfer Engineering Heat & Mass Transfer: Sachadeva R.C, New Age Science, : D S Kumar, S. K. Kataria & Sons, 2009REFERENCES: 1. Principles of Heat Transfer 2. Fundamentals of Heat & Mass Transfer: Frank kreith, Cengage Learning, 2010 : F.P. Incropera & D.P Dewitt, 5 th ed., John W Sons, New York,2002.3. Heat and Mass Transfer: Yonus Cengel, Tata McGraw-Hill Education				
Text Books and reference Books:1. Heat Transfer Engineering Heat & Mass Transfer: Sachadeva R.C, New Age Science, : D S Kumar, S. K. Kataria & Sons, 2009REFERENCES: 1. Principles of Heat Transfer 2. Fundamentals of Heat & Mass Transfer: Frank kreith, Cengage Learning, 2010 : F.P. Incropera & D.P Dewitt, 5 th ed., John W Sons, New York,2002.3. Heat and Mass Transfer: Yonus Cengel, Tata McGraw-Hill Education				
Text Books and reference Books:1. Heat Transfer: J.P. Holman, Tata McGraw-Hill Education, 2REFERENCES: 1. Principles of Heat Transfer: D S Kumar, S. K. Kataria & Sons, 2009Reference Books:: Frank kreith, Cengage Learning, 20103. Heat and Mass Transfer: Frank kreith, Cengage Learning, 20103. Heat and Mass Transfer: F.P. Incropera & D.P Dewitt, 5 th ed., John W Sons, New York,2002.3. Heat and Mass Transfer: Yonus Cengel, Tata McGraw-Hill Education				
Text Books and reference Books:2. Fundamentals of Engineering Heat & Mass Transfer: Sachadeva R.C, New Age Science, : D S Kumar, S. K. Kataria & Sons, 2009REFERENCES: 1. Principles of Heat Transfer 2. Fundamentals of Heat & Mass Transfer: Frank kreith, Cengage Learning, 2010 : F.P. Incropera & D.P Dewitt, 5 th ed., John W Sons, New York,2002. : Yonus Cengel, Tata McGraw-Hill Education	2008			
Text Books and reference Books:3. Heat and Mass Transfer: D S Kumar, S. K. Kataria & Sons, 2009REFERENCES: 1. Principles of Heat Transfer 2. Fundamentals of Heat & Mass Transfer: Frank kreith, Cengage Learning, 2010 : F.P. Incropera & D.P Dewitt, 5 th ed., John W Sons, New York,2002.3. Heat and Mass Transfer: Yonus Cengel, Tata McGraw-Hill Education				
and reference Books:REFERENCES: 1. Principles of Heat Transfer 2. Fundamentals of Heat & Mass Transfer: Frank kreith, Cengage Learning, 2010 : F.P. Incropera & D.P Dewitt, 5 th ed., John W Sons, New York,2002. : Yonus Cengel, Tata McGraw-Hill Education	,			
Books: REFERENCES: 1. Principles of Heat Transfer : Frank kreith, Cengage Learning, 2010 2. Fundamentals of Heat & Mass Transfer : F.P. Incropera & D.P Dewitt, 5 th ed., John W Sons, New York,2002. 3. Heat and Mass Transfer : Yonus Cengel, Tata McGraw-Hill Education				
1. Principles of Heat Transfer : Frank kreith, Cengage Learning, 2010 2. Fundamentals of Heat & Mass Transfer : F.P. Incropera & D.P Dewitt, 5 th ed., John W Sons, New York,2002. 3. Heat and Mass Transfer : Yonus Cengel, Tata McGraw-Hill Education				
3. Heat and Mass TransferSons, New York,2002.: Yonus Cengel, Tata McGraw-Hill Education				
3. Heat and Mass Transfer : Yonus Cengel, Tata McGraw-Hill Education	Viley and			
	-			
F Descurress 1 https://pptol.ac.ip/courses	n, 2014.			
E-Resources 1.https://nptel.ac.in/courses				
2.https://freevideolectures.com/university/iitm				

17ME3205 - ENGINEERING METROLOGY

Course category:	Program elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3 - 0- 0
Prerequisite:		Sessional Evaluation : Univ.Exam Evaluation: Total Marks:	60

Course	1. To develop in students the knowledge of basics of Measurements, Metrology and Measuring		
Objectives	devices.		
	2. To un applicati	derstand the concepts of various measurement systems & standards with regards to realistic ions.	
	3. The ap	pplication of principle of metrology and measurements in industries.	
	4. To de	velop competence in sensors, transducers and terminating devises with associated	
	paramete	ers	
	5. To develop basic principles and devices involved in measuring surface textures.		
Course		Upon successful completion of the course, the students will able to:	
Outcomes	CO1	Explain the basics of standards of measurement, limits, fits & tolerances industrial applications.	
	CO2	Identify the uses of gauges and comparators.	
	CO3	Understand the significance of measurement system, errors, transducers, intermediate modifying and terminating devices.	
	CO4	Interpret measurement of field variables like force, torque and pressure.	
	CO5	Comprehend the fundamentals of thermocouple and strain measurement.	
	CO6	Demonstrating correct usage of a method or procedure in metrology.	
	UNIT – I		
Course content	INTRODUCTION TO METROLOGY: Line and end standards, concept of toler Interchangeability and selective assembly. Limits and fits - systems of limits and fits accordi Indian standards and ISO standards. Limit gauges- Taylor's principles, Gauge tolerance and allowance.		
	anowanc	UNIT – II	
	ANGLE MEASUREMENT: Angle gauges, protractors, spirit level, clinometer, sine bar, profile projector, autocollimator, angle dekkor and tool makers microscope. SLIP GAUGES: Measurement of internal taper of blind hole and taper ring. Straightness, flatness,		
	squareness and roundness testing.		
	COMB	UNIT – III	
	INTERI	ARATORS: Mechanical, optical, electrical and pneumatic comparators. FEROMETRY: Interference of light, optical flat and sources of light, lasers, NPL flatness ge length interferometers.	
		UNIT – IV	
	1		

	SCREW THREAD MEASUREMENT: Pitch and angle errors, concept of Virtual Effective Diameter (VED), measurement of major, minor and effective diameters (wire methods). GEAR MEASUREMENT : Nomenclature, involute form tester, rolling gear tester. Tooth thickness measurement - Chordal thickness and base tangent method.
	$\label{eq:UNIT-V} \begin{tabular}{lllllllllllllllllllllllllllllllllll$
	UNIT- VI ALIGNMENT TESTS: Lathe, radial drilling machine and milling machine. CO-ORDINATE MEASURING MACHINE (CMM): Working principle and its applications.
Text Books and reference	 TEXT BOOKS: 1. A Text Book of Engineering Metrology : R.K.Jain, Khanna Publishers, 2009. 2. A Text Book of Engineering Metrology : I.C Gupta., Dhanpat Rai publishers, 2008. 3. Metrology for Engineers : John Frederick Wise Galyer, Charles Reginald Shotbolt, Cassell P L C, 1990.
Books:	REFERENCES: 1. Engineering Metrology: Mahajan Dhanpat Rai Publishers, 2009.2. Production Technology: HMT Tata McGraw-Hill Education, 2001.
E-Resources	1.https://nptel.ac.in/courses 2.https://freevideolectures.com/university/iitm

17ME32E1 - FLEXIBLE MANUFACTURING SYSTEMS (CE-2)

Course	Program elective	Credits:	3
category:			
Course Type:	Theory	Lecture - Tutorial - Practical:	3-0-0
Prerequisite:	Industrial engineering,	Sessional Evaluation :	40
-	production systems	Univ.Exam Evaluation:	60
		Total Marks:	100

Course Objectives			
Course		Upon successful completion of the course, the students will able to:	
Outcomes	CO1	Classify and distinguish FMS and other manufacturing systems including job-shop and mass production systems.	
	CO2	Explain processing stations and material handling systems used in FMS environments.	
	CO3	Design and analyze FMS using simulation and analytical techniques.	
	CO4	Understand tool management in FMS.	
	CO5	Analyze the production management problems in planning, loading, scheduling, routing and breakdown in a typical FMS.	
	CO6		
	INTRODUCTION TO FMS: Definition of FMS, types and configuration concepts, types of flexibility and performance measures. Functions of FMS host computer, FMS host and area controller function distribution.		
Course content	UNIT – II DEVELOPMENT AND IMPLEMENTATION OF FMS: Planning phases, integration system configuration, FMS layouts, simulation, FMS project development steps. Project management, equipment development, host system development, planning, hardware and software development.		
	UNIT – III DISTRIBUTED NUMERICAL CONTROL: DNC system – communication between DNC computer and machine control unit – hierarchical processing of data in DNC system – features of DNC system.		
	UNIT – IV AUTOMATED MATERIAL HANDLING: Function, types, analysis of material handling equipment. Design of conveyor and AGV systems. AUTOMATED STORAGE: Storage system performance, AS/RS, carousel storage system, WIP storage, interfacing handling storage with manufacturing.		
	additiona	UNIT - V CAMMABLE LOGIC CONTROLLERS: Components of PLC, PLC operating cycle, al capabilities of a PLC, programming the PLC, Ladder logic diagrams, counters etc. Il process control using PLC.	
		UNIT-VI	

	FMS RATIONALE: Economic and technological justification for FMS, GT, JIT, operation and evaluation, personnel and infra structural aspects, typical case studies and future prospects.		
	TEXT BOOKS:		
Text Books	1. Automation, production systems and computer integrated manufacturing : Groover M. P, Prentice Hall India (P) Ltd., 2002.		
and reference	2. Flexible manufacturing system : Shivanand H. K., Benal M. M and Koti V, New Age		
Books:	International (P) Limited. Publishers, 2006		
	REFERENCES:		
	1. Flexible manufacturing : Parrish D. J, Butterworth – Heinemann Ltd, 1990		
	2. Intelligent manufacturing systems : . Kusiak A., Prentice Hall, Englewood Cliffs, NJ, 1990		
	3. Performance modelling of automated manufacturing systems : Viswanadhan N. and Narahari Y, Prentice Hall India (P) Ltd., 1992		
	4. The design and operation of FMS : Ranky P. G, IFS Pub, U. K, 1998		
E-Resources	1.https://nptel.ac.in/courses		
	2.https://freevideolectures.com/university/iitm		

<u>17ME32E2 – SOLAR ENERGY ENGINEERING (CE-2)</u>

Course	Program elective	Credits:	3
category:			
Course Type:	Theory	Lecture - Tutorial - Practical:	3-0-0
Prerequisite:	Physic, heat transfer, BTD	Sessional Evaluation :	40
		Univ.Exam Evaluation:	60
		Total Marks:	100

Course		Jnderstand the phases of the Sun and its energy transport and solar radiation data		
Objectives		Understand the fundamentals of flat plat collectors and thermal analysis of flat plate		
	collectors			
	3. I	dentify the different reasons behind using concentrating collectors over flat plates and		
		Jnderstand the fundamentals of flat plat collectors		
		Know about the energy storage issues involved in solar energy		
	5. k	Know the different applications of solar energy		
Course Outcomes		Upon successful completion of the course, the students will able to:		
Outcomes	CO1	Understand the outline and fundamentals of the Sun and its energy transport and Solar radiation geometry		
	CO2	Understand the overview of the Flat Plate Collectors and their applications		
	CO3	Elucidate the knowledge of focusing type collectors for reducing the disadvantages of flat plat collectors		
	CO4	Analyze and compare the different energy storing modes of solar energy		
	CO5	Evaluate the suitability of various storage of solar energy modes for different applications		
	CO6	Summarize and operational characteristics for the applications of solar energy		
	UNIT – I			
	radiation	HYSICS OF SOLAR ENERGY: The phases of the Sun and its energy transport, solar a geometry, calculation of radiation intercepted by surfaces, instruments for measuring liation, solar radiation data.		
		UNIT – II		
	FLAT PLATE COLLECTORS: Energy balance equation, thermal analysis of flat plate collectors, transmission of cover system, heat transport systems, collector efficiency and materials.			
Course	UNIT – III			
content	CONCENTRATING COLLECTORS: Importance, types, performance analysis of cylindrical parabolic concentrating collector, advantages and disadvantages of concentrating collectors over flat plate collectors.			
	UNIT – IV			
	PHOTO technolo	EXENTION STORAGE: Types, thermal- sensible, latent, phase change materials. OVOLTAIC SYSTEMS: Semiconductors, Photovoltaic panels. Types of photovoltaic paies; Equipment related to photovoltaic technology, batteries, invertors, charge ers, peak power trackers.		

	UNIT – V
	 SOLAR HEATING: Solar Water heating, Passive solar water heating systems, Thermal siphon systems, Integrated collector storage systems. SOLAR COOKERS AND SOLAR DRIERS: Types of solar cookers - Solar box type solar cooker, SK type solar cooker (parabolic), Solar steam cooking system. Classification of solar dryers - Active and passive solar energy dryers.
	UNIT – VI
	SOLAR APPLICATIONS: Solar pumping, solar distillation, solar green houses, solar production of hydrogen, space cooling. SOLAR THERMAL POWER SYSTEMS : Solar thermal power generation schemes, parabolic trough solar power generating systems, central receiver power plants (solar power towers), chimney power plants.
Text Books and reference Books:	TEXT BOOKS: 1. Solar Energy Utilization : G.D. Rai, Khanna Publishers, 2004. 2. Principles of Solar Engineering : Frank Kreith and Jan F Kreider, Taylor & Francis, 2000. REFERENCES: 1. Solar Energy Thermal Process : Dufice & Beckman, John Wiley & Sons, 1991 2. Solar Energy and Non-conventional Energy Sources : Domakundwar, Dhanpat Rai & Co., Pvt. Ltd., 2018
E-Resources	1.https://nptel.ac.in/courses 2.https://freevideolectures.com/university/iitm

17ME32E3 – TOOL DESIGN (CE-2)

Course category:	Program elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3 - 0 - 0
Prerequisite:	Machine drawing, metrology, DME	Sessional Evaluation : Univ.Exam Evaluation: Total Marks:	60

Course Objectives			
Course		Upon successful completion of the course, the students will able to:	
Outcomes	CO1	Calculate the values of various forces involved in the machining operations.	
	CO2	Design various single and multipoint cutting tools.	
	CO3	Demonstrate the inter-relationship between cutting parameters and machining performance measures like power requirement, cutting time, tool life and surface finish.	
	CO4	Analyze economics of machining operations.	
	CO5	Identify press tool requirements to build concepts pertaining to design of press tools.	
	CO6	Demonstrate various press working operations for mass production of sheet metal parts.	
Course	between orthogonal and oblique cutting, mechanism of metal cutting, types of chips, chip breakers, velocity relations, forces acting on a tool, Merchant circle diagram, specific energy in cutting. UNIT – II TOOL WEAR & TOOL LIFE : Factors affecting tool life, Taylor's tool life equation. tool wear mechanisms, types of tool wear, machinabilty, heat distribution in metal cutting, measurement of temperature in metal cutting. Force measurement - lathe tool dynamometer. Selection and applications of cutting fluids.		
content	HSS, C properti ECON speed fo DESIG milling PRESS	UNIT – III ING TOOL MATERIALS: Requirements of tool materials, advances in tool materials, toated HSS, Carbides, Coated Carbides, Ceramics, Ceramic Composites, CBN and Diamond ties, advantages and limitations, specifications for inserts and tool holders. UNIT – IV OMICS OF MACHINING: Costs associated with machining operations- Optimum cutting or minimum cost and maximum production rate in turning. N OF CUTTING TOOLS: Design of single point cutting tool shanks, design of plane cutter and broaching tool. UNIT – V S WORKING: Press working operations, press selection and tonnage, centre of pressure, forces and clearances for die design, compound and progressive die, strip layout.	
	JIGS &	UNIT – VI & FIXTURES - Uses, Locating devices, 3-2-1 principle of location, pin location, radial	

	location, 'V' location, diamond locators. types of clamping devices, principles of clamping. Design principles of jigs & fixtures, types of drill jigs, types of drill bushes, fixtures for turning.
	TEXT BOOKS:
	1. Fundamental of Tool Design : ASTME, PHI, 2010
Text Books	2. A Text Book of Production Engineering: P.C. Sharma, S. Chand & Co. 11 th ed., 2005
and reference	3. Fundamental of Metal Cutting and Machine Tools: B.L.Juneja and G.S.Sekhon, 2 nd ed.,
Books:	New Age International 2017.
	REFERENCES:
	1. Metal Cutting Principles: Milton C.Shaw, Oxford University Press, 2012.
	2. Introduction to Jig and Fixture Design: Kempster, Hodder and Stoughton Publishers, 2004
	3. Metal cutting (Theory and Practice): A. Bhattacharya, New central book agency, 2012.
	4. Tool Design : Donaldson, Tata Mc Graw Hill, 3 rd ed., 2010
E-Resources	1.https://nptel.ac.in/courses
	2.https://freevideolectures.com/university/iitm

<u>17ME32E4 – TRIBOLOGY (CE-2)</u>

Course category:	Program elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3 - 0 - 0
Prerequisite:	MSM, Metrology	Sessional Evaluation : Univ.Exam Evaluation: Total Marks:	60

Course	1. To provide overview of tribology and practical implications in machine elements.			
Objectives	2. To und	derstand the material properties, nature of surfaces, their topography and surface characterizatior		
	techniqu			
	3. To understand the genesis of friction, the theories/laws.			
	4. To lea	rn about wear, wear mechanisms, wear theories applied in machine elements.		
Course		Upon successful completion of the course, the students will able to:		
Outcomes	C01	Apply the principles of lubrication, lubrication regimes, and theories of hydrodynamic,		
	001	elasto hydrodynamic and mixed / boundary lubrication.		
	CO2	Explain essentials of tribotesting and experimental techniques in Tribology.		
	CO3	Discuss and formulate tribological modelling and simulation.		
	CO4	Design of mechanical components against wear.		
		UNIT – I		
	INTRO	DUCTION: Elements of tribology, viscosity, flow of fluids, viscosity and its variation		
		and kinematic viscosity, temperature variation, viscosity index, determination of viscosity		
	different types of viscometers.			
	UNIT – II			
C	HYDROSTATIC LUBRICATION: Hydrostatic step bearing, application to pivoted pad thrust			
Course	bearing and other applications, hydrostatic lifts, hydrostatic squeeze films and its application to journal bearing.			
content	UNIT – III			
	HYDRODYNAMIC THEORY OF LUBRICATION: Various theories of lubrication, Petroff's			
	equation, Reynold's equation in two dimensions, effects of side leakage, Reynolds equation in three dimensions, friction in sliding bearing, bydro dynamic theory applied to journal bearing			
	three dimensions, friction in sliding bearing, hydro dynamic theory applied to journal bearing, minimum oil film thickness, oil whip and whirl anti-friction bearing.			
	minimum on mini unexitess, on whip and whitt and-metion bearing.			
		UNIT – IV		
	FRICTION AND POWER LOSSES IN JOURNAL BEARINGS: Calibration of friction, loss			
	friction in concentric bearings, bearing modulus, Sommerfield number, heat balance, practical			
	consideration of journal bearing design considerations.			
	UNIT – V			
	AIR LUBRICATED BEARING: Advantages and disadvantages, application to hydrodynamic			
	journal bearings, hydrodynamic thrust bearings, hydrostatic thrust bearings, hydrostatic bearing			
	analysis including compressibility effect.			
		UNIT – VI		
	TYPES	OF BEARING OIL PADS: Hydrostatic bearing wick oiled bearings, oil rings, pressure		
		ring, partial bearings -externally pressurized bearings.		
	BEARI	NG MATERIALS: General requirements of bearing materials, types of bearing materials.		

	TEXT BOOKS:
	1. Fundamentals of Tribology : Basu, SenGupta and Ahuja, New Delhi, 2 nd edition, PHI,
Text Books	2005.
and reference	2. Tribology in Industry : Sushil Kumar Srivatsava, Hyderabad, 5 th edition, S. Chand
Books:	&Co, Publisher, 2007.
	REFERENCES:
	1. Tribology : B.C. Majumdar Newdelhi, 2 nd edition, S.Chand & Co Publishers, 2012.
	2. Engineering Tribology : Pransanta Sahoo, PHI Pvt.Ltd, 2005
E-Resources	1.https://nptel.ac.in/courses
	2.https://freevideolectures.com/university/iitm

17ME321 - DYNAMICS LABORATORY

Course	Program core	Credits:	2
category:			
Course Type:	Practical	Lecture - Tutorial - Practical:	0 - 0 - 3
Prerequisite:	DOM, KOM	Sessional Evaluation :	40
		Univ.Exam Evaluation:	60
		Total Marks:	100

Course	1. To study the mathematical simulation software for analysis of single and multi degree freedom		
Objectives	problem.		
	2. To study	the finite element analysis software for different analysis and active control vibration.	
	3. Perform experimentation and processing the data and demonstration of condition based maintenance tool.		
	4. To give	understanding various aspects of mechanical vibrations and their control.	
Course		Upon successful completion of the course, the students will able to:	
Outcomes	CO1	Apply and analyze different systems using mathematical simulation software.	
	CO2	Apply FEA software for different analysis techniques.	
	CO3	Demonstrate acquiring and processing of data.	
	CO4	Have understanding about the effect of vibration and vibration control	
	List of Expe	eriments:	
	1. Te	est on gyroscopic unit.	
Course	2. Test on critical speed analyzer.		
content	3. Test on vibration test rig.		
	4. Study balancing of reciprocating masses		
	5. St	udy on balancing of rotating masses	
	 Test on Proell Governors Test on Porter Governors 		
	8. Test on Hartung Governors		
	9. Study on reciprocating mechanism.		
	10. Te	est on CAM apparatus	
	11. Study on crank and slotted mechanism		
	12. Es	stimation of CG of connecting rod using Trifilar system	
Text Books			
and reference Books:			

<u>17ME32P - HEAT TRANSFER LABORATORY</u>

Course	Program core	Credits:	2
category:			
Course Type:	Practical	Lecture - Tutorial - Practical:	0 - 0 - 3
Prerequisite:	Heat transfer	Sessional Evaluation :	40
		Univ.Exam Evaluation:	60
		Total Marks:	100

Course	1. To ex	perimentally determine thermal conductivity of various materials		
Objectives	2. To ex	2. To experimentally measure heat transfer coefficients of forced and natural convection		
	3. To ex	perimentally measure emissivity of grey surface		
	4. To ex	perimentally measure effectiveness of heat exchangers		
	5. To conduct performance tests on refrigeration & air conditioning systems			
Course		Upon successful completion of the course, the students will able to:		
Outcomes	CO1	Practically relate to concepts discussed in the Heat Transfer course.		
	CO2	Conduct various experiments to determine thermal conductivity of various materials.		
	CO3	Determine heat transfer coefficients of forced and natural convection		
	CO4	conduct performance tests and thereby improve effectiveness of heat exchangers		
	CO5	conduct performance tests and thereby improve performance of refrigeration and air conditioning systems		
	CO6	experimentally investigate emissivity of grey surface		
	List of Experiments:			
G	1. Test on Conduction in Composite Wall.			
Course content	2.	2. Test on Emissivity Measurement Apparatus.		
••••••	3. Test on Lagged Pipe Apparatus.			
	4. Test on Stefan-Boltzmann Apparatus.			
	5.	5. Test on Natural Convection Apparatus.		
	6.	Test on Forced Convection Apparatus.		
	7. Test on Drop-wise Condensation Apparatus.			
	8.	Test on Vapour Compression Refrigeration System.		
	9.	Test on Air-Conditioning Test Rig.		
	10.	Test on thermal conductivity of insulating powder		
	11.	Test on pin fin apparatus		

	12.	Test on critical heat flux
	13.	Test on heat pipe apparatus
	14.	Test on Thermal Conductivity of a Metal Rod.
Text Books and reference		
Books:		

17ME32P2 - 3D MODELING LABORATORY

Course	Program core	Credits:	2
category:			
Course Type:	Practical	Lecture - Tutorial - Practical:	0 - 0 - 3
Prerequisite:	Engineering graphics, machine	Sessional Evaluation :	40
	drawing	Univ.Exam Evaluation:	60
		Total Marks:	100

Course						
Objectives						
Course		Upon successful completion of the course, the students will able to:				
Outcomes	CO1	Develop components using design software				
	CO2	Assemble and animation of working 3D model				
	CO3	Developing and drawing surface and sheet metal modelling				
	CO4	Design piping and wire harnessing				
	List of Expe	eriments for 3D Modelling Laboratory				
	1. Part Modelling					
~	2. Drawing & Detailing					
Course content	3. Assemble					
	4. Surface Modelling					
	5. Sheet Metal Modelling					
	6. Pipir	ng Design				
	7. Wire	e Harness Routing Design				
	Minimu	m one exercises from each above module and maximum 8 exercises				
Text Books and reference						
Books:						

17ME32AC- PROFESSIONAL ETHICS & LIFE SKILLS

Course category:	Program core	Credits:	Audit course
Course Type:	Practical	Lecture - Tutorial - Practical:	0 - 0 - 3
Prerequisite:		Sessional Evaluation : Univ.Exam Evaluation: Total Marks:	60

Course Objectives						
Course		Upon successful completion of the course , the students will able to:				
Outcomes	CO1	To prepare them on problem solving skills				
	CO2	To provide symbolic, verbal, and graphical interpretations of statements in a problem description.				
	CO3	To create an awareness on Engineering Ethics and Human Values.				
	CO4	To instill Moral and Social Values, Loyalty and also to learn to appreciate the rights				
	~~~	of others				
	CO5	To learn leadership qualities and practice them				
		UNIT-1 TATIVE APTITUDE				
Course content	Problems Permutati	System-L.C.M & H.C.F- Find the Unit digit-Remainder Theorem- Problems on Ages- on Averages-Percentages-Simple Interest-Compound Interest-Profit and Loss, ons and Combinations, Probability, Boats and Streams- Pipes and Cisterns- Data tion-Table Graph-Bar Graph- Line Graph- Pie Chart.				
	UNIT-2					
	<b>REASONING</b> Number and Letter Series- Coding and Decoding, Directions, Classifications-Venn Diagra Syllogism-Seating Arrangement-Analogy-Blood Relation-Clocks-Calendars- Puzzle Test-Co Inequality- Data Sufficiency.					
		UNIT-3				
	<b>Human V</b> Virtue – F	SIONAL ETHICS AND HUMAN VALUES Values: Morals, Values and Ethics – Integrity – Work Ethic – Service Learning – Civic Respect for Others – Living Peacefully – caring – Sharing – Honesty – Courage – Valuing poperation – Commitment – Empathy – Self-Confidence – Character – Spirituality UNIT-4				
	BUSINE	SS ETIQUETTE AND PERSONAL GROOMING				
	<b>Making a</b> The art of Talk & N	<b>a Great First Impression</b> : How to present yourself to people, Greetings, Introductions F small talk - How to make proper introductions, Paying & Receiving Compliments, Small Networking ,Developing Professional and Personal Image, Personal Hygiene & Polish				
	interperso Etiquette Corporate	of Dressing: The do's and don'ts in dressing, Understanding various dress codes, Clothes and Culture				
		UNIT -5				
		$\Gamma NEUTRALIZATION - P - Pitch, I - Inflection, C - Courtesy, T - Tone,$				
		standing, $\mathbf{R}$ – Rate of speech & E – Enunciation				
	laentifyll	ng and dealing with Mother Tongue Influence (MTI)				

	Preparation for interviews: Conducting Research & Commonly asked questions, speaking up of interviews, GDs, Debate & Resume Building. UNIT - 6 VERBAL ABILITY Essay Writing, Comprehension, Email writing, Correction of Sentences, Synonyms & Antonyms	during
Text Books and reference Books:	References:1. R.S.Agarwal, Quantitative Aptitude2. R.S.Agarwal, Non-Verbal Reasoning3. Dr. Alex, "Soft Skills"- Know Yourself & Know the World4. Meenakshi Raman and Sangeeth Sarma- Communication5. Charles D. Fleddermann, "Engineering Ethics", Pearson Education / Prentice Hall, New Jersey,(Indian Reprint)	2004

### Vision and Mission of the INSTITUTE

#### Vision:

To emerge as a comprehensive Institute that provides quality technical education and research thereby building up a precious human resource for the industry and society.

#### Mission:

- To provide a learner-centered environment that challenges individuals to actively participate in the education process.
- To empower the faculty to excel in teaching while engaging in research, creativity and public service.
- To develop effective learning skills enabling students pick up critical thinking thus crafting them professionally fit and ethically strong.
- To reach out industries, schools and public agencies to partner and share human and academic resources.

### **Vision and Mission of the Department**

#### Vision:

To become an excellent centre for technical education and research in the field of mechanical engineering to meet the societal, regional, national and global challenges.

#### Mission:

- > To impart quality technical education and transform bud engineers into an effective and responsible engineers to work with the current technologies in multi-cultural and multi-discipline environment.
- ➤ To encourage the students to develop their creativity in the field of mechanical engineering by providing modern laboratory facilities with hands on training and contemporary curriculum.
- > To develop the interaction with the Industry, experts in order to technical mastery.
- To provide best teaching & learning practices as well as creating opportunities for Research, maximise student results and placements
- To inculcate and promote lifelong learning skills, problem solving skills, leadership qualities and team work.

#### PROGRAM EDUCATIONAL OBJECTIVES

- > **PEO1:** A strong foundation to access, analyze, plan and implement their knowledge in basic sciences & mathematics, core and interdisciplinary courses.
- > **PEO2:** Graduate will be in a position to work with the members of multi-disciplinary teams and can play a leading role in handling the technical issues.
- ▶ **PEO3:** Graduates will have capability to work with modern engineering tools, software and equipment under the realistic constraints.
- > **PEO4:** Graduates will engage in lifelong learning skills with research attitude and social responsibility.

#### PROGRAM OUTCOMES

#### **Engineering Graduates will be able to:**

**PO1**. **Engineering knowledge:** The Graduate will be able to solve mechanical engineering related problems through the application of knowledge in mathematics, science and engineering.

**PO2.Problem analysis:** The graduate will be able to identify, formulate and solve complex engineering problems through literature reviews/surveys and fundamentals of mathematics, sciences and engineering.

**PO3.Design/development of solutions:** The graduate will be able to design and develop solution for complex engineering problems and systems or processes for specific needs within the realistic constraints of the civil society..

**PO4.Conduct investigations of complex problems:** The graduate will be able to investigate the complex engineering problems through research methodologies.

**PO5.Modern tool usage:** The graduate will be able to use modern engineering tools, techniques and skills necessary for engineering practice to obtain solution to the problems

**PO6.The engineer and society:** The graduate will be able to work as responsible professional engineer with contextual knowledge of the civil society.

**PO7.Environment and sustainability:** The graduate will be able to develop sustainable engineering solutions with environmental and societal context.

**PO8.Ethics:** The graduates will be able to work with professional ethics and commitment

**PO9.Individual and team work:** The graduate will be able to associate with the multi-disciplinary teams or lead the people associated with.

**PO10.Communication:** The graduates will be able to communicate effectively with appropriate representation of their views or ideas.

**PO11.Project management and finance:** The graduate able to execute the project effectively in multidisciplinary environments as a member or leader through knowledge acquired in engineering.

**PO12.Life-long learning:** Graduate will have an ability to engage in life-long learning of knowledge on contemporary issues.

#### NBKR INSTITUTE OF SCIENCE & TECHNOLOGY :: VIDYANAGAR (AUTONOMOUS) (AFFILIATED TO JNTUA ANANTAPURAMU) SPSR NELLORE DIST IV YEAR OF FOUR YEAR B.TECH DEGREE COURSE – I SEMESTER MECHANICAL ENGINEERING

SCHEME OF INSTRUCTION AND EVALUATION (With effect from the academic year 2017-2018)

							Evaluation							
	Course Code	Course Title	Instruction Hours/Week		Credits	Sessio Test		Sessio Test		Total Sessional Marks (Max. 40)	End Ser Examin		Maximu m Total Marks	
S.No		THEORY	L	Т	D/P		Duration In Hours	Max. Marks	Duration In Hours	Max. Marks		Duratio n In Hours	Max. Marks	100
1	17ME4101	Finite Elements Method	2	2	0	3	2	40	2	40		3	60	100
2	17ME4102	Refrigeration and Air- conditioning	2	2	0	3	2	40	2	40	0.8*Best of	3	60	100
3	17ME4103	CAD/CAM	3	0	0	3	2	40	2	40	two+0.2*least of two	3	60	100
4	17ME4104	Robotics	3	0	0	3	2	40	2	40		3	60	100
5	17ME41E X	Core Elective – III	3	0	0	3	2	40	2	40		3	60	100
6	17YE410 X	Open Elective – I	3	0	0	3	2	40	2	40		3	60	100
		PRACTICALS												
7	17ME41P1	Metrology and Instrumentation Laboratory	-	-	3	2	-	-	-	40	Day to Day	3	60	100
8	17ME41P2	Automation and Robotic Laboratory	-	-	3	2	-	-	-	40	Evaluation and a test (40 Marks)	3	60	100
9	17ME41P3	CAE/CAM Laboratory	-	-	3	2	-	-	-	40		3	60	100
		TOTAL	16	04	09	24	-	-	-	360		-	540	900

### **<u>17ME4101- FINITE ELEMENTS METHOD</u>**

Course category:	Humanities	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	2-2-0
Prerequisite:	Engineering mathematics,	Sessional Evaluation :	40M
	SOM, HT.	Univ. Exam Evaluation:	60M
		Total Marks:	100M

Course	1. To pr	rovide the student with some knowledge and analysis skills in applying basic laws in			
Objectives	mechanic	28			
	2. Integra	ation by parts to develop element equation for a spring element			
	3. Steps u	used in solving the problem by finite element method.			
Course		Upon successful completion of the course, the students will able to:			
Outcomes	CO1	Formulate simple types of finite elements and apply appropriate boundary conditions.			
	CO1 CO2	Apply finite element method for obtaining solutions to problems in solid mechanics,			
	002	Static, transient bulking analysis to be conducted.			
	CO3	Discuss variation and Galerkin method for Stiffness Matrix formulation.			
	CO4	Assess stresses and strains in complex mechanical systems and interpret structural			
	behavior of components by analyzing post processor result.				
	CO5	Formulate and solve simple heat transfer and fluid mechanics problems			
	CO6	Identify significant applications of FEM in Manufacturing.			
		UNIT – I			
	INTROI	DUCTION			
<b>Course</b> <b>content</b>	<ul> <li>Need for FEM, Comparison with finite difference method, general procedure for finite element analysis, evaluation of circumference and area of circle. Boundary value, initial value problems and scalar field problems.</li> <li>WEIGHTED RESIDUAL METHODS: Simple, collocation, Rayleigh-Ritz and Galerkin's</li> </ul>				
	methods for bars.				
	UNIT – II FINITE ELEMENT FORMULATION FROM WEAK FORM: Derivation of element equations for 1-D bar and 1-D heat conduction elements. FINITE ELEMENT FORMULATION BASED ON PSTP: Concept of functional, PSTP,finite element formulation of 1-D bar element from PSTP,meaning of finite element equation.				
	UNIT – III				
	problems shape fun	<b>TE ELEMENT ANALYSIS:</b> General form of total potential in 1-D for structural s, generic form of FE equations, linear bar element, quadratic bar element, derivation of nctions and element matrices from generic form.			
	TRUSSE	ES: Global & element coordinate systems, transformation matrices.			

	UNIT – IV
	APPLICATIONS OF 1-D FINITE ELEMENT ANALYSIS: Element equations for discrete
	systems, linear elastic springs, torsion of circular shafts and flow through pipes, heat transfer element
	with lateral heat loss (fins), 1-D beam element – degrees of freedom, shape functions and element
	matrices.
	UNIT – V
	2-DFINITE ELEMENT ANALYSIS: Dimensionality of a problem-plane stress, plane strain and
	axis-symmetric simplification of structural problems. Approximation of geometry and field
	variable- simple 3-node triangular element, 4-node rectangular element. Natural coordinates for 4-
	node quadrilateral element.Generic relations for 4-node rectangular element.
	UNIT – VI
	2-D FINITE ELEMENT ANALYSIS: Numerical integration, Gaussian quadrature in two
	dimensions. Imposition of boundary conditions and solution of static equilibrium
	equations.DYNAMIC ANALYSISUSING FEM: Formulation for axial vibration of a bar and
	transverse vibration of a beam.
	<b>COMPUTER IMPLEMENTATION:</b> Outline of aFinite element program.
	TEXT BOOKS:
	1.A Text Book of Finite Element Analysis: P.Seshu, PHI, 2009
<b>Text Books</b>	2.An Introduction to Finite Element Method: Reddy J.N. McGraw HillEdition, 3 rd ed., 2005.
and	3.Introduction to Finite Element in Engineering : Tirupati Chandrupatla and Belegundu, Pearson
reference	Education, 4 th Revised, 2012.
Books:	REFERENCES:
	1. Applied Finite Element Analysis : Larry J Segerlind–John Wiley& Sons., 1976.
	2.Finite Element Method : S. S. Rao, Butterworth Heinemann publisher, 2005.
	3. Fundamentals of Finite Element Analysis : David V. Hutton TMH Publishers, 2003.
E-Resources	1.https://nptel.ac.in/courses
	2.https://freevideolectures.com/university/iitm
I	

# **<u>17ME4102 - REFRIGERATION AND AIR-CONDITIONING</u></u>**

Course category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	2 - 2 - 0
Prerequisite:	Basic thermodynamics Applied thermodynamics Heat transfer	Sessional Evaluation : Univ.Exam Evaluation: Total Marks:	60

1	ems
	Upon successful completion of the course, the students will able to:
CO1	Explain the principle of refrigeration, cycles, properties and its environment effects.
	Explain vapor compression systems and different processes, equipment.
	Describe the working principle of various types of refrigeration systems.
-	Discuss psychrometric properties and processes, and air conditioning process.
CO5	Estimate cooling load factor, winter and summer air conditioning load and human comfort condition.
CO6	Compare refrigeration and air conditioning systems and make choices for a required application
and vapo and LiBr <b>REFRIG</b> alternativ <b>COMPO</b> Condense towers, ev <b>DEFROS</b> defrosting	UNIT – I GERATION: Introduction, methods of refrigeration, thermodynamic analysis of air cycle or compression refrigeration systems. Vapor absorption system – working of NH ₃ - water – water systems, working of steam jet and thermoelectric refrigeration systems. UNIT – II GERANTS: Properties, classification, nomenclature and selection of refrigerants, re refrigerants. DNENTS: Compressors – classification, working of reciprocating and rotary compressors. ers – air cooled, water cooled, evaporative condensers, economical water rate, cooling vaporators. UNIT – III STING OF EVAPORATORS: Introduction, methods of defrosting- automatic periodic g, defrosting by reversing cycle, automatic hot gas defrosting, thermo bank defrosting and efrosting.
	CO2 CO3 CO4 CO5 CO6 REFRIG and vapo and LiBr REFRIG alternativ COMPO Condense towers, et DEFROS defrosting

	<b>UNIT – IV</b> <b>AIR CONDITIONING:</b> Fundamental functions of air conditioning, psychrometric properties and processes, sensible heat factor, analysis of air conditioning processes and cycles with psychometric chart, cooling load calculations.						
	UNIT – V AIR CONDITIONING SYSTEMS: Summer, winter, year-round and central systems. COMFORT AIR CONDITIONING: Physiological reactions to cooling, the effective temperature and its use in the determination of standards of comforts, comfort chart. CONTROLS: Automatic control of air conditioning systems, air cleaning, ducts, fans.						
	UNIT – VI						
	CRYOGENICS: Introduction, cascade system, liquefaction of gases- air, H ₂ , applications of low temperature. APPLICATIONS OF REFRIGERATION: Walk-in-cooler, water coolers, refrigerators, transportation, food processing & preservation. APPLICATIONS OF AIR CONDITIONING: Domestic, industrial and commercial applications.						
Text Books and reference Books:	<b>TEXT BOOKS:</b> 1. A Course in Refrigeration and Air Conditioning : Arora S.C. & Domkundwar S., Dhanpat Rai & Company, 2006         2. Refrigeration and Air Conditioning       : C.P. Arora, Tata McGraw Hill, 2000						
	REFERENCES:						
	1. Refrigeration and Air Conditioning : Jordan & Priester, Constable and Company Ltd., London, 2000						
	<ol> <li>Principles of Refrigeration</li> <li>Refrigeration and Air Conditioning</li> <li>Stocker, McGraw-Hill, 2000</li> </ol>						
E-Resources	1.https://nptel.ac.in/courses 2.https://freevideolectures.com/university/iitm						

# 17ME4103- CAD/CAM

Course category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3-0-0
Prerequisite:	Autocad, drawing	Sessional Evaluation : Univ. Exam Evaluation: Total Marks:	60

Course	The general objectives of the course are to enable the students to			
Objectives	1. Understand the basic analytical fundamentals that are used to create and manipulate geometric			
	models in computer programs.			
	2. To vi	sualize how the components looks like before its manufacturing or fabrication		
	3. To le	arn 2D & 3D transformations of the basic entities like line, circle, ellipse etc		
		nderstand the different geometric modeling techniques like solid modeling, surface 1g, feature based modeling etc.		
	5. To ui	nderstand the different types of curves like Bezier curve, B-Spline curve & Graphics		
		ds 6. To understand different Algorithms for optimization of drawing of basic entities		
Course		Upon successful completion of the course, the students will able to:		
Outcomes	CO1	Describe the mathematical basis in the technique of representation of geometric entities including points, lines, and parametric curves, surfaces		
	CO2	use parametric 3D CAD software tools in the correct manner for making geometric part models and different wireframe primitives using parametric representations		
	CO3	create surface primitives using parametric modeling and solid primitives using the		
		different representation schemes.		
	<b>CO4</b>	apply the concepts of machining for the purpose of selection of appropriate machining		
		centers, machining parameters, select appropriate cutting tools for CNC and		
		programming.		
	CO5	perform design and analysis of automatic storage and retrieval system to solve the		
		design problems of different type of transfer mechanism		
	CO6	Identify the various elements and their activities in the Computer Integrated		
		Manufacturing Systems.		
	UNIT – I			
Course content	<ul> <li><b>INTRODUCTION TO CAD</b>: Design process, product cycle, applications of computers for design, benefits of CAD.</li> <li><b>COMPUTER GRAPHICS</b>: 2D Transformations, points and lines transformation - translation,</li> </ul>			
	rotation, scaling, mirror, reflection. Introduction to 3D transformations, windowing and clipping. UNIT – II			
	modelir	<b>GEOMETRY MODELING:</b> Modeling concepts - 2D and 3D, comparison between wire frame modeling, surface modeling and solid modeling.		
		<b>FRAME MODELING</b> : parametric and non-parametric representation of curves - line, ellipse, cubic spline, B-splines, Bezier curve. Hidden line algorithm.		

	UNIT – III SURFACE MODELING: Surface description, parametric representation of cylindrical surface, ruled surface, surface of revolution, cubic, B-Splines and Bezier surfaces. SOLID MODELING: CSG and B-Rep methods. UNIT – IV CNC: Numerical control, numerical control modes, numerical control elements, DNC, CNC PART PROGRAMMING: Manual part programming, Computer Aided part programming (APT) UNIT – V CIM: Definition, divisions of CIM, advantages and disadvantages. GROUP TECHNOLOGY: Introduction, concepts of GT, classification and coding System- OPTIZ, application of GT FMS: Definition, need, flexibilities, components, advantages. COMPUTER AIDED PROCESS PLANNING: Variant and Generative CAPP systems. UNIT – VI AUTOMATIC IDENTIFICATION METHODS: Bar code Technology, QR code, contact & non-contact type, concepts and uses. BASIC CONCEPTS OF SHOP FLOOR DATA: Types of factory data and collection systems. AUTOMATED MATERIAL HANDLING SYSTEMS: AS/RS, Conveyers – types, RGVS, AGVS and their applications.
Text Books and reference Books:	<b>TEXT BOOKS:</b> 1.       Automation Production System & CIM : Groover M.P., Pearson, 4 th ed., 2016         2.       CAD / CAM : Ibrahim Zeid, Tata McGraw Hill, 5 th Reprint, 2010         3.       Mathematical Elements of Computer Graphics: Rogers and Adams, McGraw Hill, 2017. <b>REFERENCES:</b> 1.         1.       CAD/CAM : Groover M.P., Pearson, 2003.         2.       Computer Graphics : Steven Harrington, McGraw Hill, 2 nd ed., 2014.         3.       CAD/CAM : Besant and Lui, E. Horwood publisher, 1986
E-Resources	1.https://nptel.ac.in/courses 2.https://freevideolectures.com/university/iitm

# **17ME4104- INDUSTRIAL ROBOTICS**

Course category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3-0-0
Prerequisite:	Mathematics, mechanics, robotics	Sessional Evaluation : Univ. Exam Evaluation: Total Marks:	60

Course Objectives		
Course		Upon successful completion of the course , the students will able to:
Outcomes	CO1	The course shall give knowledge about the importance of robotics in today and future and robot configuration and subsystems
	CO2	The course shall give knowledge about robotic accessories such as sensors grippers
	CO3	The course shall give knowledge about robot path planning
	<b>CO4</b>	The course shall develop skills in develop skills in kinematics of robot motion
	CO5	The course shall give competence in Design and implementation programming of robot systems
	CO6	The course shall give knowledge about Industrial robots applications.
Course content		
		ate system, 2R and 3R robot manipulators. MICS: Introduction to robot dynamics.

	UNIT – V ROBOT PROGRAMMING: Importance, types, manual setup, lead through programming, textual programming languages, commands for elementary operations - RAPID. UNIT – VI APPLICATIONS OF ROBOT: Material handling, machine loading/unloading, assembly, inspection etc., robot work cells. Safety aspect and economic analysis.
Text Books and reference Books:	<ul> <li>TEXT BOOKS:         <ol> <li>Saeed B. Niku, Introduction to Robotics : Analysis, Systems, Applications, Pearson Education Inc., 2001</li> <li>Industrial Robotics, Technology, Programming and Applications: Groover M.P., Weiss M. and Odrey N.G., McGraw Hill Higher Education, 2nd ed., 2012.</li> <li>Robotics, Fundamental Concepts and analysis : Ashitave Ghosal, Oxford Press, 1st ed., 2006.</li> </ol> </li> <li>REFERENCES:         <ol> <li>Robotics and Control : R.K.Mittal and I J. Nagarath, McGraw Hill, 2015</li> <li>Robotics : Fu K S, R.C. Gonazalez and C.S.G Lee, McGraw Hill, 2008</li> <li>Introduction to Robotics, Mechanics and Control: John J.Craig, Pearson Education, 3rd ed., 2009.</li> </ol> </li> </ul>
E-Resources	1.https://nptel.ac.in/courses 2.https://freevideolectures.com/university/iitm

# <u>17ME41EX - POWER PLANT ENGINEERING (CE-3)</u>

Course category:	Program core	Credits:	3
<b>Course Type:</b>	Theory	Lecture - Tutorial - Practical:	3 -0 - 0
Prerequisite:	BTD, ATD-1	Sessional Evaluation : Univ. Exam Evaluation: Total Marks:	60

Course		1. Describes the working principle of steam power cycle and layout of steam cycle.		
Objectives	2. Expla	ins and provides knowledge on steam cycle and its application in generation of mechanical		
	power.			
	3. Descr	ibe ash handling, coal handling method in a thermal power plant.		
		ibe feed water systems and control systems for power plants.		
	5. Descr	5. Describe the generation of power from nuclear reactor.		
Course		Upon successful completion of the course, the students will able to:		
Outcomes	CO1	Describe and analyze different sources of energy, types of power plants and layouts.		
	CO2	Discuss and analyze the working and layout of steam power plants.		
	CO3	Discuss and analyze working principle of diesel and hydro power plant.		
	CO4	Describe the working principle and basic components of the nuclear power plant and safety.		
	CO5	Discuss the working principle and basic components of renewable energy based plants.		
	CO6	Discuss and analyze the economic aspects and compare it with plants of other types.		
		UNIT – I		
Course	Course COAL BASED THERMAL POWER PLANTS: Introduction, layout of modern			
content	plant-components, fuel and ash handling, draught system, feed water treatment, Rankine cycle- improvisations.			
	mprovi	UNIT – II		
	<b>HYDRO ELECTRIC POWER PLANTS:</b> Layout - dams- selection of water turbines- types, pumped storage hydel plants, site selection and safety.			
	UNIT – III			
	<ul> <li>DIESEL ENGINE AND GAS TURBINE POWER PLANTS: Diesel engine power plant layou</li> <li>– components, various operating systems, merits, demerits and applications.</li> <li>Gas turbines – working, types, methods to improve power output and efficiency, layout with inter</li> <li>cooling, reheating and regeneration.</li> </ul>			
		UNIT – IV		
	NUCLE	CAR POWER PLANTS: Basics of Nuclear Engineering, Layout and subsystems of		
	Nuclear	Power Plants, Working of Nuclear Reactors: Boiling Water Reactor (BWR), Pressurized		
	Water Reactor (PWR), CANada Deuterium Uranium reactor (CANDU), breeder, gas cooled and			
	liquid metal cooled reactors. Safety measures for Nuclear Power plants.			

	UNIT – V		
	RENEWABLE ENERGY BASED PLANTS AND MHD PLANTS: Power from wind – wind		
	turbine working and types. Solar thermal power plants - low medium and high power generation,		
	power from wave, tidal, geothermal sources, OTEC system, MHD power plants - working, types,		
	merits and demerits.		
	UNIT – VI		
	ECONOMIC AND ENVIRONMENTAL ISSUES OF POWER PLANTS: Power tariff types,		
	load distribution parameters, load curve, comparison of site selection criteria, relative merits		
	& demerits, capital & operating cost of different power plants. Pollution control technologies		
	including waste disposal options for coal and nuclear power plants.		
	TEXT BOOKS:		
	1. Power Plant Engineering : Nag. P.K., Tata McGraw Hill Publishing Company Ltd., 3 rd ed.,		
Text Books and reference	2008.		
Books:	2. A Course in Power Plant Engineering : Arora and Domkundwar, Dhanpat Rai and Co.		
DUUNS	Pvt.Ltd., 2014.		
	3. Power Plant Engineering: Rajput R.K. Laxmi Publications, 5 th ed., 2016.		
	REFERNCES:		
	1. Renewable Energy : Godfrey Boyle, Open University, Oxford University Press in association		
	with the Open University, 2004.		
	2. Power Plant Technology : El-Wakil. M.M., Tata McGraw Hill Publishing Company		
	Ltd.,2010.		
	3. Power Plant Engineering : Thomas C. Elliott, Kao Chen and Robert C. Swanekamp, Standard		
	Handbook of McGraw Hill, 2 nd ed., 1998.		
	4. Power Plant Engineering : Black & Veatch, Springer, 1996.		
	5. An Introduction to Power Plant Technology : G.D. Rai, Khanna Publishers, 3 rd ed., 1987		
<b>E-Resources</b>	1.https://nptel.ac.in/courses		
	2.https://freevideolectures.com/university/iitm		

### 17ME41E1 - PRODUCTION SYSTEMS (CE-3)

Course category:	Program core	Credits:	3
<b>Course Type:</b>	Theory	Lecture - Tutorial - Practical:	3 -0 - 0
Prerequisite:	Industrial Engineering and Management	Sessional Evaluation : Univ. Exam Evaluation: Total Marks:	60

Course	1. Provide framework for understanding production and operations management.		
Objectives	2. To c	levelop an understanding of operations management principle.	
	3. Equ	ip plan and control activities necessary to run the operations.	
	4. The	oretical understanding to underpin operational decisions at tactical and strategic level.	
	5. Learn and develop critical understanding of techniques used within the operations management		
		planning, control, problem-solving and communication	
Course Outcomes		Upon successful completion of the course, the students will able to:	
Outcomes	CO1	Understand the outline and fundamentals of the production systems	
	CO2	Solve routing and scheduling problems	
	CO3	Recognize the importance of facility location models	
	<b>CO4</b>	Solve operational problems in the areas of aggregate production planning.	
	CO5	Apply the principles and techniques for planning and control of the production and service systems to optimize/make best use of resources	
	CO6	Summarize various aggregate production planning techniques.	
Course content	<b>UNIT – I</b> <b>PRODUCTION</b> : Systems concept of production, types of Production – Continuous produ (mass production, process production and assembly lines) and Intermittent production (job typ batch type), Lean and Agile Manufacturing, Just-in-time (JIT), KANBAN systems.		
		LINIT II	
	<b>UNIT – II</b> <b>PRODUCTIVITY</b> : Introduction, types of productivity, factors affecting productivity, techniq		
	for improving productivity. <b>PRODUCT DESIGN AND ANALYSIS</b> : Introduction, steps of product design, process plannin and design, responsibilities of process planning engineer, steps in process planning.		
		UNIT – III	
	SINGLE FACILITY LOCATION MODEL: Rectilinear minimum, Rect Squared Euclidean distance location problem and Euclidean distance location prob MULTI FACILITY LOCATION MODEL – Squared Euclidean distance h Travel chart and REL chart.		

	UNIT – IV ASSEMBLY LINE BALANCING: RPW method, COMSOAL method. MATERIALS REQUIREMENT PLANNING: Introduction, Lot sizing in MRP – EOQ method, minimum cost per period method, period order quantity method, least unit cost method and part period balancing method. MRP–II.
	UNIT – V VALUE ANALYSIS: Types of values, aim of value analysis, technique and procedure of value analysis, and advantages. AGGREGATE PLANNING: Introduction, Aggregate Planning Strategies – varying work force, changing inventory level and subcontracting. Transportation model for Aggregate planning. UNIT – VI PROJECT MANAGEMENT: Introduction, construction rules of drawing, Fulkerson's rule, Critical path method (CPM) – floats, critical path, and project duration. PERT – Introduction, different time estimates, expected time, variance, expected project duration and probability of completion.
Text Books and reference Books:	TEXT BOOKS:1. Production and Operations Management: R. Panneerselvam, PHI Publications, 20122. Production Planning and Inventory Control: Seetharama L. Narasimhan, PHIPublications, 2 nd ed., 2003REFERENCES:1. Analysis and Control of Production Systems : Elsayed A., Thomas O. Boucher, PHI, 19852. Modern Production / Operations Management: Buffa and Sarin, 8 th ed., John Wiley & sons, 2007
E-Resources	1.https://nptel.ac.in/courses 2.https://freevideolectures.com/university/iitm

### 17YE4102 - QUALITY CONTROL AND RELIABILITY (CE-3)

Course category:	Program core	Credits:	3
<b>Course Type:</b>	Theory	Lecture - Tutorial - Practical:	3 -0 - 0
Prerequisite:	Industrial Engineering and Management	Sessional Evaluation: Univ. Exam Evaluation: Total Marks:	60

Course Objectives	• Demonstrate the approaches and techniques to assess and improve process and/or product quality and reliability.			
Ū	<ul> <li>Introduce the principles and techniques of Statistical Quality Control and their practical uses in product and/or process design and monitoring</li> <li>Illustrate the basic concepts and techniques of modern reliability engineering tools.</li> </ul>			
Course Outcomes		Upon successful completion of the course , the students will able to:		
	CO1	Understand the basic techniques of quality improvement, fundamental knowledge of statistics and probability		
	CO2	Categorize the process in control or out of control using various types of charts (p, np, C, U charts).		
	CO3	Use control charts to analyze for improving the process quality		
	CO4	Describe different sampling plans and identify the sampling plan suitable for the process.		
	CO5	Discuss the various parameters of life testing of components such as MTTF,MTBF		
	<b>CO6</b>	Understand the concepts of reliability and maintainability		
Course content	<b>UNIT – I</b> <b>QUALITY CONTROL</b> : Introduction to inspection and quality control, objectives of statistical quality control, chance and assignable causes of variation, control chart basic principles. <b>CONTROL CHARTS FOR VARIABLES</b> : $\overline{x}$ and R charts, interpretation of control charts.			
	UNIT – II PROCESS CAPABILITY ANALYSIS: Specification limits and control limits, natural tolerance limits, specifications and process capability, process capability indices, setting tolerances on assemblies and components. UNIT – III CONTROL CHARTS FOR ATTRIBUTES: P chart, C chart, U chart, sensitivity analysis of P charts, quality Rating System.			

	<b>UNIT – IV</b> <b>ACCEPTANCE SAMPLING PLANS FOR ATTRIBUTES</b> : Types of sampling plans, advantages and disadvantages of sampling plans, evaluation of sampling plans – OC curve, characteristics of OC curve, producer risk and consumer risk, AOQ, AQL, ATI, ASN. Double sampling plan – OC curve.
	UNIT – V RELIABILITY: Concepts of reliability, scope, Importance of reliability, reliability data collection. Failure data analysis: MTTF, MTBF, failure rate, hazard rate. SYSTEM RELIABILITY: Series, parallel and mixed configurations. RELIABILITY IMPROVEMENT: Active and standby redundancies, introduction to fault tree analysis.
	UNIT – VI QUALITY COSTS: Prevention, appraisal, internal failure and external failure costs, total quality management, quality function deployment, tools for continuous quality improvement. QUALITY CIRCLES: Concepts, objectives and advantages. Introduction to six sigma concept. Features of ISO 9000 quality system - Classification, need, advantages and limitations.
Text Books and reference Books:	<b>TEXT BOOKS:</b> 1. Quality Control       : Dale H Besterfield, Pearson Education, 2006.         2. Statistical Quality Control       : Gupta R.C., Khanna Publishers, 2008.         3. Statistical Quality Control       : M. Mahajan., Dhanpat rai & Co., 2009. <b>REFERENCES:</b> 1. Fundamentals of Quality Control and Improvement         2. Concepts in Reliability Engineering       : Srinath L.S., East West Press, 2009.
E-Resources	1.https://nptel.ac.in/courses 2.https://freevideolectures.com/university/iitm

#### 17ME31E3- RAPID PROTOTYPING (CE-3)

Course category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3 -0 - 0
Prerequisite:	BDT	Sessional Evaluation : Univ. Exam Evaluation: Total Marks:	60

Course	1. Advanced prototyping and fabrication skills useful in the construction of physical objects.		
Objectives		ching, drawing, and CAD as a medium to communicate and iterate initial prototype ideas.	
C	3. Chair	ning together multiple manufacturing processes to convert an idea to a physical part.	
Course Outcomes		Upon successful completion of the course, the students will able to:	
Outcomes	CO1	Describe product development, conceptual design and classify rapid prototyping systems; explain stereo lithography process and applications.	
	CO2	Explain direct metal laser sintering, LOM and fusion deposition modeling processes.	
	CO3	Demonstrate solid ground curing principle and process.	
	CO4	identify, characterize and select the ideal materials for a given Rapid Prototyping system.	
	CO5	Discuss LENS, BPM processes; point out the application of RP system in medical field	
		define virtual prototyping and identify simulation components	
	CO6	Rapidly prototype, via models or sketching, rough ideas to communicate a project idea.	
		UNIT – I	
	prototyping cycle, additive manufacturing Vs CNC. UNIT – II STEREOLITHOGRAPHY: Principle, apparatus, build materials, machine details, process parameters, dimensional accuracy, advantages, limitations and applications.		
	SOLID GROUND CURING: Principle of operation, advantages, limitations and applications. UNIT – III		
	<ul> <li>FUSION DEPOSITION MODELING: Principle, build and support materials, system parameters, basic operating techniques, applications.</li> <li>LAMINATED OBJECT MANUFACTURING: Principle of operation, LOM materials, process details, applications.</li> </ul>		
	UNIT – IV		
	<b>SELECTIVE LASER SINTERING:</b> Introduction to laser, laser generation methods, selective laser process – principle, materials for SLS, process parameters, applications, comparison with		
	SLA.		
	<b>CONCEPTS MODELERS:</b> Principle, thermal jet printer, Sander's model maker, Multi-Jet Modeller, 3-D printer, Genisys Xs printer, JP system, object quadra system.		

	UNIT – V		
	<ul> <li>RAPID TOOLING: Indirect rapid tooling, silicon rubber tooling, aluminum filled epoxy tooling, spray metal tooling, direct rapid tooling, direct quick cast process, rapid tool, DMLS, prometal, sand casting tooling, laminate tooling, soft tooling vs hard tooling.</li> <li>UNIT – VI</li> <li>ALLIED PROCESS: Laser Engineering Net Shaping (LENS), vacuum casting.</li> <li>SOFTWARE ISSUES: STL format and slicing, surface digitizing, surface generation from point</li> </ul>		
	cloud, surface modification- data transfer to solid models, factors influencing accuracy.		
Text Books and reference Books:	<ol> <li>TEXT BOOKS:</li> <li>Rapid Prototyping Technology, Kenneth G. Cooper, Marcel Dekker, INC., 2001</li> <li>Rapid Manufacturing, Pham D.T &amp; Dimov S.S, Verlog London 2001.</li> <li>Rapid Prototyping and Tooling : Hari Prasad &amp; K S Badarinarayan – Surya Infotainment products, Pvt. Ltd, Bangalore, 2013.</li> </ol>		
	<ul> <li><b>REFERENCES:</b></li> <li>1. Third National Conference on Rapid Prototyping, Tooling &amp; Manufacturing – CRDM – Professional Engineering Publishing Co.</li> <li>2. Rapid Prototyping and Engineering Applications –Frank W Liou – CRC Press – Taylor &amp; Francis Group, 2007.</li> </ul>		
E-Resources	1.https://nptel.ac.in/courses 2.https://freevideolectures.com/university/iitm		

#### <u>17YE4101 - BUILDING TECHNOLOGY (OE-1)</u>

Course category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3 -0 - 0
Prerequisite:		Sessional Evaluation :	40
-		Univ. Exam Evaluation:	60
		Total Marks:	100

Course Objectives				
Course	Upon successful completion of the course, the students will able to:			
Outcomes	CO1	Identify and use correctly a wide variety of hand and power tools associated with the construction industry		
	CO2	Understand current construction industry trends and become familiar with standards for quality construction and trends in building technology		
	CO3	Demonstrate proper techniques associated with residential and commercial construction		
		UNIT – I		
Course content	BUILDING MATERIALS -I: Stones: Properties of building stones, relation to their strur requirements, classification of stones, stone quarrying, precautions in blasting, dressing of Bricks: Composition of good brick earth, various methods of manufacturing of bricks. Tile: Characteristics of good tile, manufacturing methods, types of tiles. UNIT – II			
	<b>BUILDING MATERIALS–II: Lime:</b> Various ingredients of lime, constituents of lime classification of lime, various methods of manufacture of lime. <b>Cement:</b> Portland cement, composition, hydration, setting and fineness of cement, various types of cement a properties, various field and laboratory tests for cement, various ingredients of cement con their importance, various tests for concrete.			
	UNIT – III			
	<ul> <li>BUILDING MATERIALS-III: Wood: Structure, properties, seasoning of timber, cla of various types of woods used in buildings, defects in timber. Alternative materials Galvanized Iron, Fiber Reinforced Plastics, Steel, Aluminium. Uses of materials like A Gypsum, Glass and Bituminous materials.</li> <li>BUILDING STRUCTURES-I: Masonry: Types of masonry, English and Flemish bor and Ashlar Masonry. Cavity and partition walls</li> <li>UNIT – IV</li> </ul>			
	BUILDING STRUCTURES-II: Building Components: Lintels, arches, vaults, stair cases -			
	types. <b>Floors:</b> Different types of floors - Concrete, Mosaic and Terrazzo floors. <b>Roofs:</b> Pitched roofs- Lean to roof, Coupled Roofs, Trussed roofs - King and Queen post Trusses. Flat roofs - R.C.C Roofs, Madras Terrace and Pre fabricated roofs. Form Works and Scaffoldings. Doors and windows.			
		$\mathbf{UNIT} - \mathbf{V}$		
	Pointing	<b>ING FINISHES:</b> Damp Proofing and water proofing materials and uses. Plastering, g, white washing and distempering. Paints: Constituents of paint, types of paints. Painting old wood - varnish.		

	UNIT – VI		
	<ul> <li>BUILDING PLANNING : Introduction, terms used in building drawing as per NBC, Factors affecting in selection of site, Functional requirements of a residential building, Minimum size requirements as per NBC, standard sizes of door, windows and ventilators.</li> <li>PLANNING: Principles of planning, factors to be considered in planning - planning of residential, buildings - preliminaries of vaastu. Municipal bye-Law, list of documents to be submitted for building plan approval.</li> </ul>		
	TEXT BOOKS:		
	1. Engineering Materials : S.C. Rangwala.		
Text Books	2. Building Construction : B.C. Punmia.		
and reference	3. Building Planning and Drawing : Dr. N. Kumara Swamy & A. Kameswara Rao		
Books:			
	<b>REFERENCES:</b>		
	1. Building Materials : S.K. Duggal.		
	2. A Text Book of Building Construction : S.K. Sharma & B.K.Kaul.		
	3. Building Construction : Sushil Kumar.		
	4. Building Materials : Gurucharan Singh.		
	5. Indian Standard Institution, National Building Code of India, ISI, 1984, New Delhi		
E-Resources	1.https://nptel.ac.in/courses		
	2.https://freevideolectures.com/university/iitm		

# **17YE4102 - DISASTER MANAGEMENT AND MITIGATION**

Course category:	Program core	Credits:	3
<b>Course Type:</b>	Practical	Lecture - Tutorial - Practical:	3-0-0
Prerequisite:	Environmental studies	Sessional Evaluation : Univ. Exam Evaluation: Total Marks:	60

Course Objectives	
Course	Upon successful completion of the course, the students will able :
Outcomes	<b>CO1</b> To increase the knowledge and understanding of the disaster phenomenon, its different contextual aspects, impacts and public health consequences.
	CO2 To increase the knowledge and understanding of the International Strategy for Disaster Reduction (UN-ISDR) and to increase skills and abilities for implementing the Disaster Risk Reduction (DRR) Strategy.
	CO3 To ensure skills and abilities to analyse potential effects of disasters and of the strategies and methods to deliver public health response to avert these effects.
	<b>CO4</b> To ensure skills and ability to design, implement and evaluate research on disasters
	UNIT – I
	Environmental Hazards & Disasters: Meaning of Environmental hazards, Environmental Disasters and Environmental stress. Concept of Environmental Hazards, Environmental stress & Environmental Disasters. Different approaches & relation with human Ecology - Landscape Approach - Ecosystem Approach - Perception approach - Human ecology & its application in geographical researches.
	UNIT – II
Course content	Types of Environmental hazards & Disasters: Natural hazards and Disasters - Man induced hazards & Disasters Natural Hazards- Planetary Hazards/ Disasters - Extra Planetary Hazards/ disasters Planetary Hazards- Endogenous Hazards - Exogenous Hazards Endogenous Hazards - Volcanic Eruption, Earthquakes, Landslides; Volcanic Hazards/ Disasters - Causes and distribution of Volcanoes - Environmental impacts of volcanic eruptions Earthquake Hazards/ disasters - Causes of Earthquakes - Distribution of earthquakes - Hazardous effects of earthquakes - Human adjustment, perception & mitigation of earthquake. <b>UNIT – III</b>
	Exogenous hazards/ disasters - Infrequent events- Cumulative atmospheric hazards/ disasters Infrequent events; Cyclones – Lightning – Hailstorms Cyclones: Tropical cyclones & Local storms - Destruction by tropical cyclones & local storms - causes , distribution human adjustment, perception & mitigation)Cumulative atmospheric hazards/ disasters; Floods- Droughts- Cold waves- Heat waves. Floods:- Causes of floods- Flood control measures ( Human adjustment, perception & mitigation); Droughts:- Impacts of droughts- Drought control measures; Extra Planetary Hazards/ Disasters
	Soil Erosion- Mechanics & forms of Soil Erosion- Factors & causes of Soil Erosion- Conservation measures of Soil Erosion. Chemical hazards/ disasters - Release of toxic chemicals, nuclear explosion- Sedimentation processes. Sedimentation processes:- Global Sedimentation problems- Regional Sedimentation problems- Sedimentation & Environmental problems- Corrective measures of Erosion & Sedimentation. Biological hazards/ disasters:- Population Explosion. UNIT - V

	Emerging approaches in Disaster Management- Pre- disaster stage (preparedness), Emergency Stage, Post Disaster stage-Rehabilitation <b>UNIT – VI</b> Case study of - Bhuj earthquake, Gujarat 2001, Indian Ocean earthquake and Tsunami, 2004, Chernobyl disaster, Ukraine 1986, Bhopal Gas tragedy, 1984, Kerala Floods, 2018.
Text Books and reference Books:	<ul> <li>TEXT BOOKS:</li> <li>1. Disaster Management by Rajib Shah, Universities Press, India, 2003</li> <li>2. Disaster Science and Management by Tushar Bhattacharya, TMH Publications, 2012</li> <li>3. Disaster Mitigation: Experiences And Reflections by <u>PardeepSahni</u></li> <li>4. Natural Hazards &amp; Disasters by Donald Hyndman &amp; David Hyndman – Cengage Learning</li> </ul>
	<ul> <li>REFERENCES:</li> <li>1. The Environment as Hazards by Kates, B.I &amp; White, G.F, Oxford Publishers, New York, 1978</li> <li>2. Disaster Management by R.B. Singh (Ed), Rawat Publication, New Delhi, 2000.</li> <li>3. Disaster Management by H.K. Gupta (Ed), Universiters Press, India, 2003.</li> <li>4. Space Technology for Disaster Mitigation in India (INCED) by R.B. Singh,, University of Tokyo,1994.</li> </ul>
E-Resources	1.https://nptel.ac.in/courses 2.https://freevideolectures.com/university/iitm

# 17YE41O3 -ECONOMICS AND ACCOUNTANCY (OE-2)

Course category:	Program core	Credits:	3
<b>Course Type:</b>	Practical	Lecture - Tutorial - Practical:	0-0-3
Prerequisite:	Basic Economics	Sessional Evaluation:	
		<b>Univ.Exam Evaluation:</b>	
		Total Marks:	100

Course	1. Explain the basic concepts of economics such as law of demand, elasticity of demand and			
Objectives	marginal ut	marginal utility.		
-	2. Des	cribe various cost concepts in managerial decisions and also the managerial uses of		
	production	function		
	3. Den	nonstrate price and output decisions under various market structures		
	4. Des	cribe the formalities to be fulfilled to start a business organization		
	5. The			
Course		Upon successful completion of the course, the students will able to:		
Outcomes	CO1	Able to explain the basic concepts of economics such as law of demand, elasticity of demand and marginal utility.		
	CO2	Able to describe various cost concepts in managerial decisions and also the managerial uses of production function.		
	CO3	Able to demonstrate price and output decisions under various market structures.		
	CO4	Able to show the formalities to be fulfilled to start a business organisation.		
	CO5	Able to demonstrate the principles of financial and management accounting		
		UNIT – I		
	economic c	<b>DNCEPTS OF ECONOMICS</b> : Definition of economics and basic micro and macro- concepts (including GDP/GNP/NI/Disposable income). The concept of demand, law of asticity of demand, types and measurement, consumer's equilibrium, marginal utility		
Course	function an	<b>UNIT – II</b> <b>OF PRODUCTION AND COST</b> : Production function - Cobb-Douglas production ad its properties, law of variable proportions, law of returns to scale. Cost concepts – rves, break-even analysis.		
content		<b>UNIT – III</b> <b>OF PRICING</b> : Classification of markets – Pricing under perfect competition – Pricing		
	under mono	opoly – Price discrimination – Monopolistic competition.		
	company –	UNIT – IV F BUSINESS ORGANIZATIONS: Sole proprietorship, partnership and joint stock Shares and debentures. G SYSTEM: Central bank, commercial banks and their functions. Impact of technology sector.		
		$\mathbf{UNIT} - \mathbf{V}$		
		<b>AL ACCOUNTING</b> : Concepts and principles, journal and ledger, trial balance. <b>FINAL TS:</b> Trading account, profit and loss account and balance sheet -simple problems.		
1	1			

	UNIT – VI FUNDAMENTAL CONCEPTS OF CAPITAL BUDGETING AND WORKING CAPITAL: Meaning, process and methods (payback period, NPV, ARR & IRR- simple problems), working capital, operating cycle, factors and sources.
Text Books and reference Books:	<ul> <li><b>TEXT BOOKS:</b></li> <li>1. Managerial Economics : Varshney &amp; Maheswari, S. Chand Publishers</li> <li>2. Business Organisations: C.B.Gupta , S.Chand Publishers</li> <li>3. Managerial Economics and Financial Accounting: A.R.Arya Sri, Tata Mcgraw Hills publishers.</li> </ul>
	<ul> <li><b>REFERENCES:</b></li> <li>1. Economic Analysis: S.Sankaran, Margham Publications.</li> <li>2. S.N.Maheswari &amp; S.K. Maheswari, Financial Accounting, Vikas Publishers.</li> <li>3. S. A. Siddiqui &amp; A. S. Siddiqui, Managerial Economics &amp; Financial Analysis, New age International Space Publications.</li> </ul>
E-Resources	1.https://nptel.ac.in/courses 2.https://freevideolectures.com/university/iitm

## <u>17YE4104- ELECTRICAL ENERGY CONSERVATION & AUDITING</u> (OE-1)

Course category:	Program core	Credits:	3
<b>Course Type:</b>	Practical	Lecture - Tutorial - Practical:	3-0-0
Prerequisite:	E&A	Sessional Evaluation :	40
		<b>Univ.Exam Evaluation:</b>	60
		Total Marks:	100

Course Objectives	audit an	impart basic knowledge to the students about current energy scenario, energy conservation, t and management. To inculcate among the students systematic knowledge and skill about ssing the energy efficiency, energy auditing and energy management.		
Course		Upon successful completion of the course , the students will able to:		
Outcomes	CO1	apply the knowledge of the subject to calculate the efficiency of various thermal utilities.		
	CO2	design suitable energy monitoring system to analyz and optimize the energy consumption in an organization		
	CO3	improve the thermal efficient by designing suitable systems for heat recovery and co- generation.		
	CO4	use the energy audit methods learnt to identify the areas deserving tighter control to save energy expenditure		
	CO5	carry out the cost- benefit analysis of various investment alternatives for meeting the energy needs of the organization		
	CO6	guide the employees of the organization about the need and the methods of energy conservation		
	UNIT – I			
Course content	<b>ENERGY SCENARIO:</b> Global & Indian Energy Scenario-Classification of energy sources, energy needs of growing economy, energy sector reform. Energy and Environment - Global environmental concerns, basics of energy and its various forms. <b>UNIT – II</b>			
	ENERGY CONSERVATION: Power factor and energy instruments power factor, methods of improvement, location of capacitors, power factor with non-linear loads, effect of harmonics on power factor, numerical problems. Energy Instruments - Watt-hour meter, Data loggers, Thermocouples, Pyrometers, Lux meters, Tong testers, Power analyzer. UNIT – III			
	<b>ELECTRIC ENERGY MANAGEMENT:</b> Principles of electric energy management, energy management control systems, Energy systems maintenance. Energy management in water and waste water treatment – solid waste treatment, Electricity Act, Energy Conservation Act. UNIT – IV			
	energy requirer	<b>GY AUDIT:</b> Types of energy audit, Energy management (audit) approach-understanding costs, Bench marking, Energy performance, Matching energy use to ment, Maximizing system efficiencies, Optimizing the input energy requirements, Fuel and substitution, Energy audit instruments.		

	UNIT – V ENERGY EFFICIENCY IN LIGHTING SYSTEMS: Lighting modification of existing systems, replacement of existing systems – Priorities, Definition of terms and units, Luminous efficiency, Polar curve, Calculation of illumination level, Illumination of inclined surface to beam, Luminance or brightness - Types of lamps, Types of lighting, Electric lighting fittings (luminaries), Flood lighting, White light LED and conducting Polymers, Energy conservation measures UNIT – VI ENERGY EFFICIENCY IN HEATING AND AIR CONDITIONING : Space Heating and Ventilation, Air-Conditioning (HVAC) and Water Heating: Introduction, Heating of buildings, Transfer of Heat-Space heating methods. Ventilation and air-conditioning – Insulation, Cooling
	load, Electric water heating systems, Energy conservation methods.
Text Books and reference Books:	<ol> <li>TEXT BOOKS:         <ol> <li>Energy management by W.R. Murphy &amp; G. Mckay Butter worth, Elsevier publications. 2012</li> <li>Energy efficient electric motors by John .C. Andreas, Marcel Dekker Inc Ltd-2nd edition, 1995</li> <li>General Aspects of Energy Management and Audit, National Productivity Council of India, Chennai (Course Material- National Certification Examination for Energy Management)</li> </ol> </li> <li>REFERENCES:         <ol> <li>Electric Energy Utilization and Conservation by S C Tripathy, Tata McGraw hill publishing company Ltd. New Delhi.</li> <li>Energy Management Handbook, W.C. Turner, 5th Edition, Marcel Dekker, Inc, New York, 2005.</li> <li>Guide to Energy Management, B. L. Capehart, W. C. Turner, W. J. Kennedy, CRC Press, New York, 2005.</li> </ol> </li> <li>E- Resources         <ol> <li>http://iptel.ac.in/courses</li> <li>http://iptel.ac.in/courses</li> <li>http://ifreevideolectures.com/university/iitm</li> </ol> </li> </ol>
E-Resources	1.https://nptel.ac.in/courses 2.https://freevideolectures.com/university/iitm

## 17YE4105 -NANO SCIENCE AND TECHNOLOGY (OE-1)

Course category:	Program core	Credits:	3
<b>Course Type:</b>	Practical	Lecture - Tutorial - Practical:	3-0-0
Prerequisite:	Material science, physic	Sessional Evaluation :	40
		Univ.Exam Evaluation:	60
		Total Marks:	100

Course Objectives	1. To foundational knowledge of the Nanoscience and related fields. 2.To make the students acquire an understanding the Nanoscience and Applications 3. To help them understand in broad outline of Nanoscience and Nanotechnology				
Course		Upon successful completion of the course, the students will able to:			
Outcomes	CO1	Learn about the background on Nanoscience			
	CO2	Understand the synthesis of nanomaterials and their application and the impact of nanomaterials on environment			
	CO3	Apply their learned knowledge to develop Nanomaterial's			
Course content		UNIT – 1 DUCTION, PROPERTIES AND CLASSIFICATION OF NANOMATERIALS: n of Nano Science & Technology, emergence and challenges of Nano Science and technology,			
	influence of nano over micro/macro: large surface to volume ratio and quantum confinement effects, Classifications of nanomaterials into One-dimensional, Two-dimensional and Three-dimensional structures. Size effect on thermal (thermal conductivity, thermal expansion and thermal expansion coefficient), electrical (electrical conductivity, band gap tuning), mechanical (tensile strength, micro hardness, wear resistance, and corrosion resistance), optical (photoconductivity, electroluminescence, photoluminescence) and magnetic properties (hysteresis, super paramagnetism). UNIT - II				
	<b>SYNTHESIS OF NANO MATERIALS:</b> Production of nano structures by top down and bottom up approaches, Methods of production: Ball mill, Plasma arcing, Laser ablation, Chemical vapour deposition, Spin coating, Atomic layer deposition, Sol-Gel technique.				
	UNIT – IIICHARACTERIZATION OF NANO STRUCTURES: Characterization of nano structured materials using techniques X-ray diffraction (XRD), Scanning electron microscope (SEM), Transmission electron microscope (TEM), Atomic force microscope (AFM), Elemental mapping, FTIR & UV-Visible spectrophotometer, Laser Raman spectroscopy, Nano mechanical characterization using Nano indentation, Differential scanning calorimeter (DSC), Differential Thermal Analyzer (DTA), Thermo Gravimetric Analysis (TGA), X-ray Photoelectron pectroscopy (XPS), Electro-chemcial characterization measurements. UNIT – IVCARBON NANOTUBES: Fullerences, Graphene, Carbon nanotubes(CNT), Structure and types of CNTs, Single and multi walled CNTs, Control of size, Precursors and catalysts, Doping in CNTs, Growth and properties (electronic, vibrational, mechanical and optical) of CNTs, properties of CNT and applications of CNTs.				
		UNIT – V			
	characteri Organic a sensors. E sensors, e	<b>ENSORS:</b> Introduction to sensors, Characteristics and terminology, Static and dynamic stics, Micro and nano sensors, fundamentals of sensors, packaging and characterization of sensors. and inorganic nano sensors. Gas sensors, biosensors, thermal sensors, temperature sensors, heat Electromagnetic sensors - electrical resistance sensors, electrical current sensors, electrical voltage electrical power sensors, magnetism sensors. Mechanical sensors - pressure sensors, liquid flow osition sensors, Chemical sensors, Optical and Radiation sensors.			

	<b>UNIT – VI</b> <b>NANOTECHNOLOGY APPLICATIONS:</b> Applications of Nano technology in electrical and electronic industry, textile and cosmetics, defence and space, agriculture and food technology, environment and health, medical diagnosis and drug delivery systems, energy capture and storage, computing, sports and entertainment, water treatment, structure and engineering, automotive industry. Recent breakthroughs in Nano technology.			
Text Books	TEXT BOOKS:			
and reference Books:	1. Naostructures and Nanomaterials: Synthesis, properties and applications, G. Cao, Imperical College Press, 2004.			
	<ol> <li>Applied Physics of Carbon Nanotubes : Fundamentals of Theory, Optics and Transport Devices - S. Subramony &amp; S.V. Rotkins, 2006.</li> </ol>			
	3. "A Textbook of Nanoscience and Nanotechnology", Pradeep T., Tata McGraw Hill Education Pv Ltd., 2012.			
	<b>REFERENCES:</b>			
	1. A Text Book of Nano Science and Technology : B.S.Murthy et.al., Universities press, 2012.			
	2. Nanotechnology - The Science of Small : Shah & Shah, Wiley, 2013.			
E-Resources	1.https://nptel.ac.in/courses 2.https://freevideolectures.com/university/iitm			

# **<u>17ME41P1 - METROLOGY AND INSTRUMENTATION LABORATORY</u>**

Course category:	Program core	Credits:	2
<b>Course Type:</b>	Practical	Lecture - Tutorial - Practical:	0-0-3
Prerequisite:	MMC & Metrology	Sessional Evaluation : Univ.Exam Evaluation: Total Marks:	60

Course Objectives				
Course		Upon successful completion of the course, the students will able to:		
Outcomes	CO1	Calibrate the linear dimensions of different mechanical components.		
	CO2	Calibrate the angular dimensions of different mechanical components.		
	CO3	Calibrate the errors in surface flatness and straightness.		
a	List of Experiments:			
Course content	Metrolo	ogy Lab		
	(	<ul> <li>bration of any two of the following instruments: (using slip gauges)</li> <li>(i) Calibration of Micrometer. (ii) Calibration of Mechanical Comparator.</li> <li>(iii) Calibration of Vernier Calipers (iv) Calibration of Dial Gauge.</li> </ul>		
		surement of taper angle using (i) Bevel Protractor (ii) Dial Gauge (iii) Sine-Bar (iv) Auto-Collimator.		
	<ul> <li>3. Gear testing: To find; <ul> <li>(i) diameter, pitch/module (ii)pitch circle diameter</li> <li>(iii) pressure angle (iv)tooth thickness.</li> </ul> </li> </ul>			
	<ul><li>4. Check the straightness of a surface plate</li><li>(i) Using spirit level (ii) Using Auto-collimator</li></ul>			
	5. Check the flatness of a surface plate using one of the above methods.			
	<ul> <li>6. Tool Maker's Microscope:</li> <li>i. Establish the thread details</li> <li>ii. To find the cutting tool angles.</li> </ul>			
	<ul> <li>7. Miscellaneous: <ol> <li>To find the diameter of a cylindrical piece</li> <li>Taper angle of a V-block</li> <li>Central distance of two holes of a specimen.</li> </ol> </li> </ul>			
	Instrumentation Lab			
	1. Strai	n Measurement.		
	2. Press	sure Measurement.		

	3. Temperature Measurement.			
	4. Torque Measurement.			
	5. Temperature Control.			
	6. Pressure Control.			
	7. Flow Control.			
Text Books				
and reference Books:				
E-Resources	1.https://nptel.ac.in/courses			
	2.https://freevideolectures.com/university/iitm			

#### **17ME41P2 - AUTOMATION AND ROBOTIC LABORATORY**

Course category:	Program core	Credits:	2
Course Type:	Practical	Lecture - Tutorial - Practical:	0-0-3
Prerequisite:	Robotics	Sessional Evaluation : Univ.Exam Evaluation: Total Marks:	60

Course Objectives				
Course	Upon successful completion of the course , the students will able to:			
Outcomes	CO1 Upon successful completion of the course , the students will able to:			
	CO2	Design the industrial robotic work cell		
	CO3	Define Path of the industrial robot		
	CO4 Generate Program for operation			
	CO5	Simulate Graphically & Verify the robotic work cell		
	List of Ex	xperiments:		
Course	1. DEMC	ONSTRATION & amp; ASSIGNMENT ON INTRODUCTION TO Industrial ROBOT		
content	2. Write I	PROGRAMs on creating and defining the path target THE industrial ROBOT		
	3. To per	form the Robot programming exercise for Pick and Place operation.		
	4. Study a	and selection of Gripper.		
	5. Write a	a rapid program for Linear Movements, Non Linear Movements using robostudio		
	6. Create a mechanism in Robostudio simulation software			
	7. Create a Auto path in Robostudio simulation software			
	8. Create the type of joints in Robostudio simulation software			
	9. Write the mat lab code to control the servomotor, DC Motor using microcontroller			
	10. Write a program to start and stop the DC motor using IR Sensor			
	11. Analog Sensor interfacing with PLC.			
	12. Encoder interfacing with PLC.			
	13. Stepper motor / Servo motor control using PLC			
	Software:			
	1. Robostudio			
	2. IRB 1600 Industrial Robot			
Text Books and reference Books:				
E-Resources		'nptel.ac.in/courses 'freevideolectures.com/university/iitm		

#### 17ME41P3-CAE/CAM LABORATORY

Course category:	Program core	Credits:	2
Course Type:	Practical	Lecture - Tutorial - Practical:	0-0-3
Prerequisite:	CAD/CAM	Sessional Evaluation: Univ.Exam Evaluation: Total Marks:	60

Course	1. To study	y the basics of CAD.
Objectives	2. Fluent a	pplication of engineering techniques, tools and resources.
	3. To study	y Geometric modeling and assembling of any mechanical system.
	4. To make	e appropriate selection of CAD functionality to use as tools in the design process.
Course		Upon successful completion of the course, the students will able to:
Outcomes	CO1	Apply knowledge of CAD for generation of curves.
	CO2	Generate and interpret engineering technical drawings of parts and assemblies according
		to engineering design standards.
	CO3	Demonstrate skill of modeling and assembling of any mechanical system.
	CO4	Prepare to be an effective user of a CAD/CAM system.
	List of Ex	speriments for CAD/CAE Lab
Course		
content		EA of a Simple supported beam with different loadings
		EA of a Bimetallic rod
		atic Analysis of a 2D truss
	4. St	ress distribution in a plate with circular hole
	5. He	eat transfer in a composite wall
	6. Aı	nalysis of an aluminium bracket
	7. Dy	ynamic analysis of truss.
	8. Si	mulation of simple machining operations
	9. M	odelling and simulation of a revolute joint
		reation of a manufacturing cell
		irtual production system to track real-time production activities, perform schedule
		anges, launch new programs
	Ex	periments 1 to 7 are using ABAQUS and 8-11 are using DELMIA
Text Books		
and reference		
Books:		
<b>E-Resources</b>	-	nptel.ac.in/courses
	2.https://	freevideolectures.com/university/iitm

#### NBKR INSTITUTE OF SCIENCE & TECHNOLOGY :: VIDYANAGAR (AUTONOMOUS) (AFFILIATED TO JNTUA ANANTAPURAMU) SPSR NELLORE DIST IV YEAR OF FOUR YEAR B.TECH DEGREE COURSE – II SEMESTER MECHANICAL ENGINEERING

SCHEME OF INSTRUCTION AND EVALUATION (With effect from the academic year 2017-2018)

			Instruction Hours/Week		Credits	Evaluation								
S.No	Course Code	Course Title				Sessional Test-I		Sessional Test-II		Total Sessional Marks (Max. 40)	End Semester Examination		Maximu m Total Marks	
		THEORY	L	Т	D/P		Duration In Hours	Max. Marks	Duration In Hours	Max. Marks		Duration In Hours	Max. Marks	100
1	17YE42OX	Open Elective – II	3	0	0	3	2	40	2	40	0.8*Best of two+0.2*least	3	60	100
2	17ME42EX	Core Elective – IV	3	0	0	3	2	40	2	40	of two	3	60	100
3	17ME42M O	MOOCS	0	0	0	3	-	-	-	-		-	-	100
		PRACTICALS												
4	17ME42IN	Internship	-	-	0	2	-	-	-	-		-	-	100
5	17ME42PR	Project	-	-	3	11	-	-	-	80		3	60	120
		TOTAL	06	-	03	22	-	-	-	160		-	180	520

## 17YE42OX - ENGINEERING DESIGN (OE)

Course	Program core	Credits:	3
category:			
<b>Course Type:</b>	Theory	Lecture - Tutorial - Practical:	3 -0- 0
Prerequisite:	Engineering graphics, machine	Sessional Evaluation:	40
-	drawing, DOM	Univ. Exam Evaluation:	60
		Total Marks:	100

Course Objectives		
Course		
Outcomes	CO1	The course shall give knowledge in generic concepts of design process
	CO2	The course shall develop skills to solve unstructured creativity design problem
Course content	problem life cycl Introduc collation Checklin importa Linking techniqu Consolin Method Ideation Method matrix, o	UNIT 1 tion: Example of different kinds of designs and designers, Good and bad designs, Design as, Definition of Design, engineering design and design research- their Importance. Product te, Morphology of design, Introduction to system design process, Stage models. UNIT 2 tion to Task Clarification: overall process and steps, Methods for Data collection and n including patent analysis, Methods for identification of requirements: Role Playing, sts, Solution neutral problem statements, etc. Quantifying requirements and Assigning nce to requirements UNIT 3 Customer requirements to engineering requirements: Quality Function Deployment tes. Introduction to conceptual design: Identification of functions, Ideation, Simulation and dation into solution proposals UNIT 4 s for Identification of functions such as functional decomposition techniques. Methods for a, such as Brainstorming, Synectics, etc. UNIT 5 s for consolidation into solution proposals, such as Morphological charts, Morphological etc Methods for simulation: analytical, virtual and physical simulations UNIT 6 s for improvement of solution proposals, such as contradiction analysis, various other TRIZ tes, etc, Systematic evaluation of concepts: ordinal methods and cardinal methods
Text Books and reference Books:	1.Chakr Spring	BOOKS rabarti, A (ed.). Engineering Design Synthesis: Understandign, Approaches and Tools, ger, 2002. h, K., and Eppinger, S. Product Design and Development, 4th Edition, McGraw-Hill/Irwin,

	3.Otto, K., and Wood, K. Product Design, Prentice Hall, 2000.						
	<b>REFERENCES:</b>						
	1. Pahl, G, and Beitz, W. Engineering Design: A Systematic Approach, 3 rd Ed., Springer, 20						
	2. Cross, N. Engineering Design Methods: Strategies for Product Design (4 th edition), John Wiley and Sons Ltd., Chichester, 2008.						
	3. Roozenburg, N.F.M., Eekels, J. Product Design, Fundamentals and Methods, Wiley, Chichester, 1995.						
	4. Jones, J.C. Design Methods, 2nd Edition, John Wiley and Sons Ltd., Chichester, 1992. <b>WEB RESOURCES</b>						
	1. NPTEL http://nptel.iitm.ac.in Engineering Design.						
<b>E-Resources</b>	1.https://nptel.ac.in/courses						
	2.https://freevideolectures.com/university/iitm						

#### 17YE42OX - ENTREPRENEURSHIP (OE-2)

Course category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	2 -2- 0
Prerequisite:	Industrial engineering	Sessional Evaluation : Univ.Exam Evaluation: Total Marks:	60

Course Objectives		dents develop and can systematically apply an entrepreneurial way of thinking that will allow them ify and create business opportunities that may be commercialized successfully.			
Course		Upon successful completion of the course, the students will able to:			
Outcomes	CO1	Have the ability to discern distinct entrepreneurial traits			
	CO2	Know the parameters to assess opportunities and constraints for new business ideas			
	CO3	Understand the systematic process to select and screen a business idea			
	CO4	design strategies for successful implementation of ideas			
	CO5	write a business plan			
		UNIT – I			
Course content	vs. Ma Entrepr Opporte Creatin problem New v acquisit The bu plans, organiz Financi recruitm comme Global	ction to Entrepreneurship, Definition of Entrepreneur, Entrepreneurial Traits, Entrepreneur mager, Entrepreneur vs Intrapreneur. The Entrepreneurial decision process. Role of eneurship in economic development, Ethics and Social responsibility of Entrepreneurs. unities for Entrepreneurs in India and abroad. Woman as Entrepreneur. <b>UNIT – II</b> g and Starting the Venture, Sources of new Ideas, Methods of generating ideas, creating n solving, product planning and development process. renture expansion strategies and issues, Features and evaluation of joint ventures, tions, merges, franchising. Public issues, rights issues, bonus issue sand stock splits. <b>UNIT – III</b> siness plan nature and scope of business plan, writing business plan, evaluating business using and implementing business plans. Marketing plan, financial plan and the ational plan, launching formalities <b>UNIT – IV</b> ng and managing the new venture, Sources of capital, venture capital, Record keeping, nent, motivating and leading teams, financial controls. Marketing and sales controls. E- rce and Entrepreneurship, Internet advertising. aspects of Entrepreneurship. <b>UNIT – V</b>			
	Production and marketing management, thrust of production management, selection of production techniques, plant utilization and maintenance, designing the work place, material handling and quality control.				
		UNIT – VI			
		ting functions, market segmentation, market research and channels of distribution, sales ion and product pricing.			

	TEXT BOOKS:			
Text Books	<ol> <li>Entrepreneurship : Robert Hisrich, &amp; Michael Peters, 5th ed., TMH., 1986</li> <li>Entrepreneurship : Dollinger, Pearson, 4th ed., 2004.</li> </ol>			
and reference	<b>REFERENCES:</b>			
Books:	1. Dynamics of Entrepreneurial Development and Management, Vasant, 2009.			
	2. Harvard Business Review on Entrepreneurship. HBR Paper Back, 1999.			
	3. Entrepreneurial Management, Robert J.Calvin, TMH, 2004.			
	4. Essential of Entrepreneurship and small business management, Thomas W. Zimmerer &			
	Norman M. Scarborough, 4 th ed., PHI, 2005			
	5. Industrial Relations & Labour Laws, Srivastava, Vikas, 2005.			
<b>E-Resources</b>	1.https://nptel.ac.in/courses			
	2.https://freevideolectures.com/university/iitm			

# IOT(OE-1)

Course category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3-0 - 0
Prerequisite:	Basic computers, C	Sessional Evaluation :	40
		Univ.Exam Evaluation: Total Marks:	60 100

Course	1.To ass	ess the vision and introduction of IoT.				
Objectives		derstand IoT Market perspective.				
		plement Data and Knowledge Management and use of Devices in IoT Technology.				
		derstand State of the Art - IoT Architecture. ssify Real World IoT Design Constraints, Industrial Automation in IoT.				
Course	J. 10 Cla	Upon successful completion of the course , the students will able to:				
Outcomes	opon successful completion of the course , the students will able to.					
outcomes	CO1	Interpret the vision of IoT from a global context.				
	CO2	Determine the Market perspective of IoT.				
	CO3	Compare and Contrast the use of Devices, Gateways and Data Management in IoT				
	CO4	Implement state of the art architecture in IoT.				
	CO5	CO5 Illustrate the application of IoT in Industrial Automation and identify Real World Design Constraints.				
		UNIT – I				
Course content	<b>INTRODUCTION &amp; CONCEPTS:</b> Introduction to Internet of Things, Physical Design of IOT, Logical Design of IOT, IOT Enabling Technologies, IOT Levels.					
	UNIT – II					
	<b>DOMAIN SPECIFIC IOTs:</b> Home automation, cities, environment, energy, retail, logistics, agriculture, industry, health & life style.					
	UNIT – III					
<b>M2M:</b> M2M, Difference between IOT and M2M, SDN and NFV for IOT, sof networking, network function virtualization, need for IOT systems management, simanagement protocol, limitations of SNMP, and network operator requirements.						
	UNIT – IV					
<b>CLOUD COMPUTING BASICS:</b> Cloud computing basics, terminology, character cloud deployment – public, private environments, secure communication, cloud secu						
	UNIT – V					
	<b>DEVELOPING INTERNET OF THINGS &amp; LOGICAL DESIGN USING PYTHON:</b> Introduction, IOT design methodology, installing python, python data types & data structures, control flow, functions, modules, packages, file handling, date/ time operations, classes, python packages.					

	UNIT-VI
	<b>IOT PHYSICAL DEVICES &amp; ENDPOINTS:</b> What is an IOT Device, exemplary device, board, Linux on raspberry pi, interfaces, and programming & IOT devices.
Text Books and reference Books:	<ul> <li>TEXT BOOKS:</li> <li>1. Internet of Things A Hands-On- Approach : Vijay Madisetti, Arshdeep Bagha, 2014,</li> <li>REFERENCES:</li> <li>1. Designing the Internet of Things : Adrian McEwen, Wiley Publishers, 2013.</li> <li>2. The Silent Intelligence - The Internet of Things : Daniel Kellmereit, 2013.</li> </ul>
E-Resources	1.https://nptel.ac.in/courses 2.https://freevideolectures.com/university/iitm

#### 17CS42O3 – WEB DESIGN AND MANAGEMENT(OE)

Course category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3-0-0
Prerequisite:	С	Sessional Evaluation :	40
		Univ. Exam Evaluation:	60
		Total Marks:	100

Course Objectives Course	develop Will be Will de able to	Will gain the skills and project-based experience needed for entry into web design and development careers.         Will be able to use a variety of strategies and tools to create websites.         Will develop awareness and appreciation of the many ways that people access the web, and will be able to create standards-based websites that can be accessed by the full spectrum of web access technologies.         Upon successful completion of the course , the students will able to:			
Outcomes	CO1	Designing and Planning Web Pages			
	CO2	Creating Web Pages with HTML			
	CO3	Formatting Web Pages with Style Sheets, Graphics			
	CO4	Overall Site Design and Management			
	CO5	Introduction to Web Authoring Software			
	CO6	Culminating Project(s)			
		UNIT-I			
Course content	Internet Overview: Basics of Internet, Addresses and Names for the Internet, Web Objects, Sites, E-Mail, World Wide Web, File Transfer. Introduction To Web Technologies: Web pages-types and issues, tiers, the concept of a tier, pages, static web pages. UNIT-II SITE ORGANIZATION AND NAVIGATION (8 hours): User centred design – Web med. Web design process –Introduction to software used for web design – DOBE IMAGE REA DREAM WEAVER, FLASH etc. – Evaluating process – Site types and architectures – Navig theory – Basic navigation practices –Search – Sitemaps. UNIT-III ELEMENTS OF PAGE DESIGN (7 hours): Browser compatible design issues – Pages Layout – Templates – Text – Color –Images – Graphics and Multimedia – GUI Widgets and F – Web Design patterns – STATIC pages: Slice – URL in ADOBE IMAGEREADY. Creation Editing of sitemap – layer, tables, frameset - CSS style – Forms –tools like insert, rollover et DREAMWEAVER SCRIPTING LANGUAGES AND ANIMATION USING FLASH (10 hc Client side scripting - XHTML – DHTML – JavaScript – XML Server side scripting: Perl –PI ASP / JSP Designing a Simple web application - Introduction to MACROMEDIA FLA importing other file formats to Flash – saving and exporting Flash files, Frame by frame anim – Motion Tweening – Shape Tweening Motion Tweening – Shape Tweening				

	<u>UNIT-VI</u> CASE STUDY (7 Hours): Testing, Launch and Handover – Maintenance – Review and Evaluation – Case Study:- Using the skills and concepts learnt with the ADOBE IMAGEREADY, DREAMWEAVER, FLASH, and scripts.
Text Books and reference Books:	<ol> <li>Text Books:         <ol> <li>Thomas A. Powell, "The Complete Reference – Web Design", Tata McGraw Hill, Third Edition, 2003.</li> <li>Ashley Friedlein, "Web Project Management", Morgan Kaufmann Publishers, 2001.</li> <li>H.M.Deitel, P.J.Deitel, A.B.Goldberg, "Internet and World Wide Web– How to Program", Third Edition, Pearson Education 2004.</li> </ol> </li> <li>Reference Books:         <ol> <li>Van Duyne, Landay, and Hong"The Design of Sites: Patterns for creating winning websites", 2nd Edition, Prentice Hall, 2006.</li> <li>Lynch, Horton and Rosenfeld, "Web Style Guide: Basic Design Principles for Creating Web Sites", 2nd Edition, Yale University Press, 2002.</li> <li>Photoshop7 Bible Professional Edition, Wiley John &amp; Son INC, New York, DekeMc Cleland, 2000.</li> <li>Flash Web Design, The Art of Motion Graph, Curtis Hillman, New Riders Publishing, Indianapolis, IN.U.S.A, 2000</li> </ol> </li> </ol>
E-Resources	1.https://nptel.ac.in/courses         2.https://freevideolectures.com/university/iitm

## **17ME42E1 - AUTOMOBILE ENGINEERING**

Course	Program elective	Credits:	3
category:			
<b>Course Type:</b>	Theory	Lecture - Tutorial - Practical:	3 - 0- 0
Prerequisite:	BMP, FM	Sessional Evaluation :	40
		Univ.Exam Evaluation:	60
		Total Marks:	100

Course	Stuc	dents undergoing this course are expected to learn		
Objectives		1. The anatomy of the automobile.		
Ū		2. The location and importance of each part.		
		3. The functioning of the engine and its accessories, gear box, clutch, brakes, steering,		
		axles and wheels.		
		4. Concepts of modern automobile controls		
	:	5. The functioning of all major components of the modern automobile.		
Course	<b>urse</b> Upon successful completion of the course , the students will able to:			
Outcomes	CO1	Demonstrate the vehicle construction, chassis, lubrication system and cooling system in		
	COI	automobile, 3-way catalytic converter		
	CO2	Describe the principle and working of Carburettors, CRDI, MPFI, electronic fuel		
	02	injection system and Ignition system.		
	CO3			
	COS	Differentiate between clutch, gear box, rear axle drives, fluid flywheel, and torque		
	<u> </u>			
	CO4	Identify the wheels, tyres, steering gear box, suspension system-telescopic, and leaf		
	<u> </u>	spring		
	CO5	Appraise the recent trends in alternate fuels and automobile safety system.		
	CO6	Develop a strong base for understanding future developments in the automobile industry		
		UNIT – I		
Course	AUTOMOBILES: Classification, components - Chassis and Body, Power transmission system. Cylinder			
content	liners –	liners – Dry and Wet type. Functions and characteristics of Pistons, Types of heads.		
	UNIT – II EUEL SYSTEM COMPONENTS: Evel teal, fuel filer, fuel summer sin elegener/filter, earburgters, Simple			
	<b>FUEL SYSTEM COMPONENTS:</b> Fuel tank, fuel filter, fuel pump, air cleaner/filter, carburetors – Simple,			
	SU, Direct Injection of Petrol Engines, Compression ignition engines – fuel injection system – air & solid injection system. Pressure charging – Super charging and Turbo charging.			
	UNIT – III			
	<b>IGNITION SYSTEMS:</b> Components, battery ignition system, Magneto-ignition system, Electronic ignition			
	system, Laser ignition system.			
	LUBRICATING SYSTEMS: Functions and properties of lubricants, methods of lubrication – splash type,			
	pressure type, wet and dry sump and mist lubrication.			
	UNIT – IV			
	<b>COOLING SYSTEMS:</b> Characteristics of an effective cooling system, air cooling and water cooling, oil cooling, radiator, thermostat			
	cooling, radiator, thermostat. <b>TRANSMISSION:</b> Gear boxes - sliding type, constant and synchromesh, Automatic Transmission and			
		tial, Propeller shaft, Functions of clutches.		
	Differen	tual, i topener shart, i unctions of clutches.		

	UNIT – V
	SUSPENSION SYSTEMS: Types of spring shock absorbers, Front axle - rigid and independent
	suspension systems, Rear axle – Semi, three-fourth and full floating systems.
	STEERING SYSTEM: Functions of steering, steering linkage, wheel alignment - caster, camber, tow-in
	and toe-out, Power steering.
	UNIT – VI
	BRAKES: Mechanical, hydraulic, vacuum & air brake systems, arrangement of brake shoes.
	ELECTRIC VEHICLES: Limitations of IC Engine as prime mover, EV system, basic structure of EV, EV
	drive train advantages and disadvantages.
	HYBRID VEHICLES: Configurations of hybrid vehicles, advantages and limitations.
	TEXT BOOKS:
	1. Automotive Mechanics, Srinivasan. S, 2 nd Edition, Tata McGraw-Hill, 2003
	2. Automobile Engineering, Kirpal Singh, Vol. 1 and Vol. 2, Standard Publishers, New Delhi, 2003.
	3. Automobile Engineering, R.K. Rajput, Standard Publishers Distributors, 2004
Text Books	5. Automobile Engineering, R.R. Rajput, Standard I donishers Distributors, 2004
and reference	REFERENCES:
Books:	1. Automotive Mechanism, Crouse and Anglin, 9 th Edition. Tata McGraw-Hill, 2003.
	<ol> <li>A Systems Approach to Automotive Technology, Jack Erjavec, Cengage Learning Pub., 2009</li> </ol>
	3. Internal Combustion Engine Fundamentals, J.B. Heywood, McGraw Hill Co.1988
	5. Internal Combustion Engine Fundamentals, J.D. Treywood, Weoraw Tim Co.1766
E-Resources	1.https://nptel.ac.in/courses
	2.https://freevideolectures.com/university/iitm

#### 17ME42E2 - PRODUCT DESIGN

Course	Program elective	Credits:	3
category:			
<b>Course Type:</b>	Theory	Lecture - Tutorial - Practical:	3-0-0
Prerequisite:	Industrial engineering, machine	Sessional Evaluation:	40
-	design	Univ.Exam Evaluation:	60
		Total Marks:	100

Course Objectives				
Course		Upon successful completion of the course , the students will able to:		
Outcomes	CO1	Identify and analyse the product design and development processes in organization		
	CO2	Define the components and their functions of product design and development processes and their relationships from concept to customer over whole product lifecycle.		
	CO3	Analyse, evaluate and apply the methodologies for product design, development and management.		
	CO4	Undertake a methodical approach to the management of product development to satisfy customer needs.		
	CO5	Ability to map multiple, interdisciplinary tasks in order to develop product		
	CO6	Carry out cost and benefit analysis through various cost models.		
		UNIT – I		
	<b>INTRODUCTION:</b> Characteristics of successful product development, Design and development of products, duration and cost of product development, the challenges of product development. <b>DEVELOPMENT PROCESSES AND ORGANIZATIONS:</b> A generic development process, concept development: the front-end process, adopting the generic product development process, the AMF development process, product development organizations, the AMF organization.			
	UNIT – II			
	<b>PRODUCT PLANNING:</b> The product planning process, identify opportunities. Evaluate and prioritize projects, allocate resources and plan timing, complete pre project planning, reflect all the results and the process.			
Course content	<b>IDENTIFYING CUSTOMER NEEDS:</b> Gather raw data from customers, interpret raw data in terms of customer needs, organize the needs into a hierarchy, establish the relative importance of the needs and reflect on the results and the process.			
	UNIT – III			
	<b>PRODUCT SPECIFICATIONS:</b> What are specifications, when are specifications established, establishing target specifications, setting the final specifications.			
	<ul> <li>CONCEPT GENERATION: The activity of concept generation, clarify the problem, search externally, search internally, explore systematically, reflect on the results and the process.</li> <li>CONCEPT SELECTION: Overview of methodology, concept screening, and concept scoring.</li> </ul>			
	<b>CONCEPT SELECTION:</b> Overview of methodology, concept screening, and concept scoring. <b>CONCEPT TESTING:</b> Define the purpose of concept test, choose a survey population, choose a survey			
	format, communicate the concept, measure customer response, interpret the result, reflect on the results and			
	the process.			
	UNIT – IV			
	<b>PRODUCT ARCHITECTURE</b> : What is product architecture, implications of the architecture, establishing			
	the architecture, variety and supply chain considerations, platform planning, related system level design			
	issues.			
	<b>INDUSTRIAL DESIGN:</b> Assessing the need for industrial design, the impact of industrial design, industrial design process, managing the industrial design process, assessing the quality of industrial design. UNIT - V			
	<b>DESIGN FOR MANUFACTURING:</b> Definition, estimation of manufacturing cost, reducing the cost of components, assembly, supporting production, impact of DFM on other factors.			

	<ul> <li>PROTOTYPING: Prototyping basics, principles of prototyping, technologies planning for prototypes. UNIT – VI</li> <li>PRODUCT DEVELOPMENT ECONOMICS: Elements of economic analysis, base case financial mode. Sensitive analysis, project trade-offs, influence of qualitative factors on project success, qualitative analysis.</li> <li>MANAGING PROJECTS: Understanding and representing task, baseline project planning, accelerating projects, project execution, postmortem project evaluation.</li> </ul>
Text Books and reference Books:	<ul> <li>TEXT BOOKS:</li> <li>1. Product Design and Development : Karl.T.Ulrich, Steven D Eppinger, Irwin McGrawHill, 2000.</li> <li>2. Product Design and Manufacturing : A C Chitale and R C Gupta, PHI, 2011</li> <li>REFERENCES:</li> <li>1. New Product Development : Timjones. Butterworth Heinmann, Oxford. UCI. 1997</li> <li>2. Product Design for Manufacture and Assembly : Geoffery Boothroyd, Peter Dewhurst and Winston Knight, 2001.</li> </ul>
E-Resources	1.https://nptel.ac.in/courses 2.https://freevideolectures.com/university/iitm

## **17ME42E3 - SUPPLY CHAIN MANAGEMENT**

Course category:	Program elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3-0-0
Prerequisite:	Industrial ingineering	Sessional Evaluation : Univ.Exam Evaluation:	60
		Total Marks:	100

Course	The objectives of this course are to provide the student with:			
Objectives	5	nderstanding of the primary differences between logistics and supply chain management		
0		inderstanding of the individual processes of supply chain management and their		
	interrelationships within individual companies and across the supply chain			
		inderstanding of the management components of supply chain management		
		nderstanding of the tools and techniques useful in implementing supply chain management		
	5. Knowledge about the professional opportunities in supply chain management.			
Course		Upon successful completion of the course , the students will able to:		
Outcomes	CO1	Understand fundamental supply chain management concepts		
	CO2	Demonstrate an ability to engage in critical thinking by analyzing situations and constructing and selecting viable solutions to solve problems.		
	CO3	Analyze the creation of new value in the supply chain for customers, society and the environment		
	CO4	Understand the foundational role of logistics as it relates to transportation and warehousing		
	CO5	Apply knowledge to evaluate and manage an effective supply chain		
	CO6	Analyze and improve supply chain processes		
	UNIT – I			
	supply	<b>FEGIC FRAMEWORK:</b> Introduction to supply chain management, decision phases in a chain, process views of a supply chain: push/pull and cycle views, achieving strategic fit, ing strategic scope.		
	UNIT – II			
Course	<b>SUPPLY CHAIN DRIVERS AND METRICS:</b> Drivers of supply chain performance, framework for structuring drivers, obstacles to achieving strategic fit.			
content	UNIT – III			
	design	<b>NING SUPPLY CHAIN NETWORK:</b> Factors influencing distribution network design, options for a distribution network, E-business and distribution network, framework for a design decisions, models for facility location and capacity allocation.		

	UNIT – IV			
	<b>FORECASTING IN SUPPLY CHAIN:</b> Role of forecasting in a supply chain, components of a forecast and forecasting methods, risk management in forecasting.			
	UNIT – V			
	AGGREGATE PLANNING AND INVENTORIES IN SUPPLY CHAIN: Aggregate planning problem in supply chain, aggregate planning strategies, planning supply and demand in a supply chain, managing uncertainty in a supply chain: safety inventory.			
	UNIT – VI			
	<b>COORDINATION IN SUPPLY CHAIN:</b> Modes of transportation and their performant characteristics, supply chain IT framework, coordination in a supply chain and bullwhip effect.			
	TEXT BOOKS:			
Text Books and reference Books:	<ol> <li>Sunil Chopra and Peter Meindl, Supply Chain Management - Strategy, Planning and Operation, 6th Edition, Pearson Education Asia, 2016.</li> <li>David Simchi-Levi, PhilpKamintry &amp; Edith Simchy Levy, Designing and Managing the Supply Chain-Concepts Strategies and Case Studies, 2nd Edition, Tata-McGraw Hill, 2000.</li> </ol>			
	<b>REFERENCES:</b>			
	<ol> <li>David Burt, Donald Dobler, Stephen Starling, World Class Supply Management: The Key to Supply Chain Management, McGraw Hill Education; 7th edition, 2017.</li> <li>James stevens, Supply Chain Management: Strategy, Operation &amp; Planning for Logistics Management, Create space Independent Publishers, 2016.</li> </ol>			
E-Resources	1.https://nptel.ac.in/courses 2.https://freevideolectures.com/university/iitm			

#### **17ME42E4 - TOTAL QUALITY MANAGEMENT**

Course category:	Program elective	Credits:	3
<b>Course Type:</b>	Theory	Lecture - Tutorial - Practical:	3 - 0 - 0
Prerequisite:	industrial engineering and management, metrology.	Sessional Evaluation : Univ.Exam Evaluation: Total Marks:	60

Course Objectives	<ol> <li>To provide students' knowledge about basic concepts of Quality and to describe it in its broader perspective</li> <li>To provide a forum for discussion on quality, and to provide an exposure and discussion on</li> </ol>			
-				
	<ul> <li>quality issues.</li> <li>3. To analyze some existing methods and techniques of quality management within discussion on quality issues.</li> </ul>			
Course		Upon successful completion of the course , the students will able to:		
Outcomes	CO1	CO1 Evaluate the principles of quality management and to explain how these principles can be applied within quality management systems		
	CO2	Identify the key aspects of the quality improvement cycle and to select and use appropriate tools and techniques for controlling, improving and measuring quality		
	CO3	Critically appraise the organizational, communication and teamwork requirements for effective quality management		
	CO4	Critically analyze the strategic issues in quality management, including current issues and developments, and to devise and evaluate quality implementation plans		
	CO5	Understand the structure and functions of quality council in order to drive TQM implementation		
	CO6	Efficiently designing the effective performance measurement system		
	UNIT – I			
	<b>TQM:</b> overview , concepts, elements – History, Quality management philosophies Juran, Deming, Crosby, Feigenbaum, Ishikawa – Stages of evolution, continuous improvement, objectives, internal and external customers.			
		UNIT – II		
Course content	<b>PROCESS MANAGEMENT:</b> Quality measurement systems (QMS) – developing and implementing QMS, nonconformance database, TQM tools & techniques, 7 QC tools, 7 New QC tools.			
		UNIT – III		
	<b>PROBLEM SOLVING TECHNIQUES:</b> Problem solving process, corrective action, order of precedence, system failure analysis approach, flow chart, fault tree analysis, failure mode assessment and assignment matrix, organizing failure mode analysis and pedigree analysis.			

	<b>UNIT –IV</b> <b>QUALITY CIRCLES:</b> Organization, Focus Team approach – Ishikawa diagram, Quality Function Deployment (QFD), Elements of QFD, Bench Marking – Types, Advantages & limitations of Benchmarking.
	UNIT – V TAGUCHI METHOD: Taguchi Analysis, Loss Function, Taguchi Design of Experiments, Deming Cycle.
	UNIT – VI QUALITY STANDARDS: Need of standardization, Institutions, Bodies of Standardization, ISO 9000 Series, ISO 14000 Series, other contemporary standards. Six Sigma Approach – Application of Six Sigma approach to various industrial situations.
Text Books and reference Books:	<b>TEXT BOOKS:</b> 1. Total Quality Management: Joseph & Susan Berk, Sterling Publishers, 1994.2. Total Quality Management: Besterfield, 3 rd Edition, Pearson Education India, 2003.
	<b>REFERENCES:</b> 1. Quality Management Systems - A Practical Guide : Howard S Gitlow, CRC Press, 2000.2. Managing for Quality & Performance Excellence : James R. Evans. 9 th ed., 2013.3. Quality management: Kanishka Bedi, Oxford Univ. Press, India, 2006.4. Total Quality Management: B.Senthil Arasu and J. Praveen Paul, 2 nd ed., Scitech, 2007.
E-Resources	1.https://nptel.ac.in/courses 2.https://freevideolectures.com/university/iitm

#### <u> 17ME42IN – INTERNSHIP</u>

Course	Program elective	Credits:	2
category:			
<b>Course Type:</b>	Theory	Lecture - Tutorial - Practical:	0-0-0
Prerequisite:		Sessional Evaluation :	-
		Univ.Exam Evaluation:	100
		Total Marks:	100

Course Objectives		
Course		Upon successful completion of the course, the students will able to:
Outcomes	CO1	Experience of applying existing engineering knowledge in similar or new situations
	CO2	Ability to identify when new engineering knowledge is required, and apply it
	CO3	Ability to integrate existing and new technical knowledge for industrial application
	CO4	Ability to demonstrate the impact of the internship on their learning and professional development through mapping to relevant Stage
	CO5	Understanding of lifelong learning processes through critical reflection of internship experiences.
Course content		
Text Books and reference Books:		
<b>E-Resources</b>		

#### **<u>17ME42PR – PROJECT</u>**

Course	Program elective	Credits:	11
category:			
<b>Course Type:</b>	Theory	Lecture - Tutorial - Practical:	3-0-0
Prerequisite:	Engineering and sciences knowledge	Sessional Evaluation : Univ.Exam Evaluation: Total Marks:	60

Course Objectives		
Course		Upon successful completion of the course, the students will able to:
Outcomes	CO1	Demonstrate a sound technical knowledge of their selected project topic
	CO2	Undertake problem identification, formulation and solution
	CO3	Design engineering solutions to complex problems utilising a systems approach
	CO4	Conduct an engineering project
	CO5	Communicate with engineers and the community at large in written an oral forms.
	CO6	Demonstrate the knowledge, skills and attitudes of a professional engineer.
Course content		
Text Books and reference Books:		
<b>E-Resources</b>		