
N.B.K.R. INSTITUTE OF SCIENCE & TECHNOLOGY (AUTONOMOUS)

COLLEGE WITH POTENTIAL FOR EXCELLENCE (CPE) Affiliated to JNTUA, Anantapuramu Re-Accredited by NAAC with 'A' Grade B.Tech. Courses Accredited by NBA under TIER-I

SYLLABUS B.TECH. DEGREE COURSE

I B.TECH I & II Semesters

ELECTRONICS AND COMMUNICATION ENGINEERING

(With effect from the batch admitted in the academic year 2017-2018)

VIDYANAGAR - 524413 SPSR Nellore-Dist. Andhra Pradesh www.nbkrist.org

INSTITUTE:

Vision:

To emerge as a comprehensive Institute that provides quality technical education and research thereby building up a precious human resource for the industry and society.

Mission:

- 1. To provide a learner-centered environment that challenges individuals to actively participate in the education process.
- 2. To empower the faculty to excel in teaching while engaging in research, creativity and public service.
- 3. To develop effective learning skills enabling students pick up critical thinking thus crafting them professionally fit and ethically strong.
- 4. To reach out industries, schools and public agencies to partner and share human and academic resources.

VISION AND MISSION OF THE DEPARTMENT

Vision:

To develop high quality engineers with sound technical knowledge, skills, ethics and morals in order to meet the global technological and industrial requirements in the area of Electronics and Communication Engineering.

Mission:

- 1. To produce high quality graduates and post-graduates of Electronics and Communication Engineering with modern technical knowledge, professional skills and good attitudes in order to meet industry and society demands.
- 2. To develop graduates with an ability to work productively in a team with professional ethics and social responsibility.
- 3. To develop highly employable graduates and post graduates who can meet industrial requirements and bring innovations.
- 4. Moulding the students with foundation knowledge and skills to enable them to take up postgraduate programmes and research programmes at the premier institutes.

Programme Educational Objectives (PEOs):

- 1. To provide the students with strong fundamental and advanced knowledge in mathematics, Science and Engineering with respect to Electronics and Communication Engineering discipline with an emphasis to solve Engineering problems.
- 2. To prepare the students through well designed curriculum to excel in bachelor degree programme in Electronics and Communication Engineering in order to engage in teaching or industrial or any technical profession and to pursue higher studies.

- **3.** To train students with intensive and extensive engineering knowledge and skill so as to understand, analyze, design and create novel products and solutions in the field of Electronics and Communication Engineering.
- **4.** To inculcate in students the professional and ethical attitude, effective communication skills, team spirit, multidisciplinary approach and ability to relate engineering issues to broader social context.
- **5.** To provide students with an excellent academic environment to promote leadership qualities, character molding and lifelong learning as required for a successful professional career.

Program Outcomes (POs):

- **PO1:** Ability to acquire and apply knowledge of science and engineering fundamentals in problem solving.
- **PO2:** Acquire in-depth technical competence in a specific information technology discipline.
- **PO3:** Ability to undertake problem identification, formulation and providing optimum solution.
- **PO4:** Ability to utilize systems approach to design and evaluate operational performance.
- **PO5:** Understanding of the principles of inter-disciplinary domains for sustainable development.
- **PO6:** Understanding of professional & ethical responsibilities and commitment to them.
- **PO7:** Ability to communicate effectively, not only with engineers but also with the community at large.
- **PO8**: Ability to Communicate effectively on complex engineering activities with the engineering community and with society at large.
- **PO9**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO11**: Understanding of the social, cultural, global and environmental responsibilities as a professional engineer.
- **PO12**: Recognizing the need to undertake life-long learning, and possess/acquire the capacity to do so.

NBKR INSTITUTE OF SCIENCE & TECHNOLOGY: VIDYANAGAR (AUTONOMOUS) (AFFILIATED TO JNTU ANANTAPUR: ANANTHAPURAMU) SPSR NELLORE DIST I YEAR OF FOUR YEAR B.TECH DEGREE COURSE – I SEMESTER ELECTRONICS AND COMMUNICATION ENGINEERING SCHEME OF INSTRUCTION AND EVALUATION (With effect from the academic year 2017-2018) (For the batch admitted in the academic year 2017-2018)

				Instruction Hours/Week			Evaluation							
S.No	Course Code	Course Title				Credits	Session Test-		Session Test-		Total Sessional Marks (Max. 40)	End Seme Examina		Maximum Total Marks
	[THEORY	L	т	D/P		Duration In Hours	Max. Marks	Duration In Hours	Max. Marks		Duration In Hours	Max. Marks	100
1	17SH1101	Functional English**	3	-	-	3	2	40	2	40	ſ	3	60	100
2	17SH1103	Numerical Analysis**	3	1	-	3	2	40	2	40		3	60	100
3	17SH1102	Engineering Physics**	3	-	-	3	2	40	2	40	0.8*Best of two+0.2*least of two	3	60	100
4	17CS1104	Basic Computer Engineering**	3		-	3	2	40	2	40		3	60	100
5	17EE1101	Basic Electrical Sciences**	3	2	-	4	2	40	2	40	l r	3	60	100
	PRACTICALS			·	·	·	·	·	·	·	۲۲	·	·	
6	17ME1103	Computer Aided Engineering Drawing**	-	-	6	3	-	-	-	40		3	60	100
7	17SH11P1	English Language Lab**	-	-	3	2	-	-	-	40	Day to Day Evaluation	3	60	100
8	17SH11P2	Engineering Physics Lab**	-	-	3	2	-	-	-	40	and a test (40 Marks)	3	60	100
9	17CS11P1	Basic Computer Engineering Lab**	-	-	2	1	-	-	-	40		3	60	100
-		TOTAL	15	03	14	24	-	-	-	360	<u> </u> r	-	540	900

**Common to ECE, EEE, CSE, IT

17SH1101- FUNCTIONAL ENGLISH

(Common to all Branches)

Course Category:	Basic Sciences	Credits:	3
Course Type:	Theory	Lecture-Tutorial-Practical:	3-0-0
Pre-requisite:	Basic Level of LSRW skills	Sessional Evaluation: External Exam Evaluation: Total Marks:	60

	Studen	its undergoing this course are expected:				
Course Objectives	3.	To develop their basic communication skills in English To achieve specific linguistic and communicative competence To acquire relevant skills and function efficiently in a realistic working context To inculcate the habit of reading				
	On suc	ccessful completion of this course students will be able to:				
	CO1	Correct the error of the sentence; improve language proficiency and face competitive exams; GATE, GRE, TOEFL, GMAT etc				
Course	CO2	Comprehend the advanced level of reading comprehensions				
Outcomes	CO3	Write clear and coherent passages for social and professional contexts				
	CO4	Write proposals, business letters				
	CO5	Acquire considerable flair in using broad range of vocabulary.				
	CO6	Drafting Speech-building critical thinking				
		Unit –I				
Course Content	GRAMMAR : Parts of Speech & Subject- Verb Agreement WRITING-PARAGRAPH WRITING: Expressions of ideas, concepts etc., in unambiguous grammatically acceptable and logically coherent manner (in general items); In particular skills in sentence construction emphasizing on function of word and Basic sentence patterns- (framing sentences leading to effective paragraph)					
Content	Unit-II					
	READ and Re	MAR: Pronoun - Agreement & Usage, Articles: Kinds & Omission of Article DING: Different Reading Strategies: Skimming, Scanning, Inferring, Predicting esponding to content –Guessing from Context and Vocabulary Extension. TNG: Letter writing - Formal and Informal Writing				

	Unit-III					
	GRAMMAR: Tenses, Conditional Sentences, Non-Finite Verbs: Kinds of Non-Finite: Infinitives, Gerund & Participle. WRITING: Dialogue writing: Communicating and presenting ideas effectively and coherently, Exchanging conversation in a group or between two persons directed towards a particular subject.					
	Unit-IV					
	GRAMMAR: Prepositions: Kinds, Position, Adverb usage, Question tags & Transformation of sentences-Degrees of comparison Writing: Telephonic conversations and Etiquettes					
	Unit-V					
	GRAMMAR: Transformation of sentences- Direct- Indirect Speech, Active- Passive Voice & Modifiers WRITING: Story Writing					
	Unit –VI					
	GRAMMAR: Simple, Complex, Compound Sentences - Parallelism WRITING: Drafting of Public Speech: Ideas / Content Generation, Structure					
	REFERENCE BOOKS:					
Textbooks & Reference books	 Essential English Grammar: Raymond Murphy, Cambridge University Press Advanced Grammar in Use: Martin Hewings, Cambridge University Press High School English Grammar: Wren and Martin, S Chand Publications Effective Technical Communication: Ashraf Rizvi, Tata Mc Graw Hill Publication 					

17SH1103-NUMERICAL ANALYSIS

(Common to all Branches)

Course Category:	Basic Sciences	Credits:	3
Course Type:	Theory	Lecture-Tutorial-Practical:	3-1-0
Pre – requisite:	Intermediate Mathematics	Sessional Evaluation:	40
		External Evaluation:	60
		Total Marks:	100

	Stu	idents undergoing this course are expected to understand:			
Course Objectives	e Bisection, False Position, Iteration and Newton-Raphson Methods. e basic concepts of numerical solutions of simultaneous linear and non-linear algebraic uations. e concepts of Interpolation. e concepts of Numerical Differentiation and Integration. e numerical methods to solve Ordinary Differential Equations by using Taylor's series ethod, Picard's method, Euler's and Modified Euler's Methods and Runge-Kutta ethods of 2 nd and 4 th order. e concepts of Curve Fitting and Regression Analysis.				
	After o	completing the course the student will be able to			
	CO1	Acquire knowledge in solving algebraic and transcendental equations by using the appropriate numerical methods.			
Course Outcomes	CO2	Develop skills in analyzing the simultaneous linear and non-linear algebraic equations by various numerical methods.			
	CO3	Attains skills in analyzing the methods of interpolating the given data.			
	CO4	Acquire knowledge in Numerical Differentiation by Newton's formula and Numerical Integration by Trapezoidal, Simpson's 1/3 and Simpson's 3/8 rules.			
	CO5	Apply appropriate numerical methods to solve Ordinary Differential Equations.			
	CO6	Develop skills in designing mathematical models for fitting geometrical curves to the given data and also acquire knowledge in Regression Analysis.			
Course Content	UNIT – I SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS: Bisection - False position- Iteration - Newton-Raphson Methods. UNIT - II SOLUTION OF SIMULTANEOUS LINEAR AND NON-LINEAR ALGEBRAIC EQUATIONS: Gauss Jordon method - Gauss Elimination with Pivotal condensation method - Triangular Factorization method - Gauss-Seidal method - Newton-Raphson method.				

	UNIT – III				
	INTERPOLATION: Newton's forward and backward interpolation formula - Lagrange's interpolation - Gauss forward and backward formulae - Stirling's formula.				
	UNIT – IV				
	NUMERICAL DIFFERENTIATION AND INTEGRATION: First and Second Order Derivatives at given points by Newton's formula. Trapezoidal rule - Simpson's 1/3 rule and Simpson's 3/8 rule.				
	$\mathbf{UNIT} - \mathbf{V}$				
	NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS: Solution				
	by Taylor's Series - Picard's Method of Successive Approximations - Euler's and Modified Euler's Methods - Runge-Kutta Method of 2 nd order and 4 th order.				
	UNIT - VI				
	CURVE FITTING: Introduction - Method of least squares - Linear and Non-linear equations. Correlation coefficient - Lines of regression - Rank correlation coefficient (Spearman's Rank-Correlation).				
	TEXTBOOKS:				
	1. Higher Engineering Mathematics - B.S. Grewal, Kanna Publishers, New Delhi.				
	2. Mathematical Methods - Dr.T.K.V. Iyengar, Dr.B. Krishna Gandhi, S.Ranganatham, Dr.M.V.S.S.N. Prasad, S. Chand Publication, New Delhi.				
Text Books	REFERENCE:				
and Reference Books	 Introductory Methods of Numerical Analysis - S.S. Sastry, Prentice Hall India Learning Private Limited, New Delhi. Numerical Methods - E. Balagurusamy, Tata McGraw-Hill Education Pvt. Ltd, New Delhi. 				
	3. Numerical Methods - E. Balagurusamy, Tata McGraw-Hill Education Pvt. Ltd, New Delhi				

17SH1102-ENGINEERING PHYSICS

(Common for ECE, EEE, CSE & IT Branches)

Course Category:	Basic	Sciences	Credits:	3		
Course Type:	Theory	y	Lecture-Tutorial-Practical:	3-0-0		
Pre-requisite:	Funda	mental Concepts of Physics	Sessional Evaluation:	40		
			External Exam Evaluation: Total Marks:	60 100		
	Studer	ts undergoing this course are expe		100		
			dy structure of crystalline solids and	X-ray		
	2.	Basic properties of magnetic mate	erials and their uses in Science & Tech	nology.		
	3.	Explain and provide the knowl working of semiconductor.	edge about physics of semiconducto	ors and		
Course Objectives	4.	Describe the basic principles or communication filed.	f communication system and their u	uses in		
	5.	5. Describe the characteristics, working of lasers & optical fiber protheir applications in Science & Technology.				
	6.	Understand the behavior of suppression of the limitations of	uperconductors & nanomaterials, qu basic physical laws.	uantum		
	Upon the successful completion of the course, the students will be able to:					
	CO1 Understand the structure of Crystalline solids and X-ray diffraction methods to study crystals.					
	CO2	CO2 Understand the origin of magnetism and polarization and applications of magnets and dielectric materials in various disciplines.				
Course Outcomes	CO3	the view of energy bands.				
	CO4	field of Science & Technology.	nunication system with its applications			
	CO5	the concept of optical fiber and it				
	CO6	fields of Science & Technology	s and nano materials with their uses in	various		
			<u>NIT-I</u>			
	CRYSTALLOGRAPHY: Introduction – Space lattice – Unit cell – I parameters – Bravias lattice – Crystal systems – Packing fractions of SC, BCC and – planes in crystals – Miller indices – Interplanar spacing in cubic crystals.					
	X-RAY DIFFRACTION: X-ray diffraction in crystals - Bragg's law of diffraction – X-ray diffraction techniques - Laue method - powder method (Debye-Scherer method).					
Course Content	<u>UNIT-II</u>					
	DIELECTRIC PROPERTIES: Basic definitions, Electronic, Ionic (Quantitative) and Orientation polarizations (Qualitative) – Internal Fields in Solids, Classius – Mossotti					
	Equati	on.				
			ion and basic definitions – Origin of m aterials into dia, para, ferro, antiferro a			

	magnetic materials – Hysteresis – Soft and Hard magnetic materials – Applications of
	magnetic materials. UNIT-III
	SEMICONDUCTORS: Intrinsic and extrinsic semiconductors –Electrical Conductivity in Semiconductors – Drift and diffusion currents – Einstein relations – Hall Effect and its applications – Direct and indirect band gap semiconductors.
	PHYSICS OF SEMICONDUCTOR DEVICES: Formation of PN Junction, I-V Characteristics of PN Junction Diode, LED, Photo Diode, Solar Cell.
	<u>UNIT-IV</u>
	COMMUNICATION SYSTEM – Principles of Basic Communication System – Digital Communication System – Analog Communication System - Basic Steps for Analog/Digital Conversion – Sampling Theorem. System-Signal Bandwidth of signal – Signal impairment – Modulation – Different Types - Demodulation Process
	<u>UNIT-V</u>
	LASERS: Introduction – Characteristics of lasers – Spontaneous and stimulated emission of radiation – Condition for Population inversion – Ruby Laser - He-Ne Laser – Applications of Lasers.
	OPTICAL FIBERS: Introduction – Construction and working principle of optical fiber – Acceptance angle –Numerical Aperture – Types of optical fibers – Block diagram of optical fiber communication system – Applications of optical fibers.
	<u>UNIT VI</u>
	SUPERCONDUCTIVITY: Introduction – effect of magnetic field – Meissener Effect – Type I and Type II superconductors – Flux quantization – BCS theory (Qualitative treatment) –Applications of super conductors.
	PHYSICS OF NANO MATERIALS: Introduction – Significance of Nano scale and types of Nano materials – Physical properties: Optical, thermal, mechanical and magnetic properties – Synthesis of Nano materials by Top down and bottom up approaches: ball mill, chemical vapour deposition and sol gel – Applications of nanomaterials.
	TEXT BOOKS: 1. Principles of electronics by V.K.Mehtha, Tata Mc Graw Hill.
	 Solid State Physics by S.O.Pillai, New Age Publications (Labs edition).
Text Books	 Introduction to Solid State Physics by Charles Kittel, Wiley India Pvt Ltd, 7th Edition.
References	 Euron. Engineering Physics by R.K.Gaur & S.L.Gupta, Dhanpat Rai Publications.
	REFERENCES:
	1. Modern Engineering Physics by Dr. K. Vijaya Kumar, Dr. S.
	Chandralingam, S.CHAND & COMPANY LTD.
	 Applied Physics by P.K. Palanisamy : Scitech Publishers. Engineering Physics by Dr. K.T. Tyagarajan, V.Rajendran, Tata Mc Graw- Hill

17CS1104 -BASIC COMPUTER ENGINEERING

(Common to ECE, EEE, CSE &IT)

Course Category:	Core	Credits:	3
Course Type:	Theory	Lecture – Tutorial – Practical:	3-0-0
Prerequisite:	Basic usage of computer may be required and a few terms must be known in advance.	Sessional Evaluation: Univ. Exam Evaluation: Total Marks:	40 60 100
Course Objectives	components and their need.Creating awareness regarding variGaining knowledge about program	puter fundamentals, identification of ous I/O and storage devices. nming languages and methodologies. core concepts of computer domains.	various

	Upon the successful completion of the course, the students will be able to:
	CO1 Identify Physical components of a computer and their functionalities and to learn various interactive mechanisms through different devices.
Course	CO2 Understand storage media and strengthen the data processing concepts.
Outcomes	CO3 Explore the basic software programming and development concepts.
Outcomes	CO4 Acquire the knowledge on operating system basics.
	CO5 Understand the essential networking concepts.
	CO6 Gain the basic knowledge in core concepts of computers such as Databases and Security issues.
Course Content	PREREQUISITE:: Computers for individual users – Desktop, Workstations, Notebook computers, Tablet and Handheld computers, Smart phones, Computers for organizations – Network servers, mainframes, mini and super computers, Computers in society – why are so important, home, Education, Small Business, Industry, Government, Healthcare, Banking and Communication. UNIT – I INSIDE THE COMPUTER: Various parts of a Computer System - Software, Hardware, Data and Users, Information processing cycle, Essential Computer hardware - processor, Memory, I/O and Storage, Software and major categories- system software and application software. I/O DEVICES: The Keyboard – Layout, types of keys, input from keyboard, The Mouse –Usage, Variants of mouse, Devices for Hand – Pens, Touch Screens, Game controllers, Optical devices – Bar Code readers, Image scanners and OCR, Monitors – Types, CRT monitors, Flat panel Monitors. UNIT – II DATA STORAGE: Categories of storage devices, Magnetic – How data is stored and organized on disk, How OS access the data, Diskettes, Hard disks, Removable High- Capacity Magnetic disks, Tape Drives, Optical Storage devices – CD-ROM, DVD- ROM, Recordable Optical Technologies, Solid-state storage devices – Flash Memory,

	DATA PROCESSING : How Computers represent data – Number systems, Bits and Bytes, Text Codes, How Computers process data – the CPU, Machine cycles, Memory, Factors affecting processing speed – Registers, Memory and Computing power, The Computer's Internal Clock, The Bus, Cache Memory.
	UNIT – III SOFTWARE PROGRAMMING AND DEVELOPMENT : Definition of a computer program, Hardware/Software Interaction, Planning a computer program, How programs solve problems-Program control flow, Algorithms, Structured and object oriented programming.
	PROGRAMMING LANGUAGES AND THE PROGRAMMING PROCESS : The evolution of programming languages, Categories- Machine, Assembly and Higher level languages, Systems development life cycle for programming.
	UNIT – IV OS BASICS: types of Operating Systems – Real Time Operating Systems, Single- user/Single-Tasking OS and Single user/Multitasking OS, Multi-user/Multitasking OS, User interfaces – Graphical User Interfaces, Command-Line Interfaces and Running Programs – Sharing information.
	UNIT – V NETWORKING BASICS: The usage of Network – Simultaneous access, Shared peripheral devices, Personal Communications and Easier data backup, Common types of networks – LANs, WANs, Hybrid Networks – CANs, MANs, HANs, Intranets and Extranets, Network topologies – Bus, Ring, Star, Mesh, Tree and Hybrid Topologies.
	UNIT – VI DATABASE MANAGEMENT SYSTEMS: Databases and Database management systems, The database, The DBMS, Working with database, Creating database tables.
	COMPUTER SECURITY : Basic Security Concepts – Threats, Degrees of Harm, Countermeasures and Threats to Users – Identify theft, Loss of Privacy, Online Spying tools, Spam, Computer related injuries, Hardware threats – Power related threats, Theft and Vandalism, Natural Disasters.
Text Books & References	 TEXT BOOK(S): 1. Peter Norton "Introduction to Computers", McGraw Hill Publishers, 7th Edition 2011. REFERENCE BOOKS: 1. Alex Leon and Mathews Leon "Fundamentals of Information Technology", Vikas Publishers, 2nd Edition 1999. 2. David Cyganski & John A.Orr "Information Technology-Inside and Outside", Pearson Education, 2002. 3. Marilyn Wolf "Computers as Components", MK publications, 3rd Edition, 2014.
E-Resources	 https://nptel.ac.in/courses https://freevideolectures.com/university/iitm

17EE1101-BASIC ELECTRICAL SCIENCES

(Common for ECE, EEE, CSE & IT)

Course Category:	Professional core	Credits:	4
Course Type:	Theory	Lecture-Tutorial-Practical:	3-2-0
Prerequisite:	Fundamental concepts of Electricity and	Sessional Evaluation:	40
	electromagnetic induction.	External Exam Evaluation:	60
		Total Marks:	100

	Students und	ergoing this course are expected to understand:						
	1. Basic characteristics of R, L, C parameters and Network Reduction techniques.							
	2. The concept of form factor, Crest factor and j notation.							
	3. The concept of power triangle, series and parallel connection of R, L & C elements with sinusoidal Excitation.							
Course Objectives	 4. Application of Graph theory to Electrical circuits. 							
	 Application of Graph theory to Electrical circuits. Application of K.C.L and K.V.L 							
		ept of inductance & mutual inductance, Dot convention and coefficient of						
	coupl	-						
		ept of Series and parallel resonance and current locus diagrams						
	-	ting the course the student will be able to						
	CO1	Find the equivalent resistance by using network reduction Techniques for						
Course Outcomes		the given Electrical network						
Course Outcomes	CO2	To plot varies waveform, finding the average, Rms, form factor &crest						
		factor.						
	CO3	Determine the real power, reactive power, power factor and response of the						
		circuit for the given circuit and Excitation						
	CO4	Able to apply nodal and mesh analysis for a given electrical network						
	CO5	Find the coefficient of coupling (K) and the equivalent inductance for the						
		given magnetic circuits						
	CO6	Find Quality factor, band width and drawing current locus diagrams for a						
		given electrical circuit						
	CONCEPT	UNIT- I OF ELECTRIC CIRCUITS: Introduction, Active and passive elements,						
		eristics of R, L and C elements, Ideal & Practical Sources, Source						
		on, Kirchhoff's laws, Network reduction techniques, Star-Delta						
	transformatio							
	FUNDAMENTALS OF AC CIRCUITS: R.M.S, Average values, form factor and crest							
	factor for different periodic wave forms, Sinusoidal Alternating Quantities - Phase and							
Course Content	Phase Difference, Complex and Polar Forms Of Representations, j-Notation. Concept of							
	Reactance, Impedance, Susceptance and Admittance-problems							
		IASE AC CIRCUITS: Concept of Active and reactive power, power factor						
	-	gle, Steady state Analysis of R, L and C elements (in series, parallel and series pinetions), with sinusoidal Excitation. Phaser diagrams problems						
parallel combinations) –with sinusoidal Excitation - Phasor diagrams-problems								

	UNIT – IV					
	GRAPH THEORY: Network topology, Cut set and Tie set matrices – Incident matrices application to circuit analysis- Problems - Duality & Dual circuits – Problems ANALYSIS OF ELECTRICAL CIRCUITS: Mesh and Nodal analysis of DC and AC circuits concept of super mesh and Super node-problems					
	UNIT – V					
	MAGNETIC CIRCUITS : Faraday's Laws of Electromagnetic Induction, Concept of Self and Mutual Inductance, Dot Convention in coupled coils, Coefficient of Coupling, Analysis of Series and Parallel Magnetic Circuits, MMF Calculations- Composite Magnetic Circuit.					
	UNIT – VI					
	RESONANCE: Series and parallel Resonance, Half power frequencies, Bandwidth and Q factor, Relation between half power frequencies- Bandwidth – Quality factor. LOCUS DIAGRAMS: Series and parallel combinations of R-L, R-C, and R-L-C with variation of parameters.					
Text Books & Reference Books	 TEXT BOOKS: 1. "Engineering Circuit Analysis" by Hayt & Kemmerly, TMH publishers 2. "Network Analysis" by M.E Van Valkenburg, Third edition ,PHI learning private limited 3. "Fundamentals of Electric circuits" by Charles k Alexander, Mathew N O Sadiku, Tata McGraw Hill Education private Limited 					
	 REFERENCE BOOKS: 1. "Circuits & Networks" by A.Sudhakar and Shyam Mohan - TMH 2. "Circuit Theory" by A.Chakarabarti - Dhanpat Rai publishers 3. "Circuits & Systems" by K.M.Soni – Kataria Publishers 					
E-Resources	 http://nptel.ac.in/courses http://iete-elan.ac.in http://freevideolectures.com/university/iitm 					

17ME1103-COMPUTER AIDED ENGINEERING DRAWING

(Common to ECE, EEE, CSE & IT)

Course Category:	Professional	core	Credits:	3							
Course Type:	Practical	core	Lecture-Tutorial-Practical:	0-0-6							
Prerequisite:		of basic math concepts and	Sessional Evaluation:	40							
r rerequisite.	•	bes of shapes, angles, symmetry,	External Exam Evaluation:	60							
		unit measurement systems.	Total Marks:	100							
	1										
		ndergoing this course are expected t									
		nable the students with various con		ction of							
Course Objectives		ic sections, polygons, cycloids and i		0							
Course Objectives	2. To impart and inculcate proper understanding of AutoCAD fundamentals.3. To apply the knowledge of AutoCAD for the projections of points, lines and soli										
		4. To know about sections and developments of solids.									
		mprove the visualization skills with									
	After comp	pleting the course the student will be	e able to								
	CO1	Apply the conventions and the me	thods of engineering drawing.								
Course Outcomes	CO2	Create geometric constructions, co	onics with hand tools to draw line	es,							
		polygons, circle, tangencies, conic	e sections and irregular arcs								
	CO3	Sketch the solutions to the probler	ns on projection of points, lines,	planes and							
			-								
	CO4	Use the sectioning and developme	nts concents of solids in actual ar	plications							
				<u> </u>							
	CO5	Visualize the objects so that they products	v can apply these skills in devel	oping new							
		UNIT	- I								
	INTRODU	UCTION: Importance of Drawing	, Drawing Instruments, Sheet la	ayout, BIS							
	Convention	ns, Types of lines, Lettering, and dir	nensioning methods.								
	GEOMET	TRICAL CONSTRUCTIONS: Reg	gular Polygons (Triangle, Square	, Pentagon,							
	Hexagon)										
	CONIC S	ECTIONS: Introduction, Constru	ction of Ellipse, Parabola and	Hyperbola							
	using Ecce	ntricity method and Rectangular/ O	blong methods.								
	SPECIAL	CURVES: Introduction, Construct	ion of Cycloids and Involute cur	ves.							
Course Content		UNIT	– II								
	INTRODU	UCTION TO CAD SOFTWARE:	Importance of Computer Aided	Drawing,							
	software tool environment, drawing size and scale, main menu, tool bar and menus, co-										
	ordinate sy	stem, drafting settings.									
	CREATIO	ON AND EDITING: Points, Lines, I	Poly lines, Polygons, Splines, cire	cle, ellipse,							
	text, move	, copy, off-set, pan, mirror, rotate,	trim, extend, break, chamfer, fil	let, curves,							
	block, laye	rs, line representations, dimensionin	ng and hatching.								

	UNIT – III								
	PROJECTIONS OF POINTS: Principles of projections, Planes of projection, Points in								
	four quadrants.								
	PROJECTIONS OF LINES: Line inclined to both the principal planes (first angle								
	projection only).								
	UNIT – IV								
	PROJECTIONS OF PLANES: Plane (triangle, square, rectangle, pentagon, hexagon and								
	circular) inclined to both the principal planes.								
	PROJECTIONS OF SOLIDS: Solids such as Prisms, Pyramids, Cylinders and Cones.								
	$\mathbf{UNIT} - \mathbf{V}$								
	SECTIONS OF SOLIDS: Solids such as Prisms, Pyramids, Cylinders and Cones resting								
	on their bases on HP.								
	DEVELOPMENT OF SURFACES: Lateral surfaces of solids such as Prisms, Pyramids,								
	Cylinders and Cones (cut by a plane inclined to HP).								
	UNIT – VI								
	ORTHOGRAPHIC PROJECTIONS: Conversion of Pictorial views into Orthographic								
	Views.								
	ISOMETRIC PROJECTIONS OF SIMPLE OBJECTS.								
Text Books & Reference Books	 TEXT BOOKS: 1. Engineering Drawing, N.D. Bhat / Charotar Publishing House,. Gujarat, 53rd edition, 2014. 2. AutoCAD 2 0 13 For Engineers and Designers, Sham Tickoo, Dream tech Press, 2013. REFERENCE BOOKS: 1. Engineering Drawing And Graphics + Autocad, Venugopal K, New Age International Pvt. Ltd.New Delhi, 2007. 2. Engineering Graphics with Auto CAD, D.M. Kulkarni, A.P. Rastogi and A.K. Sarkar, PHI Learning Private Limited, Revised Edition, August 2010. 3. Engineering Drawing and Graphics Using Autocad, T Jeyapoovan, Vikas Publishing House, 3rd Edition, 2010. 4. A Textbook on Engineering Drawing, P. Kannaiah, K. L. Narayana, K. Venkata Reddy, Radiant Publishing House, 2012.6. Jolhe, Engineering Drawing, Tata McGraw Hill Education Private Limited, 1st Edition, 2007. 								

17SH11P1-ENGLISH LANGUAGE LABORATORY (Common to all Branches)

Course Category:	Basic Sciences	Credits:	2								
Course Type:	Practical	Lecture-Tutorial-Practical:	0-0-3								
Pre-requisite:	Basic Level of LSRW Skills	Sessional Evaluation: External Exam Evaluation: Total:	40 60 100								
Course Objectives	The main objective is to develop students' basic skills of communication viz. LSRW in English through which communicative competence can be enhanced and can communicate efficiently in a realistic professional ambience.										
Course Outcomes	These activities practiced in the laboratory are helpful in comprehending the important language aspects which are useful for the real life situations. These are also helpful in enhancing the language competency and communicative level of students.										
Course Content	 LIST OF EXP I. Listening Skills: Listening for Pleasure, Listening for Details Listening for Information II. Speaking Skills: Jam, Extempore Presentations Seminars III. Reading Skills: News Paper Reading IV. Writing Skills: Story Writing Description Object, 2.Place, 3. P Giving Directions & Instructions REFERENCES: A Manual for English Language Lab Publications Techniques of Teaching English: A.I A Textbook of English Phonetics: Macmillan India Limited. 	on erson,4.Situation structions oratories: Dr. D. Sudha Rani , Pe nes L. Kohli									

17SH11P2-ENGINEERING PHYSICS LABORATORY

(Common	to EEE,	ECE,	CSE	& IT	Branches)
---------	---------	------	-----	------	-------------------

Course Category:	Basic Sciences	Credits:	2
Course Type:	Practical	Lecture-Tutorial-Practical:	0-0-3
Pre-requisite:	Engineering Physics	Sessional Evaluation:	40
_		External Exam Evaluation:	60
		Total Marks:	100

Course Objectives	1 The main objective is to provide students to learn about some important experimental techniques in physics with knowledge in theoretical aspects so that they can excel in that particular field.					
Course Outcomes	 These experiments in the laboratory are helpful in understanding important concepts of physics through involvement in the experiments by applying theoretical knowledge. It helps to recognize where the ideas of the students agree with those accepted by physics and where they do not. 					
	Minimum of 8 experiments to be completed out of the following :					
	LIST OF EXPERIEMENTS					
	1. Determination of Rigidity modulus of a material – Torsional pendulum					
	2. Melde's Experiment – Transverse and Longitudinal modes					
	3. Time constant of RC circuit					
Course	4. Resonance in LCR circuit					
Content	5. Magnetic field along the axis of a coil (Stewart-Gees Method)					
	6. Study of characteristics of LED					
	7. Evaluation of Numerical Aperture of a given fiber					
	8. Energy Gap of a material of p-n junction					
	9. Diode Characteristics					
	10. Transistor Characteristics					
	11. Characteristics of Solar cell					
	12. Logic Gates					
	13. Hall Effect					

17CS11P1-BASIC COMPUTER ENGINEERING LABORATORY

(Common to ECE, EEE, CSE &IT)

Course Category:	Program Core	Credits:	1
Course Type:	Practical	Lecture – Tutorial – Practical:	0-0-2
Prerequisite:	Basic knowledge about Computer fundamentals and various hardware components.	Sessional Evaluation: Univ.Exam Evaluation: Total Marks:	40 60 100

Course	Upon successful completion of the course, the students will be able to:
Outcomes	CO1 Identify the physical components of a computer system, integration and study various application softwares.
Course Content	 Identification of computer hardware parts. (2 Labs) Assembling and disassembling the system hardware components of a PC.(2 Labs) Installation Steps for any Windows Operating System.(1 Lab) To Practice the basics of Networking (Wired and Wireless network connections) (1 Lab) To Practice the Basic commands of LINUX.(2 Labs) To Practice the Basic MS-Word features (like Formatting, Tables and Sorting etc.) (1 Lab) Create envelopes and labels using mail merge.(1 Lab) Spread sheet experiments using EXCEL. (1 Lab) To Practice on MS-Power Point.(1 Lab) To Practice on MS-Access. (1 Lab)
Text Books and References	 TEXT BOOK(S): Peter Norton "Introduction to Computers", McGraw Hill Publishers, 7th Edition 2011. REFERENCE BOOKS: Alex Leon and Mathews Leon "Fundamentals of Information Technology", Vikas Publishers, 2nd Edition 1999. David Cyganski & John A.Orr "Information Technology-Inside and Outside", Pearson Education, 2002. Marilyn Wolf "Computers as Components", MK publications, 3rd Edition, 2014.
E-Resources	 3. https://nptel.ac.in/courses 4. https://freevideolectures.com/university/iitm

NBKR INSTITUTE OF SCIENCE & TECHNOLOGY: VIDYANAGAR (AUTONOMOUS) (AFFILIATED TO JNTU ANANTAPUR: ANANTHAPURAMU) SPSR NELLORE DIST I YEAR OF FOUR YEAR B.TECH DEGREE COURSE – II SEMESTER ELECTRONICS AND COMMUNICATION ENGINEERING SCHEME OF INSTRUCTION AND EVALUATIONS (With effect from the academic year 2017-2018) (For the batch admitted in the academic year 2017-2018)

			Instruction							Evaluation					
S.No Course Code	Course Title		Hours/Week		Credits		Sessional Test-I		onal t-II	Total Sessional Marks (Max. 40)			Maximum Total Marks		
		THEORY	L	Т	D/P		Duration In Hours	Max. Marks	Duration In Hours	Max. Marks		Duration In Hours	Max. Marks	100	
1	17SH1201	Professional English**	3	-	-	3	2	40	2	40		3	60	100	
2	17SH1203	Engineering Mathematics-I **	3	2	-	4	2	40	2	40		3	60	100	
3	17SH1202	Engineering Chemistry**	3	-	-	3	2	40	2	40	0.8*Best of two+0.2*least of two	3	60	100	
4	17CS1204	C Programming**	2	2	-	3	2	40	2	40		3	60	100	
5	17EE1201	Circuits & Networks**	2	2	-	3	2	40	2	40		3	60	100	
6	17EC1201	Electronic Devices**	3	-	-	3	2	40	2	40		3	60	100	
		PRACTICALS													
7	17SH12P2	Engineering Chemistry Lab**	-	-	3	2	-	-	-	40		3	60	100	
8	17CS12P3	C Programming Lab**	-	-	3	2	-	-	-	40	Day to Day Evaluation and a test (40 Marks)	3	60	100	
9	17ME12P1	Engineering Workshop**	-	-	2	1	-	-	-	40		3	60	100	
		TOTAL	16	06	08	24	-	-	-	360		-	540	900	

**Common to ECE, EEE, CSE, IT

17SH1201- PROFESSIONAL ENGLISH

(Common to all Branches)

Course Category:	Basic Sciences	Credits:	3
Course Type:	Theory	Lecture-Tutorial-Practical:	3-0-0
Pre-requisite:	Basic Level of LSRW skills	Sessional Evaluation: External Exam Evaluation: Total Marks:	60

Course Objectives	 Students undergoing this course are expected to understand: To develop their basic professional writing skills in English To achieve specific linguistic and verbal competence To acquire relevant skills and function efficiently in a realistic professional working environment To inculcate the habit of reading & writing 		
Course Outcomes	Upon success CO1	ful completion of the course, the students will able to: Equip verbal proficiency and face competitive exams; GATE, GRE, TOEFL, GMAT	
	CO2	etc. Draft professional writings: email drafting, professional Letters, etc. for social and professional contexts.	
	CO3	Write effective book reviews and make effective notes in professional environment	
	CO4	Procure considerable knack in using wide range of vocabulary.	
	CO5	Write proposals, business letters, project reports, writing proposals	
	CO6	Acquire skills : Prepare Speeches in analytical and critical procedures	

UNIT -I DATA INTERPRETATION: Interpretation and analysis of the data based on text, tables, graphs (linear), charts- bar, pie etc. Verbal: Verbal reasoning- Analogies, Homophones & Homonyms UNIT-II WRITING: Email Communication- Writing Effective Business Email Verbal: Idioms and Phrases, One word substitutes UNIT-III ANALYTICAL WRITING: Presenting perspective of an issue- Compare & Contrast, Cause and Effect, Analyze an argument Verbal: Affixes-prefix and suffix, root words, derivatives UNIT-IV TECHNICAL WRITING: Writing Proposals: Significance; Structure, Style & Writing of Project Reports. Verbal: Synonyms & Antonyms UNIT-V WRITING: Introduction to different kinds of materials: Technical & Non-technical- Note Taking and Note Making- identification of important points and precise the content Verbal: Words often confused UNIT-VI BOOK REVIEWS- Review of a Technical and Non-Technical - a brief written analysis
TECHNICAL WRITING: Writing Proposals: Significance; Structure, Style & Writing of Project Reports.
WRITING: Introduction to different kinds of materials: Technical & Non-technical- Note Taking and Note Making- identification of important points and precise the content
 . REFERENCES: A Textbook of English for Engineers and Technologists (combined edition, Vol. 1 & 2); Orient Black Swan 2010. Word Power Made Easy by Norman Lewis A Communicative Grammar of English By: Geoffrey Leech

17SH1203-ENGINEERING MATHEMATICS - I

(Common to all Branches)

Course Category:	Basic Sciences	Credits:	3
Course Type:	Theory	Lecture-Tutorial-Practical:	3-2-0
Pre – requisite:	Intermediate Mathematics	Sessional Evaluation:	40
		External Evaluation:	60
		Total Marks:	100

	Students undergoing this course are expected to understand:			
Course Objectives	 The basic concepts of Matrices. Solving Higher Order Differential Equations with RHS of different types by using analytical techniques. Taylor's and Maclaurin's series, Maxima and Minima of the functions of two and three variables. The concepts of Double and Tripple integrals, Areas and Volumes. The Gradient, Divergence and Curl operators, Solenoidal and Irrotational vectors. The basic concepts of Vector Integration. 			
	After	completing the course the student will be able to		
	CO1	Understand effectively the analyzation of the Rank of the matrix, Consistency of system of linear equations, Eigen values and Eigen vectors.		
	CO2	CO2 Acquire knowledge in solving higher order differential equations by using various types.		
Couse Outcomes	CO3	Attains skills in analyzing the Taylor's and Maclaurin's series and Maxima and Minima of the functions of two and three variables.		
	CO4	Apply Double and Tripple integrals to find Areas and Volumes.		
	CO5	Understand effectively Curl, Divergence and Gradient operators, Solenoidal and Irrotational vectors with their applications.		
	CO6	Acquire knowledge in analyzing the applications of Green's, Stoke's and Gauss- divergence theorems.		
		UNIT - I		
Course	MATRICES: Rank of Matrix - Echelon Form and Normal Form - Consistency of system of linear equations - Eigen values and Eigen vectors.			
Content	UNIT – II			
	HIGH			
		ential equations of second and higher order with constant coefficients with R.H.S.		
	of the	type e^{ax} , $\sin ax$ or $\cos ax$, x^n , e^{ax} V and $x^n v(x)$.		

	UNIT – III		
	DIFFERENTIAL CALCULUS: Taylor's and Maclaurin's series - Maxima and Minima of function of two variables - Lagrangian method of multipliers with three variables only.		
	UNIT - IV MULTIPLE INTEGRALS: Double and Triple integrals - Change of order of integration - Change to polar coordinates - Area and Volumes by Double integration - Volume by Triple integration.		
	UNIT - V		
	VECTOR DIFFERENTIATION: Gradient, Divergence, Curl - Solenoidal and Irrotational vectors.		
	UNIT - VI		
	VECTOR INTEGRATION: Line, Surface and Volume integrals - Green's, Stoke's and Gauss-divergence theorem (without proof), Applications to theorems.		
	TEXTBOOKS:		
	1. Higher Engineering Mathematics - B.S. Grewal, Khanna Publishers, New Delhi.		
	2. Engineering Mathematics – B.V. Ramana, Tata McGraw-Hill Education Pvt.		
	Ltd, New Delhi.		
	REFERENCE:		
Text Books	1. Higher Engineering Mathematics - H.K. Dass, Er. Rajnish Verma, S. Chand		
&	Publication, New Delhi.		
Reference Books	2. Advanced Engineering Mathematics - N.P. Bali & M. Goyal, Lakshmi		
200115	Publishers, New Delhi.		
	3. Engineering Mathematics-I& II - Dr.T.K.V. Iyengar, Dr.B. Krishna Gandhi, S.		
	Ranganatham, Dr.M.V.S.S.N. Prasad, S. Chand Publication, New Delhi.		
	4. Advanced Engineering Mathematics - Erwin Kreyszig, Wiley, India.		

17SH1202-ENGINEERING CHEMISTRY

(Common for ECE, EEE, CSE & IT Branches)

00	Ì	mmon for ECE, EEE, CSE & IT		2
Course Ca	8.	sic science	Credits	3
	τı	eory	Lecture-Tutorial-Practical:	3-0-0
Pre-re	-	ndamental concepts of emistry	Sessional Evaluation: External Exam Evaluation: Total Marks:	40 60 100
	Students un	dergoing this course are expected	d to understand:	
Course Objectives	 theor 2. The as ba 3. To k 4. To d 5. To u 	 as batteries and fuel cells is one such example. 3. To know the factors effecting the rate of corrosion and its prevention. 4. To design engineering materials and solve problems related to them. 5. To understand various water softening methods. 		
	On successf	ul completion of this course stude	ents will be able to:	
	CO1 Understand the electrochemical sources of energy			
	CO2 Identify and investigate means of protecting metal against corrosion.		sion.	
Course Outcomes	CO3 Understand industrially based engineering materials			
	CO4 Understand the classification of fuels and their analysis			
	CO5 Know the disadvantages of hard water and ability to remove hardness by various methods		ess by using	
	CO6	06 Understand the basics of polymers and their preparation and uses in engineering field		
	UNIT – I			
	ELECTRO CHEMISTRY: Single electrode potential-explanation and measurement			
	Reference electrodes-hydrogen gas electrode-calomel electrode-glass electrode			
	Electrochemical cells: Lead-Acid storage cells Batteries: Li- Batteries Fuel Cells:			
	Hydrogen - Oxygen fuel cell Conductometric titration of strong acid and strong base			
Course	UNIT – II			
Content	CORROSION: Definition-classification- theories of corrosion-factors affecting the			
	corrosion- Prevention methods of corrosion-metallic coatings (Electroplating,			
	cementation) and cathodic protection.			
	UNIT-III			
	CHEMIST	RY OF ENGINEERING MAT	'ERIALS:	
	Electrical in	nsulators: Definition-classificati	ion-Characteristics- Application of	electrical
	insulating m	naterials (solid, liquid and gaseou	is insulators).	

	Refractories: Classification- properties and applications of refractories.
	Lubricants: Lubricant-Lubrication-classification of lubricants-Properties and applications
	of lubricating oils.
	UNIT – IV
	FUEL TECHNOLOGY: Classifications of Fuels - Characteristics of fuels - Calorific value – determination – Bomb calorimeter – Boy's gas calorimeter - Theoretical calculation of calorific value.
	Solid fuels: coal-analysis of coal.
	Liquid fuels: Petroleum-refining of petroleum - Synthetic petrol – Fischer Tropch's
	synthesis.
	Gaseous fuel – Flue gas analysis by Orsat's apparatus.
	UNIT – V
	WATER TREATMENT: Impurities in water-Hardness of water-Estimation of hardness by EDTA method-Estimation of dissolved oxygen-Alkalinity-Chlorides in water
	Industrial use of water: For steam generation-troubles in boilers-scale and sludge-priming and foaming-caustic embrittlement-boiler corrosion
	Softening methods of hard water: Lime-soda process- Zeolite process-Ion exchange method.
	UNIT-VI
	POLYMERS: Introduction to polymers- Polymerization process-types of
	polymerization.
	Elastomers: natural rubber – vulcanization of rubber – compounding of rubber-
	Synthetic rubbers: preparation, properties and engineering applications of Buna – N,
	Neoprene, Thiokol and silicon rubbers
	Plastomers: Thermosetting and thermoplastics- Preparation, properties and engineering applications of PVC, Bakelite, Nylons and Urea-Formaldehyde
	TEXT BOOKS:
Text Books &	 Engineering Chemistry, First Edition, Jayaveera KN, Subba Reddy GV and Ramachandraiah C, McGraw Hill Higher Education, New Delhi, 2013. A Text Book of Engineering Chemistry, 15th Edition, Jain and Jain, Dhanapathi Rai Publications, New Delhi, 2013.REFERENCES:
Reference	REFERENCES:
Books	 A Text book of Engineering Chemistry, 12th Edition, SS Dhara,Uma, S. Chand Publications, New Delhi, 2010. Engineering Chemistry, First edition, K.B. Chandra Sekhar, UN.Das and Sujatha Mishra, SCITECH Publications India Pvt Limited, 2010. Engineering Chemistry, First edition, Seshamaheswaramma K and Mridula Chugh, Pearson Education, 2013.

17CS1204 - C- PROGRAMMING (Common for ECE, EEE ,CSE &IT)

Course Category:	Core	Credits:	3
Course Type:	Theory	Lecture – Tutorial – Practical:	2-2-0
Prerequisite:	Basic mathematical knowledge to solve problems in analytical manner and logical thinking.	Sessional Evaluation: Univ. Exam Evaluation: Total Marks:	40 60 100
Course Objectives	 Students undergoing this course are expected to understand: Gaining insights of building blocks of C language. Getting fundamental ideas about core concepts of C Programming. Understanding the Procedural approach to solve simple problems. 		

	Upon the successful completion of the course, the students will be able to:	
	CO1 Learn the fundamental structure of C program and basic data types.	
Course	CO2 Find the usage of operators in expression evaluation and I/O Statements.	
Outcomes	CO3 Acquire information on various control structures	
o uteonies	CO4 Study the concept of arrays and strings	
	CO5 Understand the features of Pointers and Functions	
	CO6 Explore the basics of Data Storage on Files and Derived data types	
	UNIT – I	
	INTRODUCTION: Algorithms, Flow charts, Program development steps.	
	FUNDAMENTALS OF C: History, Structure of a C program, Programming rules and execution. Character set, Delimiters, C keywords, Identifiers, Constants, Variables, Rules for defining Variables, Datatypes, Declaration and Initialization of Variables.	
	UNIT – II	
Course	OPERATORS AND EXPRESSIONS: Introduction, Operator Precedence and Associativity, Operator Types	
Content	INPUT AND OUTPUT IN C: Formatted and Unformatted functions, Commonly used library functions.	
	UNIT – III	
	DECISION STATEMENTS: Introduction, Types of If statements, switch statement, break, continue, goto.	
	ITERATIVE STATEMENTS : while, do-while and for loops.	
	UNIT – IV	
	ARRAYS: Definitions, Initialization, Characteristics of an array, Array Categories.	

	STRINGS: Declaration and Initialization of strings, String handling functions.		
	STORAGE CLASSES: Automatic, External, Static and Register Variables.		
	$\mathbf{UNIT} - \mathbf{V}$		
	POINTERS: Fundamentals, Declaration and initialization of Pointers, Arithmetic Operations, Pointers and Arrays.		
	FUNCTIONS: Definition, Function Prototypes, Types of functions, Call by Value and Call by Reference, Recursion.		
	UNIT – VI		
	STRUCTURES: Definition, Declaration and Initialization of Structures.		
	UNIONS: Definition, Declaration and Initialization of Union.		
	FILES: Introduction, File Types, Basic operations on Files, File I/O, Command Line Arguments.		
	TEXT BOOK(S):		
	1.Programming with ANSI & TURBO C by Ashok N.Kamthane, Pearson Education 2007		
Text Books &	REFERENCE BOOKS:		
References	 A Book on C by Al Kelley/Ira Pohl, Fourth Edition, Addison-Wesley.1999 Let Us C by Yashavant Kanetkar, BPB Publications. Programming in ANSI C by Balaguruswamy 6th Edition, Tata McGraw Hill Education, 2012. 		
E-Resources	 https://nptel.ac.in/courses https://freevideolectures.com/university/iitm 		

17EE1201-CIRCUITS & NETWORKS

(Common for EEE, ECE)

Course Category:	Professional core	Credits:	3
Course Type:	Theory	Lecture-Tutorial-Practical:	2-2-0
Pre-requisite:	Fundamental concepts of Electricity	Sessional Evaluation:	40
-		External Exam Evaluation:	60
		Total Marks:	100

	Students unde	rgoing this course are expected to understand:
Course Objectives	 Network theorems and their applications The analysis of three phase balanced & unbalanced circuits Necessary conditions for driving point function & transfer function Time domain response from pole-zero plots Transient response of RL, RC, RLC series circuit for DC and AC excitation. 	
	After complet	ing the course the student will be able to
	CO1	Apply the network theorems suitable for a given circuit.
	CO2	Analyse three phase balanced &unbalanced circuits, and measure P, Q & S
		for a given circuit.
Course Outcomes	CO3	Analyse the two port network by finding the parameters of the given circuit.
	CO4	Draw the pole- zero plot and obtain the time domain response for a given
	CO5	transfer function.
	COS	Find the time constant and V and I across the inductor or capacitor under sourced and source free network for a given D.C excitation.
	CO6	Find the time constant and V and I across the inductor or capacitor under
	000	sourced and source free network for a given A.C excitation.
Course Content	UNIT-I NETWORK THEOREMS: Superposition, Reciprocity, Thevenin's and Norton's theorems, Maximum power transfer theorem, Millman's theorem, Compensation theorem and Tellegen's theorem. Application of these theorems to DC and AC Excitations UNIT – II THREE PHASE A.C CIRCUITS: Advantages of three phase systems - Phase sequence - Star and Delta connection-Relation between line and phase voltages & currents in balanced systems-Analysis of balanced three phase circuits-measurement of Active and Reactive power in Balanced and unbalanced three phase systems. Analysis of three phase Unbalanced circuits-Loop method-Application of milliman's theorem-Star Delta Transformation Technique -for balanced and unbalanced circuits, measurement of Active	
	and Reactive power	
	UNIT – III TWO PORT NETWORK PARAMETERS: Open circuit parameters – Short circuit parameters – Transmission parameters - inverse transmission parameters - Hybrid parameters – Inverse hybrid parameters - Inter-relationships of different parameters- Interconnections of two port networks –Condition for reciprocity and symmetry of networks with different two port parameters - Terminated two port networks – Image parameters.	
	UNIT – IV	

	NETWORK FUNCTIONS : Single port & multi port networks - Immitance functions of two port networks – Necessary conditions for driving point functions & transfer function – Complex frequencies – Poles and zeros – Time domain response from pole zero plots – Restrictions on pole-zero locations. UNIT – V D.C TRANSIENT ANALYSIS: Transient response of RL, RC & RLC circuits for DC excitations initial conditions-Time constants -solution method using Differential equation & Laplace transform.
	UNIT – VI A.C TRANSIENT ANALYSIS : Transient response of RL, RC & RLC circuits for sinusoidal excitations-initial condition-time constants –solution method using Differential Equations & Laplace transforms - Transformed circuits-Transient response of RL,RC& RLC circuits for other types of signals(step, impulse) using Laplace transform methods.
Text Books & Reference Books	 TEXT BOOKS: 1. "Engineering Circuit Analysis" by Hayt & Kemmerly, TMH publishers 2. "Network Analysis" by M.E Van Valkenburg, Third edition ,PHI learning private limited 3."Fundamentals of Electric circuits" by Charles k Alexander, Mathew N O Sadiku, Tata McGraw Hill Education private Limited REFERENCE BOOKS: 1. "Circuits & Networks" by A.Sudhakar and Shyam Mohan - TMH 2. "Circuit Theory" by A.Chakarabarti - Dhanpat Rai publishers 3. "Circuits & Systems" by K.M.Soni – Kataria Publishers
E-Resources	http://nptel.ac.in/courses http://iete-elan.ac.in http://freevideolectures.com/university/iitm

17EC1201 – ELECTRONIC DEVICES

(Common for ECE, EEE ,CSE &IT)

Course Category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial -	3 - 0 - 0
		Practical:	
Prerequisite:	To provide students with the fundamentals of	Sessional Evaluation :	40
	Electronics.	Univ.Exam Evaluation:	60
		Total Marks:	100

	Students undergoing this course are expected to understand:		
Course Objectives	2. T 3. T 4. T 5. T	The concepts of Solid State Semi-Conductor Theory. The operation of a PN Junction Diode. The Ideal, Practical and Electrical Characteristics of Zener, Varactor, Tunnel and Avalanche Photo Diode. The need for biasing of Transistor. The working of FET and MOSFET. The operation of Thyristors.	
	Upon successful completion of the course, the students will able to:		
	CO1	Understand the Semiconductor Physics for Intrinsic and Extrinsic materials and theory of operation of Solid State devices.	
Course	CO2	Apply how the properties of semiconductor materials are used for the formation of PN diode.	
Outcomes	CO3	Explain the functioning of various solid-state devices, including several types of diodes including conventional, Zener, Varactor, Tunnel and Avalanche Photo Diode.	
	CO4	CO4 Design the various Bi-polar Junction Transistor biasing circuits and its usage in applications of amplifiers.	
	CO5	Distinguish the constructional features and operation of FET and MOSFET and their applications.	
	CO6	Understand the operation with sketch the transfer characteristics of Thyristors.	
		Unit-I	
Course Content	Semicon Mass-Ac	ONDUCTOR DIODES: Introduction, Classification of Semiconductors, Conductivity of ductor, Energy Distribution of Electrons, Carrier Concentration in Intrinsic Semiconductor, etion Law, Properties of Intrinsic Semiconductors, Variation in Semiconductor Parameters apperature, Drift and Diffusion currents, Carrier Life Time, Continuity Equation.	
content		Unit – II	
	Quantitat Levels,	NCTION DIODE: Introduction, Energy Band Structure of Open Circuited Diode, tive Theory of Diode Currents, Diode Current Equation, Ideal vs Practical Resistance Transition Capacitance, Diffusion Capacitance, Temperature Dependence of V-I ristics, Breakdown in Diodes, Diode as a Circuit Element, Piecewise Linear Diode Model, ions.	

	Unit –III
	SPECIAL DIODES: Introduction, Zener Diode, Varactor Diode, Tunnel Diode, Avalanche Photo Diode.
	<u>Unit – IV</u>
	BIPOLAR JUNCTION TRANSISTOR: Introduction, Construction, Transistor Biasing, Operation of NPN Transistor, Operation of PNP Transistor, Types of Configuration.
	$\underline{Unit - V}$
	FIELD EFFECT TRANSISTOR: Introduction, Construction & Operation of N-Channel JFET, Characteristic Parameters, Saturation Drain Current, Slope of the Transfer Characteristic at I _{DSS} , Comparison of JFET and BJT, Applications, MOSFET, Enhancement MOSFET, Depletion MOSFET, Comparison of MOSFET and JFET.
	<u>Unit – VI</u>
	Thyristors: Introduction, PNPN Diode, SCR, Thyristor Ratings, Rectifier Circuits using SCR, LASER, TRIAC, DIAC.
	TEXT BOOKS:
Text Books & Reference	 Electronic Devices & Circuits by Jacob Millman & Christos C. Halkias, McGraw- Hill Co. Mottershed, "Electronic devices and circuits", PHI.
Books	REFERENCES:
	 Electronic Devices and circuits by S. Salivahanan, N. Suresh Kumar, McGraw- Hill Co. Boylestad, Louis Nashelsky "Electronic devices and circuits" 9ed, 2008 PE.
E-Resourses	 https://nptel.ac.in/courses https://iete-elan.ac.in https://freevideolectures.com/university/iitm

17SH12P2-ENGINEERING CHEMISTRY LABORATORY

Course Category	: Basic science	Credits:	2			
Course Type	: Practical	Lecture-Tutorial-Practical:	0-0-			
			3			
Pre-requisite	Fundamental concepts of Chemistry	Sessional Evaluation:	40			
		External Exam Evaluation: Total Marks:	60 100			
G	• The main objective is to provide students to	learn about experimental techniqu	ies in			
Course Objectives	chemistry with knowledge in theoretical asp	ects so that they can excel in that				
o bjech veb	particular field.					
	• These experiments in the laboratory are he	elpful in understanding key conce	epts of			
Course	chemistry through involvement in the experiment		-			
Outcomes	• It helps to recognize where the ideas of th	e student agree with those accept	ted by			
	chemistry and where they do not.					
	Minimum of 8 experiments to be completed out of t	he following:				
	LIST OF EXPERI	-				
	LIST OF EATERI	MENIS				
	1. Determination of total hardness of water by EDTA method					
	2. Determination of Copper by EDTA method					
	3. Estimation of dissolved oxygen by Winkler's method					
	4. Determination of Acidity of water					
	5. Determination of total alkalinity of water.					
Course	6. Estimation of chlorides using potassium chromate indicator					
Content	7. Conductometric titration of strong acid Vs strong base.					
	8. Determination of pH of unknown solution					
	 Preparation of Bakelite Determination of viscosity of oils with Redwood viscometer 					
	10. Determination of viscosity of ons with Redv	vood viscometer				
	Text Books:					
	1. Vogel's text books of quantitative chemi	ical analysis, Mendham et all, pers	son			
	publications.					
	2. Chemistry lab manual – KN Jayaveera, S	•				
	3. Instrumental methods of chemical analysis – Chatwal & Anand Himalaya					
	publications.					

(Common for ECE, EEE, CSE &IT Branches)

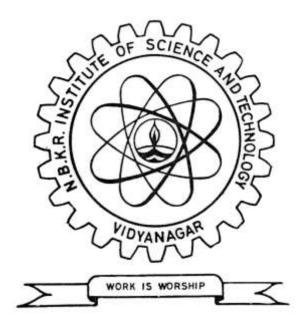
17CS12P3 - C- PROGRAMMING LABORATORY

(Common to ECE, EEE, CSE &IT)

Course Category:	Program Core	Credits:	2
Course Type:	Practical	Lecture – Tutorial – Practical:	0-0-3
Prerequisite:	Basic mathematical knowledge to solve problems in analytical manner and idea on programming Methodologies.	Sessional Evaluation: Univ.Exam Evaluation: Total Marks:	60

Course	Upon successful completion of the course, the students will be able to:	
Outcomes	CO Problem solving using C Programming concepts	
Course Content	LIST OF PROGRAMS 1. Write a C program to evaluate expressions. 2. Write a C program to implement if constructs. 3. Write a C program to implement Switch statement. 4. Write a C program to implement all Iterative statements. 5. Write a C program to implement Arrays. 6. Write a C program to implement operations on Strings without using library functions. 7. Write a C program to implement arithmetic operations using Pointers. 8. Write C programs that use both recursive and non-recursive functions. 9. Write a C program to implement Structures. 10. Write a C program to implement Structures. 11. Write a C program to implement Basic file operations.	
Text Books and References	 Text Book(s): 2. Programming with ANSI & TURBO C by Ashok N.Kamthane, Pearson Education 2007 Reference Books: 4. A Book on C by Al Kelley/Ira Pohl, Fourth Edition, Addison-Wesley.1999 5. Let Us C by Yashavant Kanetkar, BPB Publications. 6. Programming in ANSI C by Balaguruswamy 6th Edition, Tata McGraw Hill Education, 2012. 	
E-Resources	 https://nptel.ac.in/courses https://freevideolectures.com/university/iitm 	

17ME12P1- ENGINEERING WORKSHOP


(Common to ECE, EEE, CSE and IT)

Course Category:	Program Core	Credits	1
Course Type:	Practical	Lecture-Tutorial- Practice	0 - 0 - 2
		Sessional Evaluation:	40
Prerequisite:	Engineering Physics and Basics Electrical Sciences	Semester End Evaluation:	60
		Total Marks:	100

Course Outcomes	Upon successful completion of the course, the students will able to know the trades and do carpentry, fitting, tin-smithy, house wiring and foundry.	
	LIST OF EXPERIMENTS	
	TRADES FOR EXERCISES:	
	At least two exercises from each trade:	
	1. Carpentry: Lap joint, Mortise and Tenon joint, Bridle joint.	
	2. Fitting: Square, V, half round and dovetail fittings	
	3. Tin-Smithy: Tray, cylinder, hopper, cone	
	4. House-wiring: One lamp controlled by one switch, Two lamps (bulbs) controlled by two	
	switches, Stair- case connection, Water pump connected with single phase starter.	
Course Content	5. Foundry: single-piece pattern, Two- piece pattern	
	TRADES FOR DEMONSTRATION:	
	 Machine Tools Welding Black Smithy 	
	REFERENCE BOOKS:	
	1. Engineering Work shop practice for JNTU, V. Ramesh Babu, VRB Publishers Pvt. Ltd.	
	2. Work shop Manual / P.Kannaiah/ K.L.Narayana/ SciTech Publishers.	
	Engineering Practices Lab Manual, Jeyapoovan, SaravanaPandian, Vikas publishers	

N.B.K.R. INSTITUTE OF SCIENCE & TECHNOLOGY (AUTONOMOUS)

COLLEGE WITH POTENTIAL FOR EXCELLENCE (CPE) Affiliated to JNTUA, Anantapuramu Re-Accredited by NAAC with 'A' Grade B.Tech. Courses Accredited by NBA under TIER-I

SYLLABUS B.TECH. DEGREE COURSE

II B.TECH I & II Semesters

ELECTRONICS AND COMMUNICATION ENGINEERING

(With effect from the batch admitted in the academic year 2017-2018)

VIDYANAGAR - 524413 SPSR Nellore-Dist. Andhra Pradesh www.nbkrist.org

INSTITUTE:

Vision:

To emerge as a comprehensive Institute that provides quality technical education and research thereby building up a precious human resource for the industry and society.

Mission:

- 1. To provide a learner-centered environment that challenges individuals to actively participate in the education process.
- 2. To empower the faculty to excel in teaching while engaging in research, creativity and public service.
- 3. To develop effective learning skills enabling students pick up critical thinking thus crafting them professionally fit and ethically strong.
- 4. To reach out industries, schools and public agencies to partner and share human and academic resources.

VISION AND MISSION OF THE DEPARTMENT

Vision:

To develop high quality engineers with sound technical knowledge, skills, ethics and morals in order to meet the global technological and industrial requirements in the area of Electronics and Communication Engineering.

Mission:

- 1. To produce high quality graduates and post-graduates of Electronics and Communication Engineering with modern technical knowledge, professional skills and good attitudes in order to meet industry and society demands.
- 2. To develop graduates with an ability to work productively in a team with professional ethics and social responsibility.
- 3. To develop highly employable graduates and post graduates who can meet industrial requirements and bring innovations.
- 4. Moulding the students with foundation knowledge and skills to enable them to take up postgraduate programmes and research programmes at the premier institutes.

Programme Educational Objectives (PEOs):

- **1.** To provide the students with strong fundamental and advanced knowledge in mathematics, Science and Engineering with respect to Electronics and Communication Engineering discipline with an emphasis to solve Engineering problems.
- 2. To prepare the students through well designed curriculum to excel in bachelor degree programme in Electronics and Communication Engineering in order to engage in teaching or industrial or any technical profession and to pursue higher studies.

- **3.** To train students with intensive and extensive engineering knowledge and skill so as to understand, analyze, design and create novel products and solutions in the field of Electronics and Communication Engineering.
- 4. To inculcate in students the professional and ethical attitude, effective communication skills, team spirit, multidisciplinary approach and ability to relate engineering issues to broader social context.
- **5.** To provide students with an excellent academic environment to promote leadership qualities, character molding and lifelong learning as required for a successful professional career.

Program Outcomes (POs):

- **PO1:** Ability to acquire and apply knowledge of science and engineering fundamentals in problem solving.
- **PO2:** Acquire in-depth technical competence in a specific information technology discipline.
- **PO3:** Ability to undertake problem identification, formulation and providing optimum solution.
- **PO4:** Ability to utilize systems approach to design and evaluate operational performance.
- **PO5:** Understanding of the principles of inter-disciplinary domains for sustainable development.
- **PO6:** Understanding of professional & ethical responsibilities and commitment to them.
- **PO7:** Ability to communicate effectively, not only with engineers but also with the community at large.
- **PO8**: Ability to Communicate effectively on complex engineering activities with the engineering community and with society at large.
- **PO9**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO11**: Understanding of the social, cultural, global and environmental responsibilities as a professional engineer.
- **PO12**: Recognizing the need to undertake life-long learning, and possess/acquire the capacity to do so.

NBKR INSTITUTE OF SCIENCE & TECHNOLOGY: VIDYANAGAR

(AUTONOMOUS) (AFFILIATED TO JNTU ANANTAPUR: ANANTHAPURAMU) SPSR NELLORE DIST II YEAR OF FOUR YEAR B.TECH DEGREE COURSE – I SEMESTER ELECTRONICS AND COMMUNICATION ENGINEERING SCHEME OF INSTRUCTION AND EVALUATION

(With effect from the academic year 2017-2018)

(For the batch admitted in the academic year 2017-2018)

												Evalua	tion					
S.No	Course Code	Course Title		Instruction Hours/Wee		Credits Sessional-I Sessional-II Marks Marks			Total Sessional Marks(40)	End Semester Examination		Maximum Total Marks						
	code	THEORY	L	Т	D/P		Test ^{\$} -I	A [#] -I	Max. Marks	Test ^{\$} -II	A [#] -II	Max. Marks		Duration In Hours	Max. Marks	100		
1	17SH2101	Engineering Mathematics-II**	2	2	-	3	34	6	40	34	6	40		3	60	100		
2	17EC2101	Signals & Systems*	2	2	-	3	34	6	40	34	6	40	0.8*Best of	3	60	100		
3	17EC2102	Switching Theory & Logic Design*	2	2	-	3	34	6	40	34	6	40	two+0.2* least of two	3	60	100		
4	17EC2103	Analysis of Electronic Circuits	3	-	-	3	34	6	40	34	6	40		3	60	100		
5	17EC2104	Electromagnetic Fields and waves	2	2	-	3	34	6	40	34	6	40		3	60	100		
6	17EE2104	Electrical Technology	2	2	-	3	34	6	40	34	6	40		3	60	100		
		PRACTICALS																
7	17EC21P1	Electronic Devices Lab*	-	-	3	2	-	-	-	-	-	-	Day to Day Evaluation and a	3	60	100		
8	17EE21P2	Electrical Engineering Lab	-	-	3	2	-	-	-	-	_	-	test (40 Marks)	3	60	100		
9	17EC21P2	Basic Simulation Lab	1	-	2	2	-	-	-	-	-	-	(10 114110)	3	60	100		
		MANDATORY											0.8*Best of					
10	17MC2101	Environmental Studies**	3	-	-	-	34	6	40	34	6	40	two+0.2* least of two	3	60	100		
		TOTAL	17	10	08	24	-	-	-	-	-	-	-	-	600	1000		

**Common to ECE, EEE, CSE, IT

* Common to ECE, EEE

A for Assignment (continuous evaluation)

\$ Test (Descriptive & Objective) duration = 2 Hours

17SH2101-ENGINEERING MATHEMATICS -II

(Common to ECE, EEE, CE and ME)

Course Category:	Basic Sciences	Credits:	3
Course Type:	Theory	Lecture-Tutorial-Practical:	2-2-0
Prerequisite:	Intermediate Mathematics	Sessional Evaluation:	40
		External Evaluation:	60
		Total Marks:	100

 The concepts of First shifting theorem, Change of scale property, Laplace transformation of multiplied by t and division by t and transformation of derivative and integrals. The application of Solutions of Ordinary Differential Equations. The determination of Fourier coefficients, Fourier series, Even and Odd Function and Change of intervals. The concepts of Fourier Transforms. The Properties of Z- Transforms, Shifting properties, initial value and final valu theorems. The applications of difference equations and to develop the basic mathematical knowledge and computational skills of the students in the areas of applied mathematics
 Course Objectives 2. The application of Solutions of Ordinary Differential Equations. 3. The determination of Fourier coefficients, Fourier series, Even and Odd Function and Change of intervals. 4. The concepts of Fourier Transforms. 5. The Properties of Z- Transforms, Shifting properties, initial value and final value theorems. 6. The applications of difference equations and to develop the basic mathematical
 Course Objectives 2. The application of Solutions of Ordinary Differential Equations. 3. The determination of Fourier coefficients, Fourier series, Even and Odd Function and Change of intervals. 4. The concepts of Fourier Transforms. 5. The Properties of Z- Transforms, Shifting properties, initial value and final value theorems. 6. The applications of difference equations and to develop the basic mathematical
 Course Objectives 3. The determination of Fourier coefficients, Fourier series, Even and Odd Function and Change of intervals. 4. The concepts of Fourier Transforms. 5. The Properties of Z- Transforms, Shifting properties, initial value and final value theorems. 6. The applications of difference equations and to develop the basic mathematical
Objectivesand Change of intervals.4. The concepts of Fourier Transforms.5. The Properties of Z- Transforms, Shifting properties, initial value and final value theorems.6. The applications of difference equations and to develop the basic mathematical
 The concepts of Fourier Transforms. The Properties of Z- Transforms, Shifting properties, initial value and final value theorems. The applications of difference equations and to develop the basic mathematical
 The Properties of Z- Transforms, Shifting properties, initial value and final value theorems. The applications of difference equations and to develop the basic mathematical
theorems.6. The applications of difference equations and to develop the basic mathematical
6. The applications of difference equations and to develop the basic mathematical
After completing the course the student will be able to
CO1 Acquire basic knowledge in Laplace transforms and their applications.
Develop analytical skills in solving the Ordinary Differential Equations by usin
CO2 bevelop analytical skins in solving the Ordinary Differential Equations by using the Laplace transform technique.
Course CO3 Know analytical skills in solving the problems involving Fourier Series.
CO4 Understand effectively Fourier Sine and Cosine integral, Fourier Transform
Fourier Sine and Cosine transforms.
CO5 Attains skills in analyzing the Z-Transforms and their applications.
CO6 Apply and solve difference equations by effectively understanding Inverse Z
Transforms.
UNIT – I
LAPLACE TRANSFORMATION: Laplace Transformations of standard functions
First shifting theorem - Change of scale property - Laplace transformation of multiple b
t and division by t - Transformation of derivatives and integrals.
Course UNIT – II
Content INVERSE LAPLACE TRANSFORMATION : Inverse transforms - Method of partia
fractions - Shifting property - Inverse Laplace transform of a multiple by s and division
by s - Inverse Laplace transform of derivatives and integrals - Convolution theorem
Application to Solutions of Ordinary Differential Equations.

	UNIT-III
	FOURIER SERIES : Determination of Fourier coefficients - Fourier series - Even and Odd functions - Change of intervals (0,21).
	UNIT-IV
Course	FOURIER TRANSFORMS : Fourier Integral Theorem (Without proof)-Fourier Sine and Cosine integrals - Fourier integral in complex form - Fourier Transforms - Fourier Sine and Cosine transforms.
Content	UNIT-V
	Z-TRANSFORMS : Z-Transform of some standard functions - Properties of Z- Transforms - Shifting Properties - Initial value theorem and final value theorem.
	UNIT-VI
	INVERSE Z- TRANSFORM AND DIFFERENCE EQUATIONS : Inverse Z- Transform - Convolution theorem-Inversion by partial fractions - Applications to difference equations.
	TEXT BOOKS: 1. Higher Engineering Mathematics - B.S.Grewal, Kanna Publishers, New Delhi.
Text Books	 Engineering Mathematics - B.V. Ramana, Tata McGraw-Hill Education Pvt. Ltd, New Delhi.
and Reference	REFERENCE BOOKS:
Books	1. Higher Engineering Mathematics - H.K. Dass, Er. Rajnish Verma, S.Chand Publication, New Delhi.
	2. Advanced Engineering Mathematics - N.P. Bali & M. Goyal, Lakshmi Publishers, New Delhi.
	3. Advanced Engineering Mathematics - Erwin Kreyszig, Wiley, India

17EC2101 - SIGNALS AND SYSTEMS

(Common to ECE and EEE)

Course category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	2 - 2 - 0
Prerequisite:	Knowledge of vectors	Sessional Evaluation :	40
	Trigonometry, Differentiation &	External Evaluation:	60
	Integration	Total Marks:	100

	Stude	nts undergoing this course are expected to understand:				
	1.	The different types of Continuous Time Signals.				
Course	2.	The Fourier series for periodic signals.				
Objectives	3.					
	4.	_				
	5.	Mathematical background of Discrete Time Signals and Systems.				
	6.	The Fourier Transform of discrete time signals and systems.				
	Upon	successful completion of the course, the students will be able to:				
	CO1	Define the signals and systems with examples.				
	CO2	Find the Fourier series of various Periodic signals.				
Course	CO3	analyse the signal in frequency domain by applying FT and its properties				
Outcomes	CO4	establish the inter connections of LTI systems.				
	CO5	know the operations on discrete time signals and its transformations.				
	CO6	solve the difference equation and attain the solution using DTFT.				
	UNIT-I CONTINUOUS TIME SIGNALS: Signal classification, Types of signals-Dirac delta, unit step, ramp, Signum and Exponential functions, Operations on signals, Analogy between vectors and signals, Orthogonality, Mean square error					
Course		UNIT-II RIER SERIES: Definition-Dirichlet's conditions, classification of Fourier Series, rties of Fourier Series. UNIT III				
Content						
	FOURIER TRANSFORM: Existence of Fourier Transform- Properties of Fourier Transform-Inverse Fourier Transforms, Parseval's Theorem of Energy and Power signals, Energy, Power, Periodicity of signals, Power and Energy Spectral Densities, Auto and Cross correlation of signals. UNIT-IV					
	CON	TINUOUS TIME SYSTEMS: Classification of systems – Linearity and time				
	invari	ance – Transmission of signals through LTI systems – Convolution – Impulse nse – Frequency response of LTI Systems.				

	UNIT-V					
Course Content	DISCRETE TIME SIGNALS AND SYSTEMS: Unit impulse, step, ramp, and exponential signals – Periodicity of signals – Operations on signals – Linear Shift Invariant(LSI) system – Stability – Causality – Convolution and Correlation –Linear constant coefficient difference equation – Impulse response. UNIT-VI					
	DISCRETE TIME FOURIER TRANSFORM : Definition of Discrete Time Fourier Transform – Properties – Transfer function – System analysis using DTFT. Ideal filters – Distortion less transmission – Band Width – Rise time – Hilbert transform – Pre and complex envelopes – Band pass signals through band pass systems.					
	TEXT BOOKS:					
	1. Signals & Systems : A Anand Kumar – PHI					
Tarit Daalar	2. Linear Systems and Signals : B.P.Lathi – Oxford University Press					
Text Books and	3. Signals & Systems: P.Ramesh Babu-SP					
Reference	REFERENCES:					
Books	1. Signals & Systems : J.S. Chitode – Technical Publications					
DUUKS	 Signals & Systems :A.V.Oppenhiem & A.S.Willsky with S.Hamid Nawab – PHI 					
E D.	1. https://nptel.ac.in/courses					
E-Resourses	2. https://iete-elan.ac.in					
	3. https://freevideolectures.com/university/iit					

17EC2102 – SWITCHING THEORY & LOGIC DESIGN

(Common to ECE and EEE)

Course category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	2 - 2 - 0
Prerequisite:	Number systems ,Semiconductor	Sessional Evaluation :	40
	device operations, basic Arthematic	External Evaluation:	60
	operations	Total Marks:	100

	Stude	nts undergoing this course are expected to:
Course Objectives	2. 3. 4. 5.	circuits
		successful completion of the course, the students will be able to:
	CO1	understanding of the fundamental concepts and techniques used in digital electronics and examine the structure of various number systems and its application in digital design
Course	CO2	Formulate the K-maps and apply Boolean algebra in designing a Digital System.
Outcomes	CO3	design various combinational circuits
	CO4	analyse various sequential circuits.
	CO5	Identify and prevent various hazards and timing problems in a digital design.
	CO6	Classify various memories in Digital Circuits
UNIT – I NUMBER SYSTEMS AND CODES: Number systems, Sign conversions, Binary arithmetic, Complements, Binary codes–(Be BOOLEAN ALGEBRA AND LOGIC GATES: Basic defi Boolean algebra, De-Morgan's theorem, Digital logic gates, Ur gate circuits. UNIT – II Course MINIMIZATION OF DIGITAL CIRCUITS: Standard for Min-term and max-term specifications, Simplification by K-mag functions, prime implicants, Essential prime implicants, Tabula logic functions using gates. UNIT -III		BER SYSTEMS AND CODES: Number systems, Signed binary numbers, Base rsions, Binary arithmetic, Complements, Binary codes–(BCD, Grey, ASCII). LEAN ALGEBRA AND LOGIC GATES: Basic definitions and theorems of an algebra, De-Morgan's theorem, Digital logic gates, Universal gates, Multi-level ircuits. UNIT – II MIZATION OF DIGITAL CIRCUITS: Standard forms of logical functions, erm and max-term specifications, Simplification by K-maps, Incompletely specified ons, prime implicants, Essential prime implicants, Tabular method, Realization of functions using gates. UNIT -III
	Decin	BINATIONAL LOGIC CIRCUITS: Design procedure, Binary adder, Subtractor, nal adder, Magnitude comparator, Decoders, Encoders, Multiplexers, ltiplexers.

Course Content	UNIT – IV SEQUENTIAL CIRCUITS: Sequential circuits, Storage Elements: (Latches & Flip- flops), Master-slave Flip-flop, Flip-flop conversions, Timing and triggering consideration, Analysis of clocked sequential circuits, State reduction & assignment, Design procedure. UNIT – V REGISTERS AND COUNTERS: Registers, Shift registers, Ripple counters,			
	Synchronous counters, other counters– Ring and Johnson counters.			
	UNIT-VI			
	MEMORY AND PROGRAMMABLE DEVICES: Random-Access Memory, Memory			
	Decoding, Error detection and correction, Read-only Memory, Programmable Logic			
	Array, Programmable Array Logic, Sequential programmable devices.			
	TEXT BOOKS:			
	1 Disited design has Manual Mana Desness Education Asia			
Text Books	 Digital design by Morris Mano, Pearson Education Asia Fundamentals of logic design by Roth & Charles, 2nd Edition, West <i>Publishing</i> 			
and	Company, 1979			
Reference				
Books	REFERENCES:			
	1. Fundamentals of logic circuits by A.Anand Kumar, PHI Learing			
	2. Jon M, Yarbrough, "Digital logic - applications and design", Thomson -			
	Brooks India edition			
	1 http://pptol.og.in/courses			
	 http://nptel.ac.in/cources https:// iete-elan.ac.in 			
E-Resourses	 https://freevideolectures.com/university/iitm 			

17EC2103– ANALYSIS OF ELECTRONIC CIRCUITS

Course Category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3 - 0 - 0
Prerequisite:	Knowledge in electronic devices	Sessional Evaluation :	40
	and its operations with various	External Evaluation:	60
	applications.	Total Marks:	100

	Students undergoing this course are expected to understand:					
Course Objectives	 The concept of rectifiers and other Diode applications The Hybrid model, Small signal analysis of single stage BJT amplifiers The FET biasing schemes, high frequency response. The types of coupling, Darlington and Bootstrap circuits. The hybrid π model at high frequency. 					
	6. Different types of feedback circuits as well as Sinusoidal oscillators					
	Upon successful completion of the course, the students will be able to:CO1Understand the concept of rectifiers and other applications of diodes.					
	CO2 Analyse the stability and biasing concepts of BJT and to design Single Stage amplifiers.					
Course	CO3 Design a FET amplifier and compare with BJT					
Outcomes	CO4 know different methods of coupling and able to design multistage amplifiers					
	CO5 represent the Hybrid π model at high frequency.					
	CO6Design feedback amplifiers and able to understand oscillators.					
	UNIT I					
	RECTIFIERS: Half Wave, Full Wave & Bridge Rectifiers, Analysis of FWR with filters(L, C, LC), Regulators UNIT II					
Course	TRANSISTOR BIASING AND STABILITY: Operating Point, Bias Stability against variation in I_{CO} , V_{BE} & β stability factor, fixed bias, Collector to Base Bias, Self-Bias, Thermal runaway, Compensation Methods.					
Content	SINGLE STAGE AMPLIFIERS: BJT Amplifier, h-parameter model, analysis of common emitter, common collector and common base amplifier using exact model, Approximate model, Millers Theorem and its Dual, Design of RC Coupled amplifier using BJT.					
	UNIT III					
	FET AMPLIFIERS: FET Equivalent model, Analysis of Common Source, Common Drain Amplifiers, Design of FET Amplifier.					

	UNIT IV
	MULTISTAGE AMPLIFIERS: Methods of Coupling, Analysis of Cascade Transistor Amplifier, Analysis of Two Stage RC Coupled Amplifier, High Input Impedance Circuits: Darlington Pair Amplifier, Cascode Amplifier and Bootstrap Emitter Follower, Analysis of Multistage Amplifier using FET.
	UNIT V
Course Content	HIGH FREQUENCY ANALYSIS: Transistor at High Frequency, Hybrid π CE Model, Determination of High Frequency Parameters and CE Short circuit Current Gain, Current Gain with Resistive Loads, Cut-off Frequencies, Frequency Response, parameters f_T and f_{β} . Analysis of CS & CD amplifier at High Frequency.
	UNIT VI
	FEEDBACK AMPLIFIER: Feedback Concept, Types of Feedback, Feedback Topology, Characteristics, Analysis of Feedback Amplifiers, Performance Comparison. OSCILLATORS: Oscillators Principles, Barkhausan Criteria, RC Phase shift and Wien Bridge Oscillator, Hartley and Colpitts Oscillators, Crystal Oscillator.
	TEXT BOOKS:
Text Books and Reference Books	 Mottershed, "Electronic devices and circuits", PHI. Millman and Halkias, "Integrated Electronics", McGraw- Hill Co.
	 REFERENCES: 1. Boylestad, Louis Nashelsky "Electronic devices and circuits" 9ed, 2008PE. 2. David.A.Bell. "Electronic Devices and circuits", PHI.
E-Resourses	 https://nptel.ac.in/courses https://iete-elan.ac.in https://freevideolectures.com/university/iit

17EC2104 – ELECTRO MAGNETIC FIELDS AND WAVES

Course category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	2 - 2 - 0
Prerequisite:	Basic concepts of coordinate	Sessional Evaluation :	40
	system & fundamentals of	External Evaluation:	60
	electricity & magnetism	Total Marks:	100

	Stude	nts undergoing this course are expected to understand:
	1.	Coordinate systems, Vector calculus, Electrostatics, laws involved in
	2	Electrostatics.
Course		Coulomb's law, Mathematical analysis of Gauss's law. Behavior of conductors with regard to Current, Current Density, Resistance.
Objectives	5.	Understand the significance of Ohm's law for EM fields.
	4	Magneto Static Fields and various laws applicable to magnetic fields.
		Dipole Moment of materials, Boundary conditions governing Magnetic interfaces
	5.	and study about energy stored in Magnetic Fields.
	6.	
	Upon	successful completion of the course, the students will be able to:
	CO1	know the conversions of one coordinate system to other forms.
Course	CO2	remember Gauss Law, Coulomb's law to find fields and potentials for a various situation.
Outcomes	CO3	derive the Continuity equation and give the importance of current density.
	CO4	understand Biot-Savart's Law and Ampere's Circuital law and apply to solve problems on these
	CO5	acquire the knowledge of Dipole moment, Boundary conditions of Magnetic Fields
	CO6	Know the Maxwell's equation in differential and integral forms, Faraday's law
		UNIT-I
		EW OF COORDINATE SYSTEMS: Introduction to coordinate systems, sian, Cylindrical and spherical coordinate systems, Vector transformations, Vector us.
		UNIT-II
Course Content	Densi	CTROSTATIC FIELDS: Coulomb's Law, Electric Field Intensity, Electric Flux ty –Gauss's Law. Gauss's law in point form. Electric Potential-Potential Gradient- y Stored in Electric Field.
		UNIT-III
	Equat Dieleo	DUCTORS AND DIELECTRICS: Current and Current Density- Continuity ion-Conductors-Ohms Law, Resistance, power dissipation and Joules law. ctrics: Dipole Moment-Polarization-bound Charge Densities-Boundary Conditions, citance.

	UNIT-IV
	MAGNETOSTATIC FIELDS: Amperes force law, Biot-Savart's Law, Lorentz force law, Ampere's circuital law in point form, Magnetic Vector Potential
G	UNIT-V
Course Content	MAGNETIC FIELD IN MATERIALS: Dipole Moment, Magnetization and bound current densities. Boundary Conditions- Inductance, Energy Stored in Magnetic Field.
	UNIT-VI
	MAXWELL'S EQUATIONS: Faraday's law, Motional and transformer induced EMFs, Faraday's law in point form. Displacement current, Maxwell's equations in differential and integral forms.
Text Books and	 TEXT BOOKS: 1. Matthew N.O.Sadiku: "Elements of Engineering Electromagnetics" Oxford University Press, 4thedition, 2007. 2. E.C. Jordan & K.G. Balmain "Electromagnetic Waves and Radiating Systems." Pearson Education/PHI 4thedition 2006.
Reference Books	 REFERENCES: 1. Narayana Rao, N: "Elements of Engineering Electromagnetics" 6th edition, Pearson Education, New Delhi, 2006. 2. G.S.N. Raju, Electromagnetic Field Theory & Transmission Lines, Pearson Education, 2006.
E-Resourses	 https://nptel.ac.in/courses https://iete-elan.ac.in https://freevideolectures.com/university/iit

17EE2104-ELECTRICAL TECHNOLOGY

Course Category:	Professional core	Credits:	3
Course Type:	Theory	Lecture-Tutorial-Practical:	2-2-0
Pre-requisite:	Basic Electrical Sciences	Sessional Evaluation:	40
		External Exam Evaluation:	60
		Total Marks:	100

~	Students undergoing this course are expected to understand:
Course	1. The basic concepts, operation, characteristics and underlying theories of DC
Objectives	Machines, Transformers and Induction Motors
	2. The applications of electrical machines.
	Upon successful completion of the course , the students will be able to:
	CO1 Comprehend the construction, principle of operation and characteristics of DC Generator
Course	CO2 Describe the construction and principle of operation of DC Motor
Outcomes	CO3 Understand the construction and principle of operation of Single phase transformers
	CO4 Depict the construction, principle of operation and characteristics of Three phase Induction Motors
	CO5 Empathise the construction and principle of operation of Alternator
	CO6 Describe the principle of operation of Single Phase Induction Motor and Stepper Motor
	UNIT-I DC GENERATORS: Constructional details of DC machines, principle of operation of the generator, EMF equation, types of generators, magnetization and load characteristics
	UNIT-II
	DC MOTORS: Principle of operation of DC Motors, Torque equation, Speed control methods and Efficiency calculation by Swinburne's test and direct load test.
Course	UNIT-III
Content	TRANSFORMERS: Single phase transformer, principle of operation & types, constructional details, EMF equation, Phasor diagram on no load and loaded Conditions, equivalent circuit, voltage regulation, transformer tests-OC & SC tests.
	UNIT-IV
	THREE PHASE INDUCTION MOTORS : Constructional features, principle of torque production, torque equation, slip-torque characteristics, efficiency calculation, starting methods, Autotransformer method & DOL method.

	UNIT-V
Course Content	ALTERNATOR: Constructional features, operation, EMF equation, estimation of regulation by synchronous impedance method.
Content	UNIT-VI
	SINGLE PHASE INDUCTION MOTORS: Principle of operation, starting methods, types of single phase induction motors and Stepper motor.
	TEXT BOOKS:
Text Books and Reference	 "Theory and performance of Electrical machines" by J.B Gupta - SK Kataria Publishers-2013. "Principles of Electrical Machines" by VK Mehta, Rohit Mehta – S.Chand – 2006. "A Textbook of Electrical Technology: Volume 2 AC and DC Machines" by Theraja B.L, Theraja A.K. –S.Chand-2006
Books	REFERENCE BOOKS:
	 "Electrical Machinery" by P.S Bimbhra - Khanna publishers-2011. "Performance of DC machines" by M.G.Say, Second Edition, CBS Publishers "Electrical machines" by I.J.Nagarath and D.P.Kothari Fourth edition, Tata Mc Graw-Hill.
E-Resourses	1. http://nptel.ac.in/courses 2.http://iete-elan.ac.in 3.http://freevideolectures.com/university/iit

17MC2101- ENVIRONMENTAL STUDIES

Course Category:	Professional core	Credits:	0
Course Type:	Theory	Lecture-Tutorial-Practical:	3-0-0
Pre-requisite:	Basic idea on environment,	Sessional Evaluation:	40
	Environmental pollution causes, effects,	External Evaluation:	60
	and control measures.	Total Marks:	100

	Students undergoing this course are expected to:	
Course Objectives	 Know the importance of Environmental studies and various environment components Know the value of natural resources and need to protect them. Know the value of biodiversity and its conservation methods. Design engineering methods and solve problems related to environmental pollution. Understand the social issues and provide plans to minimize the problems. Understand need to protect various environmental acts. 	
Course Outcomes	Upon successful completion of the course, the students will be able to:CO1know the importance of Environmental studies and understand the various components of environment.CO2estimate the value of natural resourcesCO3asses the value of biodiversity and need to protect.CO4know how the environment is polluted and suggest some control measures.CO5aware the several environmental problems in India and way to minimize the effects.CO6Know the environmental protection laws in our country and understand the need to respect those laws.	
Course Content		

Course Content	BIO-DIVERSITY AND ITS CONSERVATION: Value of bio-diversity- consumptive and productive use, social, ethical, aesthetic and option values - Threats to biodiversity- conservation of biodiversity. UNIT-IV ENVIRONMENTAL POLLUTION: Causes, Effects and control measures of Air pollution, Water Pollution, Soil pollution, Marine Pollution, Noise pollution, Nature of Thermal pollution and nuclear hazards, Global warming, Acid rain, Ozone depletion. SOLID WASTE MANAGEMENT: Composting, Vermiculture - Urban and industrial wastes, recycling and reuse, UNIT-V ENVIRONMENTAL PROBLEMS IN INDIA: Drinking water, Sanitation and public health -Effects of urbanization, Transportation, Industrialization on the quality of environment-Social Issues. ECONOMY AND ENVIRONMENT: The economy and environment interaction, Sustainability, Environment Impact Assessment UNIT-VI
	protection Act, Forest conservation Act. CASE STUDIES: Silent valley project, Madhura Refinery and Taj Mahal, Tehri Dam, Kolleru Lake Aquaculture, Fluorosis in Andhra Pradesh. FIELD WORK: Visit to Local Area having river/Forest/grass land/hill/mountain to Document and Environmental assets.
	TEXT BOOKS:
Text Books and Reference Books	 "Environmental science" by Anubha Kaushik and C.P.Kaushik. "Environmental science and Engineering" by P.Anandan and R.K.Kumaravelan. REFERENCES: "Introduction to Environmental science" by Y.Anjaneyulu. "Environmental studies" by Dr B.S.Chauhan.

17EC21P1 – ELECTRONIC DEVICES LAB

Course Category:	Program Core	Credits:	2
Course Type:	Practical	Lecture-Tutorial- Practice:	0 - 0 - 3
	Desig Electrical Sciences and	Sessional Evaluation:	40
Prerequisite:	Basic Electrical Sciences and Electronic Devices	External Evaluation :	60
	Electronic Devices	Total Marks:	100

	Students undergoing this course are expected to understand:
Course Objectives	1. The behaviour of various semiconductor devices.
Objectives	2. The V-I characteristics of various semiconductor devices.
	Upon successful completion of the course, the students will be able to:
	CO1 Analyse the electronic circuits experimentally.
C	CO2 Verify the V-I characteristics of various semiconductor devices experimentally.
Course Outcomes	CO3 Analyse & Calculate the cut-in voltage and forward resistance of P-N Junction diode practically.
	CO4 Examin the performance of JFET and UJT.
	CO5 Understand the performance LED and DIAC
	CO6inspect the input and output characteristics of BJT.
	Minimum of 10 experiments to be completed out of the following:
	LIST OF EXPERIMENTS
	1. P-N Junction Diode Characteristics (Ge & Si)
	2. Zener Diode Characteristics
	3. Bi-Polar Junction Transistor Characteristics (CE Configuration)
	4. Junction Field Effect Transistor Characteristics
Course	
Content	5. Uni-Junction Transistor Characteristics
	6. Light Emitting Diode Characteristics
	7. Light Dependent Resistor Characteristics
	8. Photo Transistor Characteristics
	9. Thermistor Characteristics
	10. DIAC Characteristics
	11. Bi-Polar Junction Transistor Characteristics (CB Configuration)
	12. TRAIC Characteristics

17EE21P2-ELECTRICAL ENGINEERING LAB

Course Category:	Program Core	Credits:	2
Course Type:	Practical	Lecture-Tutorial- Practice:	0 - 0 - 3
Prerequisite:	Physics, Electrical and Electronic components.	Sessional Evaluation: External Evaluation : Total Marks:	

	Stude	nts undergoing this course are expected to understand:			
Course Objectives	1.	The design and analysis of basic electric circuits.			
Objectives	2.	The behaviour of DC & AC machine.			
	Upon	successful completion of the course, the students will be able to:			
	CO1 Analyse the electric circuits experimentally.				
	CO2	Verify the theorems and determine the two port network parameters experimentally.			
Course Outcomes	CO3	estimate the mutual inductance of coupled coils practically.			
Outcomes	CO4	distinguish the performance of DC motor on no load & full load conditions.			
	CO5	test the performance of single-phase transformer under no load & full load conditions.			
	CO6	demonstrate the load characteristics of DC shunt generator.			
		I ICT OF EVDEDIMENTS			
		LIST OF EXPERIMENTS			
	1. Verification of Kirchhoff's laws				
	2. Verification of Superposition theorem				
	3. Verification of Maximum power transfer theorem				
	4. Determination of Two-Port network parameters				
Course		5. Measurement of Mutual inductance			
Content		6. Locus diagram of RC series circuit			
		7. External characteristics of DC shunt generator			
		8. Swinburne's test			
		9. Brake test on DC shunt motor			
		10.Speed control of DC shunt motor			
		11.Open circuit and short circuit test on 1-φ transformer			
		12.Load test on 1- φ transformer			

17EC21P2 – BASIC SIMULATION LAB

Course Category:	Program Core	Credits:	2
Course Type:	Practical	Lecture-Tutorial- Practice:	1 - 0 - 2
Prerequisite:	Signals and Systems	Sessional Evaluation: External Evaluation : Total Marks:	

	Studer	nts undergoing this course are expected to understand:					
Course Objectives		Basic operations of matrices and varies signals.					
Objectives	2. Verification of various systems and sampling theorem.						
	Upon	successful completion of the course, the students will be able to:					
	CO1 Perform the Operations on Matrices						
	CO2	CO2 Generate various signals using MAT lab.					
Course Outcomes	CO3	Find the Even and Odd parts of Signal/Sequence and Real and Imaginary part of Signal.					
	CO4	Verify the linearity and time invariance properties of a given continuous /discrete system.					
	CO5	Find LT for some signals and system					
	CO6	Compute the unit sample, unit step and sinusoidal response of the given LTI system					
	Minin	num of 10 experiments to be completed out of the following:					
		LIST OF EXPERIMENTS					
		 Basic Operations on Matrices Generation on various Signals and Sequences (periodic and aperiodic) 					
		 Operations on Various Signals and Sequences (periodic and aperiodic) Operations on Signals and Sequences 					
		4. Finding the Even and Odd parts of Signal/Sequence and Real and					
		Imaginary part of Signal.					
Course		5. Convolution between Signals and Sequences					
Content		6. Auto Correlation and Cross Correlation between Signals and Sequences.					
		 Verification of linearity and time invariance properties of a given continuous /discrete system. 					
		8. Computation of unit sample, unit step and sinusoidal response of the given LTI system and verifying its physical reliability and stability properties.					
		9. Finding the Fourier transform of a given signal and plotting its magnitude and phase spectrum.					
		10. Waveform synthesis using Laplace Transform.					
		11. Locating the zeros, poles and plotting the pole zero maps in s-plane and z-					
		plane for the given transfer function.					
		12. Sampling theorem verification					

NBKR INSTITUTE OF SCIENCE & TECHNOLOGY: VIDYANAGAR

(AUTONOMOUS) (AFFILIATED TO JNTU ANANTAPUR: ANANTHAPURAMU) SPSR NELLORE DIST II YEAR OF FOUR YEAR B.TECH DEGREE COURSE – II SEMESTER ELECTRONICS AND COMMUNICATION ENGINEERING SCHEME OF INSTRUCTION AND EVALUATION

(With effect from the academic year 2017-2018)

(For the batch admitted in the academic year 2017-2018)

												Evalua	tion			
S.No	Course Code	Course Title		Instruction Hours/Wee	-	Credits	5	Sessional Marks	-I		sional-II Marks		Total Sessional Marks(40)	End Sen Examin		Maximum Total Marks
	Code	THEORY	L	Т	D/P		Test ^{\$} -I	A#-I	Max. Marks	Test ^{\$} -II	A [#] -II	Max. Marks		Duration In Hours	Max. Marks	100
1	17SH2201	Engineering Mathematics-III**	2	2	-	3	34	6	40	34	6	40		3	60	100
2	17SH2202	Engineering Economics and Financial Accounting**	2	2	-	3	34	6	40	34	6	40	0.8*Best of	3	60	100
3	17EC2201	Pulse & Switching Circuits *	2	2	-	3	34	6	40	34	6	40	two+0.2* least of two	3	60	100
4	17EC2202	Electromagnetic Transmission lines	2	2	-	3	34	6	40	34	6	40		3	60	100
5	17EC2203	Analog Communication	3	-	-	3	34	6	40	34	6	40		3	60	100
6	17EC2204	Random Signals & Stochastic Processes	2	2	-	3	34	6	40	34	6	40		3	60	100
		PRACTICALS		-	_						_		Davi ta Davi			
7	17EC22P1	Electronic Circuits Lab	-	-	3	2	-	-	-	-	-	-	Day to Day Evaluation and a	3	60	100
8	17EC22P2	Analog Communication lab	-	-	3	2	-	-	-	-	-	-	test (40 Marks)	3	60	100
9	17EC22P3	Electronic Design Automation lab	1	-	2	2	-	-	-	-	-	-		3	60	100
		MANDATORY											0.8*Best of two+0.2*			
10	17MC2201	Technical English and Soft Skills**	2	-	-	-	34	6	40	34	6	40	least of two	3	60	100
		TOTAL	16	10	08	24	-	-	-	-	-	-	-	-	600	1000

**Common to ECE, EEE, CSE, IT

* Common to ECE, EEE

A for Assignment (continuous evaluation)

\$ Test (Descriptive & Objective) duration = 2 Hours

17SH2201-ENGINEERING MATHEMATICS -III

(Common to ECE and EEE)

Course Category:	Basic Sciences	Credits:	3
Course Type:	Theory	Lecture -Tutorial-Practical:	2-2-0
Prerequisite:	Intermediate Mathematics	Sessional Evaluation:	40
		External Evaluation:	60
		Total Marks:	100

	Stude	nts undergoing this course are expected to understand:			
Course Objectives	2. 3.	1			
	Upon	successful completion of the course, the students will be able to:			
	CO1	Have a sound knowledge in analyzing One-dimensional wave equation, Heat flow equation and Two-dimensional Laplace equations.			
	CO2	Attains skills in analyzing the Bessel functions and Legendre functions.			
Course Outcomes	CO3	Understand effectively the significance of differentiability for complex functions and be familiar with the Cauchy-Riemann equations.			
	CO4	Recognize and apply the Cauchy's integral formula and the generalized Cauchy's integral formula.			
	CO5	Compute the Taylor and Laurent expansions of simple functions, determining the nature of the singularities and calculating residues.			
	CO6	Have a well-founded knowledge of standard distributions (Binomial,Poisson and Normal distributions) which can describe real life phenomena.			
		UNIT-I			
Course	APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS : Methods of Separation of Variables - One-dimensional Wave equation - One-dimensional Heat flow equation - Two-dimensional Laplace equations.				
Content		UNIT-II			
	$\begin{array}{llllllllllllllllllllllllllllllllllll$				

	UNIT-III COMPLEX ANALYSIS-I: Analytical functions, Cauchy - Riemann equations, Construction of Analytic function - Applications to flow problems - Harmonic and Conjugate harmonic functions - Bilinear transformations. UNIT-IV					
Course Content	COMPLEX ANALYSIS-II : Complex integration - Line integral –Cauchy's theorem - Cauchy's integral formula - Generalized Cauchy's integral formula.					
Content	UNIT-V					
	RESIDUES : Taylor's theorem and Laurent's theorem (without proof) – Singularities – Poles - Residues - Residue theorem - Evaluation of real definite integrals.					
	UNIT-VI					
	PROBABILITY AND STATISTICS : Introduction - Random experiments - Random variables - Discrete and Continuous distributions - Binomial distribution - Poisson distribution - Normal distribution.					
	TEXTBOOKS:					
Text Books and Reference	 Higher Engineering Mathematics - B.S. Grewal, Kanna Publishers, New Delhi. Engineering Mathematics - B.V. Ramana, Tata McGraw-Hill Education Pvt. Ltd, New Delhi. Advanced Engineering Mathematics - Erwin Kreyszig, Wiley, India 					
Books						
	REFERENCE:					
	 Higher Engineering Mathematics - H.K. Dass, Er. Rajnish Verma, S. Chand Publication, New Delhi. Engineering Mathematics -III - Dr.T.K.V. Iyengar, Dr.B. Krishna Gandhi, S. Ranganatham, Dr.M.V.S.S.N. Prasad, S. Chand Publication, New Delhi Special functions and complex variables (Engineering Mathematics-III) – Shahnaz Bathul, PHI, New Delhi. 					

17SH2202-ENGINEERING ECONOMICS AND FINANCIAL ACCOUNTING

(Common to ECE and EEE)

Course Category:	Humanities	Credits	3
Course Type:	Theory	Lecture-Tutorial-Practical:	2-2-0
Pre-requisite:		Sessional Evaluation:	40
		External Evaluation:	60
		Total Marks:	100

	Students undergoing this course are expected to understand:
Course Objectives	 Causes of economic problems. Behaviour of a Consumer while purchasing and consuming various commodities and services Various production and cost concepts used in managerial decision making process Formation of different types of business organizations in India. Application of the basic accounting concepts
	Upon successful completion of the course, the students will be able to:
	CO1 Demonstrate an ability to define, analyze and identify the appropriate solution to a business problem using sound economic and accounting principles.
	CO2 Know the role of various cost concepts in managerial decisions and the managerial uses of production function.
Course	CO3 Understand to take price and output decisions under various market structures.
Outcomes	CO4 Know in brief formalities to be fulfilled to start a business organization.
	CO5 Analyse the firm's financial position with the techniques of economic aspects as well as financial analysis.
	CO6 Evaluate and select profitable investment proposals
	UNIT – I
	UNIT – I BASIC CONCEPTS OF ECONOMICS: Definition of Economics and basic micro and macro-economic concepts (including GDP/GNP/NI/Disposable Income). The concept of Demand-Law of demand – Elasticity of Demand: Types and measurement. Consumer's equilibrium: Marginal Utility Analysis.
Course	BASIC CONCEPTS OF ECONOMICS : Definition of Economics and basic micro and macro-economic concepts (including GDP/GNP/NI/Disposable Income). The concept of Demand-Law of demand – Elasticity of Demand: Types and measurement.
Course Content	BASIC CONCEPTS OF ECONOMICS : Definition of Economics and basic micro and macro-economic concepts (including GDP/GNP/NI/Disposable Income). The concept of Demand-Law of demand – Elasticity of Demand: Types and measurement. Consumer's equilibrium: Marginal Utility Analysis.
	BASIC CONCEPTS OF ECONOMICS: Definition of Economics and basic micro and macro-economic concepts (including GDP/GNP/NI/Disposable Income). The concept of Demand-Law of demand – Elasticity of Demand: Types and measurement. Consumer's equilibrium: Marginal Utility Analysis. UNIT – II THEORY OF PRODUCTION AND COST: Production function – Cobb – Douglas production function and its properties – Law of variable proportions – Law of Returns to

	UNIT – IV
	TYPES OF BUSINESS ORGANIZATIONS: Sole proprietorship, partnership and Joint Stock Company – Shares and debentures.
	BANKING SYSTEM : Central bank, Commercial banks and their functions. Impact of technology in banking sector.
Course	$\mathbf{UNIT} - \mathbf{V}$
Content	FINANCIAL ACCOUNTING : Concepts and principles, Journal and Ledger, Trial Balance, Final Accounts: Trading account, Profit and Loss account and Balance sheet - Simple problems.
	UNIT-VI
	FUNDAMENTAL CONCEPTS OF CAPITAL BUDGETING AND WORKING CAPITAL: Meaning, process and Methods (Payback period, NPV, ARR & IRR- simple problems), Working Capital: operating cycle, factors and sources.
	TEXT BOOKS:
Text Books and Reference	 Varshney & Maheswari: Managerial Economics, S. Chand Publishers Business Organisations: C.B.Gupta, S.Chand Publishers Managerial Economics and Financial Accounting: A.R.Arya Sri, Tata Mcgraw Hills publishers.
Books	REFERENCE BOOKS:
	 Economic Analysis: S.Sankaran, Margham Publications. S.N.Maheswari & S.K. Maheswari, Financial Accounting, Vikas Publishers. S. A. Siddiqui & A. S. Siddiqui, Managerial Economics & Financial Analysis, New age International Space Publications.

17EC2201 – PULSE & SWITCHING CIRCUITS (Common to ECE and EEE)

Course category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	2 - 2 - 0
Prerequisite:	Knowledge in active & passive	Sessional Evaluation :	40
	components and mathematical	External Evaluation:	60
	representation of different waves.	Total Marks:	100

	Students undergoing this course are expected to understand:			
Course Objectives	 design of wave shaping circuits. Functioning of Switching Circuits. Concept of multi-vibrators. Principle and operation of time base generators. various Power Amplifiers and their operation LC tuned amplifiers. 			
	Upon successful completion of the course, the students will be able to:			
	CO1 Design RC circuits for triggering			
Course	CO2 Understand Switching circuits (BJT Inverter, NMOS, PMOS and CMOS Switching circuits)			
Outcomes	CO3 design a Multi-vibrator and Schmitt trigger			
	CO4 analyze Voltage/ Current Sweep Circuits			
	CO5 categorize Power Amplifiers and understand the essence			
	CO6 Understand principle and operation of a Tuned amplifiers			
	UNIT-I			
	WAVE SHAPING CIRCUITS : Types of waveforms, RC low pass and high pass circuits, rise time, tilt, Diode as a switch, Diode clipper and clamper circuits.			
	UNIT-II			
Course Content	REVIEW OF SWITCHING CIRCUITS: BJT Inverter, NMOS, PMOS and CMOS Switching circuits and their implementation (universal gates only).			
	UNIT-III			
	MULTI-VIBRATORS: BJT switch and switching times, Bi-stable multivibrator & triggering methods, Schmitt-trigger, Mono-stable and Astable multi-vibrators using BJT.			
	UNIT-IV			
	TIME BASE CIRCUITS: RC sweep circuits, constant current Miller and Bootstrap time base generators using BJT's, UJT relaxation oscillators, and sampling gates.			

	UNIT-V
Course	POWER AMPLIFIERS: Classification of Power Amplifiers, Class-A, Transformer coupled Class-A, Class-B Push-pull, Complementary Class-B push-pull amplifiers.
Content	UNIT-VI
	TUNED AMPLIFIERS: Introduction, Q-factor, small signal tuned amplifiers, effect of cascading single tuned amplifier on bandwidth and stagger-tuned amplifiers.
Text Books and	 TEXT BOOKS: 1. "Pulse & Digital switching waveforms" by J.Milliman & H.Taub McGraw-Hill,2nd edition 2008. 2. Design of analog CMOS Integrated circuits by Behad razhavi, McGraw-Hill,2nd edition 2001.
Reference Books	 REFERENCE: 1. Solid State pulse circuits, by David A. Bell, PHI.4th edition 2008. 2. Electronic devices and circuit thoery by Boylestad, Louis Nashelsky, 9ed.,2008Pearson Education 3. Millman and Halkian,"Integrated Electronics", McGraw-Hill.
E-Resourses	 http://nptel.ac.in/cources https:// iete-elan.ac.in https://freevideolectures.com/university/iit

17EC2202 – ELECTROMAGNETIC TRANSMISSION LINES

Course category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	2 - 2 - 0
Prerequisite:	Knowledge of Electrostatic fields	Sessional Evaluation :	40
	and magneto static fields	External Evaluation:	60
		Total Marks:	100

	Stude	nts undergoing this course are expected to understand:	
Course Objectives	2. 3. 4. 5.	The significance of Maxwell's equations and their importance in analysing EM waves, which form the core of wireless signal propagation Analyse EM wave propagation through conventional medium like physical conductors and identify the differences between free space propagation and propagation through wired medium. Calculate EM power and impedance offered by different media. Study various types of polarization techniques and its significance and understand the incidental properties of a wave at the interface. Develop mathematical and scientific approaches in solving problems related to identification of line parameters. Study impedance matching techniques of Tx line and solving of Tx line problems using smith chart.	
	Upon	successful completion of the course, the students will be able to:	
	CO1	Use Maxwell's equations to analyse the behaviour of fields.	
~	CO2	Derive wave equations and find their solutions in lossy medium	
Course Outcomes	CO3	Develop wave equations and estimate their solutions in loss less medium	
	CO4	Explain polarization and its significance in wireless communications.	
	CO5	Understand the functionality of transmission lines and their mathematical modelling.	
	CO6	Use Smith charts to solve problems related to impedance matching.	
		<u>UNIT-I</u>	
Course Content	MAXWELL'S EQUATIONS: Summary of field equations, Displacement current, Maxwell's equations in integral and differential forms. Wave equation for free space conditions. Uniform plane wave propagation. Phasor notations for fields, Maxwell's equations in Frequency domain. UNIT-II WAVE PROPAGATION IN LOSSLESS MEDIUM: Uniform plane waves in lossless media, Phase velocity, Group velocity, Wavelength, Phase constant, Refractive index and intrinsic impedance. UNIT-III		
	WAV Propa	E PROPAGATION IN LOSSY MEDIUM: Wave equation and its solution, gation	

	Constant, conductors and dielectrics. Skin effect and impedance. Poynting vector, Instantaneous and average Poynting vectors.					
	<u>UNIT-IV</u>					
Course Content	POLARIZATION, REFLECTION AND REFRACTION: Polarization- Linear, Circular and Elliptical polarizations. Normal incidence on plane boundaries- Reflection and transmission coefficients, Standing waves and VSWR. Oblique incidence on plane boundaries- Parallel and perpendicular polarizations, Snell's law, Total internal reflection, Breswter angle.					
	<u>UNIT-V</u>					
	TRASNMISSION LINES: Primary constants of the line. Distributed parameter equivalent circuit. Transmission line equations and solutions. Propagation constant. Characteristic impedance. Distortion less transmission line. Power flow, Reflection coefficient. Standing waves and VSWR.					
	<u>UNIT-VI</u>					
	IMPEDANCE MATCHING: Line impedance, Input impedance of open and short- circuited lines. Smith chart. Impedance matching using Smith chart. Quarter wave transformer and single stub tuner. Transients on transmission lines.					
Text Books and Reference Books	 TEXT BOOKS: 1. N.O.Sadiku: "Elements of Engineering Electromagnetics" Oxford University Press, 2. E.C. Jordan & K.G. Balmain "Electromagnetic Waves and Radiating Systems." Pearson Education/PHI REFERENCES: 					
	 Narayana Rao, N: "Elements of Engineering Electromagnetics", Pearson Education, New Delhi, 2006. G.S.N. Raju, Electromagnetic Field Theory & Transmission Lines, Pearson Education, 2006. 					
E-Resourses	 https://nptel.ac.in/courses https://iete-elan.ac.in https://freevideolectures.com/university/iit 					

17EC2203 – ANALOG COMMUNICATION

Course category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3 - 0 - 0
Prerequisite:	Knowledge in Fourier series and	Sessional Evaluation :	40
	Fourier transforms.	External Evaluation:	60
		Total Marks:	100

	Stude	nts undergoing this course are expected to understand:	
Course Objectives	1. 2. 3. 4. 5. 6.	SSB modulation and demodulation The difference between SSB, DSB-SC and VSB modulation schemes The discriminate between Frequency Modulation and Phase Modulation generation and detection methods. The effect of noise on different modulation schemes and to design some circuits like Pre - emphasis and De - emphasis networks.	
		successful completion of the course, the students will be able to: Understand the need for modulation, Generation and detection of an AM waves.	
	CO1 CO2	know the SSB-SC modulation and demodulation techniques	
Course Outcomes	CO3	compare the DSB-SC and VSB schemes	
	CO4	Differentiate the A.M and F.M.	
	CO5	Get familiarized with the different types of noises present in the Analog Communication.	
	CO6	Describe the Characteristics of AM and F.M radio Transmitter and receiver.	
	modul descri waves	UNIT –I LITUDE MODULATION: Introduction to communication system, need for lation, Amplitude Modulation, Definition, Time domain and frequency domain ption, Single tone modulation, Power relations in AM waves, Generation of AM s, Square law Modulator, switching modulator, Detection of AM Waves: Square law or, Envelop detector. UNIT –II	
Course Content	SSB MODULATION AND DEMODULATION: Frequency discrimination method for generation of SSB Modulated Wave, Phase discrimination method for generating SSB Modulated waves. Demodulation of SSB Waves.		
		UNIT –III	
	Carrie side b	MODULATION AND DEMODULATION: Double Side Band Suppressed er modulators, Generation of DSB-SC Modulated waves, COSTAS Loop. Vestigial band modulation: Frequency description, Generation of VSB Modulated wave, barison of AM Techniques, Applications of different AM Systems.	

	UNIT –IV				
	ANGLE MODULATION: Frequency Modulation: Single tone frequency modulation, Spectrum Analysis of Sinusoidal FM Wave, Narrow band FM, Wide band FM, Transmission bandwidth of FM Wave - Generation of FM Waves, Direct and Indirect method of FM, Detection of FM Waves: Balanced Frequency discriminator, Phase locked loop, phase discriminator, Comparison of FM and AM.				
	UNIT –V				
Course Content	NOISE IN ANALOG COMMUNICATION: Classification of Noise, Various sources of Noise, Types of Noise: Resistive (Thermal) Noise, Shot noise, Extraterrestrial Noise, Narrowband Noise- In phase and quadrature phase components and its Properties, Noise in DSB and SSB System, Noise in Angle Modulation System, Pre-emphasis and de-emphasis.				
	UNIT-VI				
	TRANSMITERS AND RECEIVERS : Block diagram of AM transmitter, Frequency Scintillation, Radio broadcast transmitter, Armstrong FM transmitter, Simple FM transmitter using Reactance modulator. Classification of radio receivers, TRF receives, Super heterodyne receivers, Intermediate frequency, AGC, AFC.				
	TEXT BOOKS:				
Text Books and	 "Communication Systems" Simon Haykin, Wiley Eastern. "Electronic communication systems" J.Kennedy TMH 				
Reference Books	REFERENCE BOOKS:				
DUOKS	 "Communication Systems Engineering" John Proakis, MasoudSaleb. "Principles of Communication Systems" Taub and Schilling", McGraw-Hill ISE. 				
E-Resourses	 http://nptel.ac.in/cources https:// iete-elan.ac.in https://freevideolectures.com/university/iit 				

17EC2204 – RANDOM SIGNALS AND STOCHASTIC PROCESSES

Course category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	2 - 2- 0
Prerequisite:	Knowledge of Signals and systems,	Sessional Evaluation :	40
	integrations and differential	External Evaluation:	60
	equations.	Total Marks:	100

	Students undergoing this course are expected to:		
Course Objectives	 Provide mathematical background and probability theory. Understand the random variable concepts with distribution and density functions. Know basic concepts of multiple random variables, Conditional probability and conditional expectation, joint distribution and independence. Make the difference between time averages and statistical averages. Analysis of random process and application to the signal processing in the communication system. Demonstrate the students how to model a noise source and design of filters for white and coloured noises and maximize S/N ratio. 		
	Upon successful completion of the course, the students will be able to:		
	CO1 Understand fundamentals of probability theory		
C	CO2 Learn the fundamentals of random variables.		
Course Outcomes	CO3 Illustrate the concepts of vector random variables and related problems.		
	CO4remember the characterization of random processes and their properties		
	CO5 Evaluate response of a system to random signal and noise		
	CO6 Know the noise and how these noise are effecting the communication system		
Course Content	UNIT-I PROBABILITY: Introduction, Set theory and Venn diagrams -Axioms- Joint and conditional probability - Bayes' theorem - Bernoulli trials. UNIT -II RANDOM VARIABLE: Concept — Distribution function — Density functions — Conditional density functions — Expectation — Conditional expected value — Moments — Chebyshev, Markov's, and Chernoff's inequalities — Characteristics and moment generating functions - Transformation of continuous and discrete random variables.		
	UNIT -III MULTIPLE RANDOM VARIABLES: Vector random variables — Joint distribution / Density functions — Conditional density / Distribution functions - Statistical independence — pdf and CDF for sum of random variables — Central limits theorem - Operations on multiple random variables — Expected value of function of random variables — Joint characteristic function — Joint by Gaussian random variables — Transformations of multiple random variables.		

	UNIT – IV
	RANDOM PROCESSES: Concept — Stationarity — Independence — Time averages — Ergodicity — Correlation function and its Properties. Gaussian, Poisson, and Markov processes — Power spectral density and its properties — Relation between power spectral density and auto-correlation — Cross power spectral density and its properties — Power spectrum for discrete time processes and sequences — Definition of white and coloured noise.
	UNIT-V
Course Content	LINEAR SYSTEMS WITH RANDOM INPUTS: Random signal response of linear system — System evaluation using random noise— Spectral characteristics of system response - Band pass, Band limited, and Narrow band processes — Properties of band limited processes.
	UNIT-VI
	 MODELING OF NOISE SOURCES: Classification of noise sources — Resistive (Thermal) noise — Effective noise temperature — Antenna as a noise source — Available power gain — Equivalent networks — Input noise temperature — Noise figure. OPTIMUM LINEAR SYSTEMS: Maximization of (S/N); Matched filter for coloured and white noise — Minimization of Mean Squared Error — Wiener filter.
	TEXT BOOKS:
Text Books and Reference Books	 P.Z.Peebles Jr., "Probability Random Variables and Random Signal Principles". Tata McGraw-Hill, 4 edition, 2001. A.Papoulis and S.Unnikrishna Pillai, "Probability Random Variables and Stochastic Processes", PHI, 4 edition, 2008 J.LAunon and V.Chandrasekhar, "Introduction to Probability and Random Processes", McGraw-Hill 1997.
	REFERENCE:
	 D.G. Childer, "Probability and Random Processes", McGraw Hill, 1997. GR.Babu and K. Pushpa, "Probability Theory and Stochastic Processes", Premier Publishing House, 2003.
E-Resourses	 http://nptel.ac.in/cources https:// iete-elan.ac.in https://freevideolectures.com/university/iit

17MS2201- TECHNICAL ENGLISH AND SOFT SKILLS

(Common to all Branches)

Course Category:	Basic Sciences	Credits:	3*
Course Type:	Theory	Lecture-Tutorial-Practical:	2-0-2
Prerequisite:	Basic Level of LSRW skills	Sessional Evaluation:	40
		External Evaluation:	60
		Total Marks:	100

	Students undersein a this source and superiod to		
Course Objectives	Students undergoing this course are expected to:		
	1. Develop their basic technical writing skills in English.		
	 Learn specific technical verbal competence. Acquire soft skills and work efficiently in a realistic professional working 		
	Environment.		
	4. Develop soft skills including problem solving skills, working in groups and		
	Leadership Skills.		
	Upon successful completion of the course, the students will be able to:		
	CO1 Present technical papers and equip technical verbal proficiency.		
	CO2 Develop group discussion skills and summarizing skills.		
Course Outcomes	CO3 Write effective resumes and job applications.		
	CO4 Develop soft skills and effective nonverbal communication skills.		
	CO5 Develop motivational skills and problem solving skills.		
	CO6 Develop professionals with idealistic, practical and moral values.		
	UNIT –I		
	INTRODUCTION TO TECHNICAL ENGLISH : Writing simple descriptions and explanations on scientific/technical nature - Technical presentations - Communicating technical topics- Jargon		
	UNIT-II		
	GROUP DISCUSSION: Dynamics of Group Discussion - Intervention- Summarizing-		
Course Content	Modulation of voice - Body Language – Relevance - Fluency and Coherence.		
content	UNIT-III		
	RESUMES AND JOB APPLICATIONS: Writing resumes – Resume design – Parts of a resume – Resume styles – Cover letter		
	UNIT-IV		
	INTRODUCTION TO SOFT SKILLS & HARD SKILLS: Non Verbal		
	communication- Haptics – Proxemics - kinesics - Chronemics – Oculesics - Vocalics		
	communeation mappies movemes kinesies emonemies occuesies vocanes		

Course Content	UNIT-V PERSONALITY DEVELOPMENT SKILLS : Assertiveness - Positive Attitude - Self Confidence- Problem Solving Skills- Leadership Skills UNIT-VI ETIQUETTE & MANNERS: Corporate etiquette-Dinning etiquette - Goal Setting- Career Planning -Time Management
Text Books and Reference Books	 REFERENCES: 1. A Textbook of English for Engineers and Technologists (combined edition, Vol.1 &; Orient Black Swan 2010. 2. Effective Technical Communication, M. Ashraf Rizvi, Tata Mc Graw-Hill, 2011 3.Soft Skills, Dr K. Alex, S. Chand Publications, New Delhi

17EC22P1 – ELECTRONIC CIRCUITS LAB

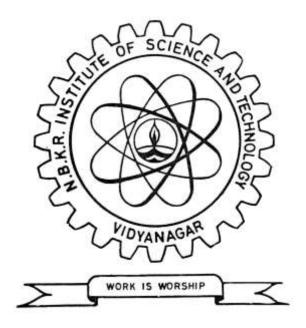
Course Category:	Program Core	Credits:	2
Course Type:	Practical	Lecture-Tutorial- Practice:	0 - 0 - 3
	Electronic Devices & Circuits and Analysis of Electronic Circuits	Sessional Evaluation:	40
Prerequisite:		External Evaluation:	60
-		Total Marks:	100

	Students undergoing this course are expected to understand:		
Course Objectives	1. The design and analysis of various electronic circuits.		
	2. The behaviour of various rectifiers and amplifiers.		
Course	Upon successful completion of the course, the students will be able to:		
	CO1 Analyse the electronic circuits experimentally.		
	CO2 Design & Analyse the rectifiers (With & Without filters).		
Outcomes	CO3 Calculate the frequency response of the RC coupled amplifier practically.		
	CO4 Analyse the Transistor Voltage Regulator (Series and Shunt).		
	CO5 Understand the performance of feedback amplifiers practically		
	CO6 Design & Analyse the various oscillators.		
	Minimum of 10 experiments to be completed out of the following:		
	LIST OF EXPERIMENTS		
	1. Rectifiers without Filters (HWR, FWR, BR).		
	2. Rectifiers with Filters (C, LC, CLC).		
	3. R-C Coupled Amplifier.		
Course	4. FET Amplifier.		
Content	5. Colpitts Oscillator.		
	6. Current Series Feedback Amplifier (With & Without feedback).		
	7. Determination of f_T of a Transistor.		
	8. R-C Phase Shift Oscillator.		
	9. Wien Bridge Oscillator.		
	10. Darlington Pair Amplifier.		
	11. Transistor Voltage Regulator (Series and Shunt)		
	12. Voltage Series Feedback Amplifier (With & Without feedback).		

17EC22P2 – ANALOG COMMUNICATION LAB

Course Category:	Program Core	Credits:	2
Course Type:	Practical	Lecture-Tutorial- Practice:	0-0-3
Prerequisite:	Electronic Devices and Circuits, Signals and Systems	Sessional Evaluation: External Evaluation : Total Marks:	40 60 100

~	Students undergoing this course are expected to understand:								
Course Objectives	1. The design and analysis of various communication circuits.								
Objectives	2. To study and verify the various modulation techniques.								
	Upon successful completion of the course, the students will be able to:								
	CO1 Analyse the electronic circuits experimentally.								
Course	CO2 Design & Analyse the Amplitude Modulation and De-Modulation system.								
Outcomes	CO3 Study and verify the Mixer Characteristics.								
	CO4 examine the PAM and PPM practically								
	CO5 Understand the performance of transmission lines.								
	CO6 Design & Analyse the Frequency Modulation and De-Modulation system.								
	Minimum of 10 experiments to be completed out of the following:								
	winimum of 10 experiments to be completed out of the following.								
	LIST OF EXPERIMENTS								
	1. Amplitude Modulation.								
	2. Amplitude De-Modulation.								
	3. Frequency Modulation.								
Course	4. Pulse Amplitude Modulation.								
Content	5. Pulse Position Modulation.								
	6. Pulse Width Modulation.								
	7. Proto Type Filters.								
	8. Pre-Emphasis and De-Emphasis.								
	9. Transmission Lines.								
	10. FM using Variable Reactance Method.								
	11. Frequency De-Modulation.								
	12. Mixer Characteristics.								


17EC22P3-ELECTRONIC DESIGN AUTOMATION LAB

Course Category:	Program Core	Credits:	2
Course Type:	Practical	Lecture-Tutorial- Practice:	1 - 0 - 2
Prerequisite:	Electronic Devices, Signals and Systems	Sessional Evaluation: External Evaluation: Total Marks:	40 60 100

~	Students undergoing this course are expected to understand:						
Course Objectives	1. The design and analysis of various electronic circuits.						
Objectives	2. The behaviour of various rectifiers and amplifiers.						
	Upon successful completion of the course, the students will be able to:						
	CO1 simulate and Verification the Class-A Power Amplifier.						
Course	CO2 Design & simulate the Rectifiers.						
Outcomes	CO3 Analyse & Calculate the frequency response CE and CS Amplifier.						
	CO4Analyse the Transistor Voltage Regulator.						
	CO5 Design and Verification the Pre-emphasis and De-emphasis circuits.						
	CO6 simulation and Verification of Logic Gates.						
	Minimum of 10 experiments to be completed out of the following:						
	winning of to experiments to be completed out of the following.						
	LIST OF EXPERIMENTS						
	1. Verification of Half–Wave and Full-Wave Rectifier						
	2. Frequency Response of CE Amplifier						
	3. Frequency Response of CS Amplifier						
Course	4. Design and Verification of Class-A Power Amplifier						
Content	5. Design and Verification of Pre-emphasis and De-emphasis circuits						
	6. Verification of Clippers						
	7. Verification of Clampers						
	8. Design and Verification of RC coupled amplifier						
	9. Design and Verification of Voltage Regulator						
	10. Design and Verification of Logic Gates						
	11. Characteristics of the UJT						
	12. Characteristics of the MOSFET and CMOS						

N.B.K.R. INSTITUTE OF SCIENCE & TECHNOLOGY (AUTONOMOUS)

COLLEGE WITH POTENTIAL FOR EXCELLENCE (CPE) Affiliated to JNTUA, Anantapuramu Re-Accredited by NAAC with 'A' Grade B.Tech. Courses Accredited by NBA under TIER-I

SYLLABUS B.TECH. DEGREE COURSE

III B.Tech. I & II Semesters

ELECTRONICS AND COMMUNICATION ENGINEERING

(With effect from the batch admitted in the academic year 2017-2018)

VIDYANAGAR - 524413 SPSR Nellore-Dist. Andhra Pradesh www.nbkrist.org

INSTITUTE:

Vision:

To emerge as a comprehensive Institute that provides quality technical education and research thereby building up a precious human resource for the industry and society.

Mission:

- 1. To provide a learner-centered environment that challenges individuals to actively participate in the education process.
- 2. To empower the faculty to excel in teaching while engaging in research, creativity and public service.
- 3. To develop effective learning skills enabling students pick up critical thinking thus crafting them professionally fit and ethically strong.
- 4. To reach out industries, schools and public agencies to partner and share human and academic resources.

VISION AND MISSION OF THE DEPARTMENT

Vision:

To develop high quality engineers with sound technical knowledge, skills, ethics and morals in order to meet the global technological and industrial requirements in the area of Electronics and Communication Engineering.

Mission:

- 1. To produce high quality graduates and post-graduates of Electronics and Communication Engineering with modern technical knowledge, professional skills and good attitudes in order to meet industry and society demands.
- 2. To develop graduates with an ability to work productively in a team with professional ethics and social responsibility.
- 3. To develop highly employable graduates and post graduates who can meet industrial requirements and bring innovations.
- 4. Moulding the students with foundation knowledge and skills to enable them to take up postgraduate programmes and research programmes at the premier institutes.

Programme Educational Objectives (PEOs):

- **1.** To provide the students with strong fundamental and advanced knowledge in mathematics, Science and Engineering with respect to Electronics and Communication Engineering discipline with an emphasis to solve Engineering problems.
- **2.** To prepare the students through well designed curriculum to excel in bachelor degree programme in Electronics and Communication Engineering in order to engage in teaching or industrial or any technical profession and to pursue higher studies.

- **3.** To train students with intensive and extensive engineering knowledge and skill so as to understand, analyze, design and create novel products and solutions in the field of Electronics and Communication Engineering.
- 4. To inculcate in students the professional and ethical attitude, effective communication skills, team spirit, multidisciplinary approach and ability to relate engineering issues to broader social context.
- **5.** To provide students with an excellent academic environment to promote leadership qualities, character molding and lifelong learning as required for a successful professional career.

Program Outcomes (POs):

- **PO1:** Ability to acquire and apply knowledge of science and engineering fundamentals in problem solving.
- **PO2:** Acquire in-depth technical competence in a specific information technology discipline.
- **PO3:** Ability to undertake problem identification, formulation and providing optimum solution.
- **PO4:** Ability to utilize systems approach to design and evaluate operational performance.
- **PO5:** Understanding of the principles of inter-disciplinary domains for sustainable development.
- **PO6:** Understanding of professional & ethical responsibilities and commitment to them.
- **PO7:** Ability to communicate effectively, not only with engineers but also with the community at large.
- **PO8**: Ability to Communicate effectively on complex engineering activities with the engineering community and with society at large.
- **PO9**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO11**: Understanding of the social, cultural, global and environmental responsibilities as a professional engineer.
- **PO12**: Recognizing the need to undertake life-long learning, and possess/acquire the capacity to do so.

NBKR INSTITUTE OF SCIENCE & TECHNOLOGY: VIDYANAGAR

(AUTONOMOUS) (AFFILIATED TO JNTU ANANTAPUR: ANANTHAPURAMU) SPSR NELLORE DIST III YEAR OF FOUR YEAR B.TECH DEGREE COURSE – I SEMESTER ELECTRONICS AND COMMUNICATION ENGINEERING SCHEME OF INSTRUCTION AND EVALUATION

(With effect from the academic year 2017-2018)

(For the batch admitted in the academic year 2017-2018)

												Evaluatio	n					
S.No	S.No Course Code			Course Title		Instruction Hours/Wee		Credits	S	essional- Marks	I		sional-II Marks		Total Sessional Marks(40)	End Sen Examin		Maximum Total Marks
		THEORY	L	Т	D/P		Test ^{\$} -I	A#-I	Max. Marks	Test ^{\$} -II	A#-II	Max. Marks		Duration In Hours	Max. Marks	100		
1	17EC3101	Microprocessors & microcontrollers	2	2	-	3	34	6	40	34	6	40		3	60	100		
2	17EC3102	Digital Signal Processing*	2	2	-	3	34	6	40	34	6	40	0.8*Best of	3	60	100		
3	17EC3103	Electromagnetic radiating Systems	2	2	-	3	34	6	40	34	6	40	two+0.2* least of two	3	60	100		
4	17EC3104	Analog IC Applications*	2	2	-	3	34	6	40	34	6	40		3	60	100		
5	17EE3103	Linear Control Systems*	2	2	-	3	34	6	40	34	6	40		3	60	100		
6	17EC31EX	Elective-I	3	0	-	3	34	6	40	34	6	40		3	60	100		
	•	PRACTICALS					PRAC	TICALS										
7	17EC31P1	Pulse & Digital Circuits Lab*	-	-	3	2	-	-	-	-	-	40	Day to Day	3	60	100		
8	17EC31P2	IC Applications Lab	-	-	3	2	-	-	-	-	-	40	Evaluation and a test	3	60	100		
9	17SH31P1	Advanced Communication Skills Lab*	1	-	2	2	-	-	-	-	-	40	(40 Marks)	3	60	100		
		TOTAL	14	10	08	26	-	-	-	-	-	360	-	-	540	900		

* Common to ECE, EEE

A for Assignment (continuous evaluation)

\$ Test (Descriptive & Objective) duration = 2 Hours

17EC3101-MICROPROCESSORS AND MICROCONTROLLERS

Course Category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	2 - 2 - 0
Prerequisite:	Computer architecture and Basic	Sessional Evaluation :	40
	programming.	External Evaluation:	60
		Total Marks:	100

	Students undergoing this course are expected to understand:
	 The history and need of different types of microprocessors and learn the internal architecture details, pin configuration, and their timing diagrams of 8085μp. And develop various projects, by learning programming, and interfacing details of 8085 microprocessor.
Course Objectives	 The internal architecture details, pin configuration, Interrupts and their timing diagrams of 8086µp, and develop assemble language programs.
	 4. The internal architecture details, pin configuration, and their timing diagrams of 8051µp.
	 The programming and interfacing details of 8051 microcontroller and memory interfacing too.
	 The internal architecture details, pipelining, addressing modes, and C.P.U. Registers of P.I.C. μc.
	Upon successful completion of the course, the students will be able to:
	CO1 Understand the evaluation of different types of microprocessors and features of $8085 \mu p$ along with memory interfacing.
	CO2 Assess and solve basic binary math operations using the microprocessor and explain the microprocessor 8085 internal architecture and its operation within the area of manufacturing and performance.
Course Outcomes	CO3 Gain the knowledge on internal architecture of 8086µp and its modes of operations along with timing diagrams.
	CO4 Design electrical circuitry to the Microcontroller I/O ports in order to interface the processor to external devices.
	^{CO5} Illustrate how the different peripherals are interfaced with 8086 µc and develop hardware projects using DAC, ADC, & 7-Segment Display.
	CO6 Gain the knowledge on internal architecture of 8051µp and its modes of operations along with timing diagrams by which improving programming skills on microcontroller.
	UNIT-I
Course	NTRODUCTION TO MICROPROCESSORS: Evolution of Microprocessors, Types
Content	of microprocessors, Features of 8085 microprocessor, Architecture of 8085 microprocessor pin configuration Register set Instruction Cycle Timing Diagrams Stack
	nicroprocessor, pin configuration, Register set, Instruction Cycle, Timing Diagrams, Stack and Subroutines.

	UNIT-II INSTRUCTION SET OF 8085 MICROPROCESSOR: Addressing modes, Assembly Language Programs (8085) for addition, subtraction, multiplication, division etc., Interrupts of 8085, Memory interfacing of 8085 microprocessor.
Course Content	UNIT-III ARCHITECTURE OF 8086 MICROPROCESSOR: Architecture, pin description, Instruction set, Addressing modes, Interrupt system. Minimum mode and Maximum mode operations of 8086 and its timing diagrams, Assembler directives, Assembly language programs (8086). UNIT- IV DATA TRANSFER SCHEMES: Programmable interrupt controller (8259) and its interfacing, Programmable DMA controller (8257) and its interfacing, Programmable Interval Timer (8253) and its interfacing.
	UNIT-V MEMORY INTERFACING TO 8086: Interfacing various types of RAM and ROM chips, PPI (8255) and its interfacing, ADC and DAC Interfacing, Waveform generation, Traffic light controller, Stepper motor control, temperature measurement and control.
	UNIT-VI 8051 MICROCONTROLLER: Architecture, pin description, Register set, Instruction set. Interrupt structure, timer & serial port operations, Simple Assembly language programs on general arithmetic and logical operations.
Text Books and	 TEXT BOOKS: 1. Ram. B, "Fundamentals of Microprocessors and Micro controllers", Dhanpat Rai publications. 2. Douglas V. Hall, "Microprocessors and interfacing: Programming and hard ware", TMH, 2nd edition. 3. The 8051 Micro-Controllers, Kenneth J. Ayala, 3rd Edition, Thomson Publications. 4. Design with PIC Micro-Controllers by John B. Peatman, Pearson Educations.
Reference Books	 REFERENCES BOOKS: 1. A.K. Ray and K.M. Bhurchandi, "Advanced Microprocessors and Peripherals", TMH. 2. "Microprocessor Architecture, Programming, and Applications with the 8085" by Ramesh S. Gaonkar", Prentice Hall of India. 3. Intel Microprocessors 8086/8088, 80186/80188, 80286, 80386, 80486, Pentium, Prentium Proprocessor, Pentium II, III, IV by Barry B.Brey.
E-Resources	 http://w3.ualg.pt/~jmcardo/ensino/ihs2004/Benner93.pdf http://engreric.com/wpcontent/uploads/2014/06/Syllabus_CECS346_Fall15.pdf

17EC3102– DIGITAL SIGNAL PROCESSING

(Common to ECE and EEE)

Course category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	2 - 2 - 0
Prerequisite:	Signal & System, Fourier	Sessional Evaluation :	40
	transform, Laplace Transform & Z	External Evaluation:	60
	transform	Total Marks:	100

	Studer	nts undergoing this course are expected to understand:				
Course Objectives	2. 3. 4. 5.					
		successful completion of the course, the students will be able to:				
	CO1	Explain the concept of Z-transform, its properties and understand the concept of discrete and fast Fourier trans forms.				
	CO2	Understand the concept of IDFT and Inverse Z-Transform				
Course	CO3	Apply the Concept of FIR ,IIR Structures and frequency domain filter models				
Outcomes	CO4	Design Parallel and cascade structure of Butterworth, Chebyshev filters.				
	CO5	Design FIR filter using Fourier series method and understand the concept of fixed point and floating-point number representation.				
	CO6	Understand limit cycle oscillations concept and windowing technique.				
	UNIT – I					
	Transf	IEW OF DISCRETE SIGNALS & SYSTEMS: Z-transform and Inverse Z-form, Theorems and Properties, system function, Fourier representation of finite on sequences.				
	Transf	IEW OF DISCRETE SIGNALS & SYSTEMS: Z-transform and Inverse Z-form, Theorems and Properties, system function, Fourier representation of finite				
Course	Transf duration DISC	IEW OF DISCRETE SIGNALS & SYSTEMS: Z-transform and Inverse Z-form, Theorems and Properties, system function, Fourier representation of finite on sequences.				
Course Content	Transf duration DISC algorith DIGI	IEW OF DISCRETE SIGNALS & SYSTEMS: Z-transform and Inverse Z- form, Theorems and Properties, system function, Fourier representation of finite on sequences. UNIT – II RETE & FAST FOURIER TRANSFORM : DFT, properties of DFT, FFT, FFT				

Course Content	UNIT – V DESIGN OF FIR FILTERS: Fourier series method, Windowing, Sampling. UNIT-VI FINITE WORDLENGTH EFFECTS: Fixed point and floating point number representations – Truncation and Rounding errors – Quantization noise – coefficient quantization error – Product quantization error – Overflow error – Roundoff noise power – limit cycle oscillations due to product round off and overflow errors.
Text Books and Reference Books	 TEXTBOOKS: Digital Signal Processing A.V Oppenheim and R.W. Schafer, Prentice – Hall of India. Digital Signal Processing, S. Salivahanam – TMH. Digital Signal Processing Computer Base Approach, S.K. Mitra – Tata McGraw-Hill (III) REFERENCES BOOKS : Digital Signal Processing, P. Ramesh Babu, Scitech Publications.
	 Digital Signal Processing, John G Proakis and monolokis – Wiley Eastern Economy edition.
E-Resources	 http://nptel.ac.in/courses https://dspace.mit.edu/handle/1721.1/57007 http://dl.acm.org/citation.cfm?id=562622

17EC3103 – ELECTROMAGNETIC RADIATING SYSTEMS

Course category:	Program Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	2 - 2 - 0
Prerequisite:	Vector Calculus, Basics of	Sessional Evaluation :	40
	Electromagnetic Waves and Waves	External Evaluation:	60
		Total Marks:	100

	Students undergoing this course are expected to:	
Course Objectives	 Study the propagation of signals; calculate various line parameters Study the variation of input impedance, SWR and impedance matching techniques. Learn antenna basics, antenna parameters and calculation of radiation resistances of various antennas. Study antenna arrays and to draw their radiation 3-D patterns. Understand the basic working principle of VHF and UHF antennas. Understand different kinds of Wave Propagation. 	
	Upon successful completion of the course, the students will be able to:	
	CO1 Understand the fundamentals of Transmission Line Theory.	
	CO2 Understand the Impedance Matching of High Frequency Lines.	
Course Outcomes	CO3 Learn antenna basics, Antenna Parameters and calculation of Radiation Resistances.	
	CO4 Describe various Antennas, Arrays And Draw Radiation Patterns.	
	CO5 Learn different types of Antennas to be employed in V.H.F. and U.H.F.	
	CO6 Classify Radio Wave Propagation in the Atmosphere.	
	UNIT I TRANSMISSION LINES-I: Primary and Secondary Constants of the Line Transmission Line Equations, Propagation Constant, Characteristic Impedance Distortion less Line,	
Course Content	UNIT II TRANSMISSION LINES-II: Input Impedance of Open and Short Circuited Lines, Standing Waves, Reflection Coefficient, Smith Chart, Impedance Matching Using Smith Chart(Single Stub Only).	
	UNIT III RADIATION FUNDAMENTALS: Definition of antenna, Retarded Potentials, Relation between Potential and Time Varying Fields, Far Field Approximation, Radiation from a current Element, Half Wave Dipole and Monopole Antennas. ANTENNA PARAMETERS: Radiation Pattern, Radiation Intensity, Directivity, Gain, H.P.B.W., Effective Aperture, Relation between Directivity and Maximum Effective Aperture.	

Course Content	UNIT IVLINEAR WIRE ANTENNAS: Current Distribution on Thin Linear Wire Antennas, Array of Two Point Sources, Principle of Pattern Multiplication, Uniform Linear Arrays: Broad Side and End fire Array and Binomial Arrays. TRAVELLING WAVE ANTENNAS: Long Wire and Rhombic Antennas, Yagi-Uda 	
Text Books and Reference Books	 TEXT BOOKS: Antennas by John D Krauss – ISE. Antenna and Wave Propagation by K.D.Prasad -Khanna Publication. REFERENCE BOOKS: Transmission Lines and Networks by Umesh Sinha-Sathya Prakashan. Electromagnetic Waves and Radiating Systems by Jordan E.C. and Balmain H. GP.H.I. 	
E-Resources	 http://www.nptel.ac.in. http://www.ebookee.com/antennaandwavepropagation. 	

17EC3104– ANALOG IC APPLICATIONS (Common to ECE and EEE)

Course category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	2 - 2 - 0
Prerequisite:	Circuit & Networks,	Sessional Evaluation :	40
	Electronics Devices & Circuits and	External Evaluation:	60
	Pulse & Analog Circuits	Total Marks:	100

Course CO Outcomes CO CO CO CO CO CO CO CO CO CO CO	 Study and analyse each building blocks of op-amp and its applications. Analyse and design of Multivibrators, Oscillators and comparators using op- amp. Illustrate and design of Multivibrators using 555 timer, understand of PLL and its applications. Analyse and design of Active filters and regulators. Apply and Analyse A/D and D/A converters and their applications. UNIT – I ERATIONAL AMPLIFIER : Introduction to I.C.s, Op-Amp Ideal Characteristics, 	
Course CO Outcomes CO CO CO CO CO CO CO CO CO CO CO CO CO C	 4. Understand the theory and applications of 555 timer and P.L.L. 5. Design of various filters using op amp. 5. Learn theory of A.D.C.s and D.A.C.s. n successful completion of the course , the students will be able to: Gain the basics of op-amp characteristics and its applications. Study and analyse each building blocks of op-amp and its applications. Analyse and design of Multivibrators, Oscillators and comparators using op-amp. Illustrate and design of Multivibrators using 555 timer, understand of PLL and its applications. Analyse and design of Active filters and regulators. Analyse and design of Active filters and regulators. Junit – I 	
Course CO Outcomes CO CO CO CO CO CO CO CO CO CO CO	 5. Learn theory of A.D.C.s and D.A.C.s. n successful completion of the course , the students will be able to: Gain the basics of op-amp characteristics and its applications. Study and analyse each building blocks of op-amp and its applications. Analyse and design of Multivibrators, Oscillators and comparators using op- amp. Illustrate and design of Multivibrators using 555 timer, understand of PLL and its applications. Analyse and design of Active filters and regulators. Apply and Analyse A/D and D/A converters and their applications. 	
Course CO Outcomes CO CO CO CO CO CO CO CO CO CO CO	 n successful completion of the course , the students will be able to: Gain the basics of op-amp characteristics and its applications. Study and analyse each building blocks of op-amp and its applications. Analyse and design of Multivibrators, Oscillators and comparators using op- amp. Illustrate and design of Multivibrators using 555 timer, understand of PLL and its applications. Analyse and design of Active filters and regulators. Apply and Analyse A/D and D/A converters and their applications. UNIT – I 	
Course CO Outcomes CO CO CO CO CO CO CO CO CO CO CO	Gain the basics of op-amp characteristics and its applications. Study and analyse each building blocks of op-amp and its applications. Analyse and design of Multivibrators, Oscillators and comparators using op- amp. Illustrate and design of Multivibrators using 555 timer, understand of PLL and its applications. Analyse and design of Active filters and regulators. Analyse and design of Active filters and regulators. Apply and Analyse A/D and D/A converters and their applications. UNIT – I ERATIONAL AMPLIFIER : Introduction to I.C.s, Op-Amp Ideal Characteristics,	
Course Outcomes CO CO CO CO CO CO CO	 Study and analyse each building blocks of op-amp and its applications. Analyse and design of Multivibrators, Oscillators and comparators using op- amp. Illustrate and design of Multivibrators using 555 timer, understand of PLL and its applications. Analyse and design of Active filters and regulators. Analyse and design of Active filters and regulators. Manalyse A/D and D/A converters and their applications. UNIT – I ERATIONAL AMPLIFIER : Introduction to I.C.s, Op-Amp Ideal Characteristics, 	
Course Outcomes CO CO CO CO CO CO CO	 Analyse and design of Multivibrators, Oscillators and comparators using opamp. Illustrate and design of Multivibrators using 555 timer, understand of PLL and its applications. Analyse and design of Active filters and regulators. Apply and Analyse A/D and D/A converters and their applications. UNIT – I ERATIONAL AMPLIFIER : Introduction to I.C.s, Op-Amp Ideal Characteristics, 	
Outcomes CO CO CO CO CO CO Inte Inv	 amp. Illustrate and design of Multivibrators using 555 timer, understand of PLL and its applications. Analyse and design of Active filters and regulators. Apply and Analyse A/D and D/A converters and their applications. UNIT – I ERATIONAL AMPLIFIER : Introduction to I.C.s, Op-Amp Ideal Characteristics, 	
CO CO CO CO OP Inte Inv	 its applications. Analyse and design of Active filters and regulators. Apply and Analyse A/D and D/A converters and their applications. UNIT – I ERATIONAL AMPLIFIER : Introduction to I.C.s, Op-Amp Ideal Characteristics, 	
CO OP Inte Inv	5 Apply and Analyse A/D and D/A converters and their applications. UNIT – I ERATIONAL AMPLIFIER : Introduction to I.C.s, Op-Amp Ideal Characteristics,	
OP Inte Inv	UNIT – I ERATIONAL AMPLIFIER : Introduction to I.C.s, Op-Amp Ideal Characteristics,	
Inte Inv	ERATIONAL AMPLIFIER : Introduction to I.C.s, Op-Amp Ideal Characteristics,	
	UNIT – I OPERATIONAL AMPLIFIER : Introduction to I.C.s, Op-Amp Ideal Characteristics, Internal Circuit, D.C. and A.C. Characteristics of Op-Amp, Inverting and Non- Inverting Modes of Operation, Voltage Follower, Summer, Adder-Subtractor, Integrator, and Differentiator	
Content Dif Imp Am An CO Cor	UNIT – II ERATIONAL AMPLIFIER APPLICATIONS: erential Amplifier and its Transfer Characteristics, Derivation of C.M.R.R. & rovement Methods of Differential Amplifier Characteristics, Instrumentation olifier, V-I and I-V Converters, Precision Rectifiers, Sample and Hold Circuit, log Computation. UNIT – III MPARATORS AND WAVEFORM GENERATORS: Comparator, Regenerative aparator, Astable and Mono stable Multivibrators using Op-Amp, Triangular Wave erator, Sine Wave Generators using Op-Amp (R.C. Phase Shift).	

Course Content	UNIT – IV IC TIMERS: 555 Timer, Astable and Monostable Modes. PHASE LOCKED LOOPS: Basic Principles, Lock and Capture Range, Voltage Control Oscillator (I.C566), PLL (I.C565) and P.L.L. Applications. UNIT – V ACTIVE FILTERS: Low Pass, High Pass and Band Pass Filters, State Variable Filters. VOLTAGE REGULATORS: Series Op-Amp Regulator, I.C. Voltage Regulators, I.C723 Regulator, Switching Regulators. UNIT – VI ELECTRONIC DATA CONVERTERS: Introduction, D.A.C.s-Weighted Resistor, R-2R and Inverted R-2R. TYPES OF A.D.C.S: Parallel Comparator Type, Counter Type, Successive Approximation and Dual Slope A.D.C.s, Specifications of D.A.C. and A.D.C.
Text Books and Reference Books	 TEXT BOOKS: D. Roy Choudary, Shail B. Jain, "Linear Integrated Circuits", New Age International Publishers, 2003. Design of Analog Integrated Circuits by Sergio Franco. REFERENCE BOOKS: J. Michael Jacob, "Applications and Design with Analog Integrated Circuits", PHI, EEE, 1997. Ramkant A. Gayakwad, "Op-Amps and Linear Integrated Circuits", LPE, 4th Edition, Pearson Education.
E-Resources	 http://www.nptel.ac.in http://www.ebookee.com/linearintegratedcircuits.

17EE3103 – LINEAR CONTROL SYSTEMS

(Common to ECE and EEE)

Course category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	2 - 2 - 0
Prerequisite:	Basics of Signals and Systems and	Sessional Evaluation :	40
	Calculus	External Evaluation:	60
		Total Marks:	100

	Students undergoing this course are expected to understand:	
Course 1. The various types of control systems and methods to obtain transfer funct Objectives 1. The various types of control systems and methods to obtain transfer funct 2. The mathematical models of physical systems 3. Time domain responses of first and second-order systems for different signals. 4. The stability of a control system using different techniques. 5. Frequency domain techniques to assess the system performance. 6. The different types of compensator for linear systems.		
	Upon successful completion of the course, the students will be able to:	
	CO1 Understand control systems to obtain transfer function and reduction of block diagram using signal flow graph and modelling of electrical and mechanical systems	
Course	CO2 Develop mathematical models of electromechanical systems and apply Mason's gain formula.	
Outcomes	CO3 Determine the time domain responses of first order systems for different input signals and RHC.	
	CO4 Evaluate the stability of a control system using Root locus technique and determine the response of second-order systems.	
	CO5 Apply frequency domain techniques polar, bode to assess the system performance and the design of Lag compensators.	
	CO6 Design the Lead compensator for linear systems and apply frequency domain specifications by using Nyquist plots.	
Course Content	1 2	
	STABILITY OF CONTROL SYSTEMS: Routh-Hurwitz criterion- Root Locus – rules for the construction of root loci- Introduction to proportional, derivative and integral controllers.	

Course Content	UNIT-V FREQUENCY DOMAIN ANALYSIS: Introduction- Frequency domain specifications-Polar plots – Bode Plots- Nyquist stability criterion UNIT-VI DESIGN OF COMPENSATORS: Introduction - Need for compensators. Lag and lead compensators design in frequency domain.	
Text Books and Reference Books	 TEXT BOOKS: "Control system Engineering" by I.J.Nagrath and M.Gopal, Wiley Eastern Ltd. "Control Systems" by A. Nagoorkani RBA publishers "Control Systems" by A. Anandkumar PHI publishers REFERENCE BOOKS: "Automatic Control systems" by B.C.Kuo, PHI publishers. "Discrete Time Control Systems" by K.Ogata, Pearson education "Control system Engineering" by NISE, Wiley, 2000. 	
E-Resources	 http://nptel.ac.in/courses http://iete-elan.ac.in http://freevideolectures.com/university/iitm 	

17EC31P1 – PULSE & DIGITAL CIRCUITS LAB

Course Category:	Program Core	Credits:	2
Course Type:	Practical	Lecture-Tutorial- Practice:	0 - 0 - 3
Prerequisite:	Electronic Devices and Circuits, Pulse and Analog Circuits, Switching Theory and Logic design.	Sessional Evaluation: External Evaluation : Total Marks:	40 60 100

	Students undergoing this course are expected to understand:
Course Objectives	1. The behaviour of various semiconductor devices.
Objectives	2. The V-I characteristics of various semiconductor devices.
	Upon successful completion of the course, the students will be able to:
	CO1 Understand function of logic gates and can implement logic circuits using gates.
Course	CO2 Implement the combinational logic circuits.
Outcomes	CO3 Elucidate differences between synchronous and asynchronous circuits.
	CO4 Demonstrate linear and non-linear wave Shaping.
	CO5 Design Multivibrators.
	CO6 Design Schmitt Trigger
	LIST OF EXPERIMENTS
	1. (a). Logic Circuits and Logic Gates
	(b). Realization of logic gates using NAND and NOR Gates
	2. Full Adder and Full Subtractor
	3. Decoder
Course	4. Divide by N-Ripple Counter
Content	5. Multiplexer
	6. Divide by N-Synchronous Counter
	7. RC-Differentiator and RC-Integrator
	8. Diode Clippers and Clampers
	9. Astable Multivibrator
	10. Schmitt Trigger

17EC31P2 – IC APPLICATIONS LAB

Course Category:	Program Core	Credits:	2
Course Type:	Practical	Lecture-Tutorial- Practice:	0 - 0 - 3
	Analog Integrated Circuit	Sessional Evaluation:	40
Prerequisite:	Applications	External Evaluation :	60
		Total Marks:	100

	Students undergoing this course are expected to understand:
Course Objectives	 The basic applications of Op-Amp The R-2R ladder network used as an A/D converter in interfacing between Analog and digital. 555 Timer applications –in various timer circuits and Delay circuits.
Course	Upon successful completion of the course , the students will be able to:CO1Design Rectifiers without and with Filters (HWR, FWR, BR).CO2Design various amplifier circuits using op-amp
Outcomes	CO3Design various oscillator circuits using op-ampCO4Design regulator circuit using op-amp
	CO5Design various feedback amplifier circuits using op-ampCO6Determine the fT of a given Transistor.
	LIST OF EXPERIMENTS
	1. Function Generator using 8038 and 566 ICs.
Course Content	2. Astable Multivibrator using Op-Amp & 555 Timers.
	3. Comparator using Op-Amp.
	4. Zero Crossing Detector using Op-Amp.
	5. Ramp Generator using 555 Timers.
Content	6. Op-Amp Frequency Response.
	7. Narrowband Pass Filter.
	8. Full Wave Rectifier using Op-Amp.
	9. R-2R Ladder Network.
	10. Window Detector.
	11. Schmitt Trigger using Op-Amp.

17SH31P1 – ADVANCED COMMUNICATION SKILLS LAB

Course Category:		Program Core	Credits:	2
Course Type:		Practical	Lecture-Tutorial- Practice:	1 - 0 - 2
Prerequisite:		1. Knowledge of issues around the world, 2. Ability to use language in professional contexts, 3. Understand the importance of maintenance of good relationships	Sessional Evaluation: External Evaluation : Total Marks:	40 60 100
	Stude	nts undergoing this course are expected:		
Course Objectives	 To understand the strategies of the interviews to facilitate better responses during the placements To develop inter personal skills and be an effective goal oriented team player with idealistic, practical and moral values What constitutes proper etiquette in a professional environment? To equip with a wide range of vocabulary technically and perform better in tests like GRE, TOEFL etc To understand Communication skills towards writing a persuasive resume 			
	Upon	successful completion of the course, the	students will be able:	
	CO1	1 Improve verbal proficiency and face competitive exams; GATE, GRE, TOEFL, GMAT.		
_	CO2			
Course Outcomes	CO3			
o uteo mes	CO4			
	CO5	Face all types of interviews successfully and get jobs in different companies		
	CO6	⁵ Improve personal and professional grooming, business dressing and telephonic skills		
Course Content	 LIST OF EXPERIMENTS 1. Vocabulary Building – Synonyms and Antonyms, Word roots, One-word Substitutes, Prefixes and Suffixes, Study of word origin, Analogy, Idioms and Phrases. 2. Group Discussion – Dynamics of Group Discussion, Intervention, Summarizing, Modulation of voice, Body Language, Relevance, Fluency and Coherence. 3. Intrapersonal & Interpersonal Relationship Skills - Intrapersonal & Interpersonal Relationship Skills - Intrapersonal & Interpersonal Relationship Skills - To be an Effective Team Player 4. Resume Writing – Structure and Presentation, Planning, Defining the career Objective, Projecting ones strengths and Skill-Sets, Summary, Formats and Styles, Letter-Writing. 5. Interview Skills – Concept and Process, Pre-Interview Planning, Opening Strategies, Answering Strategies, Interview through Tele and Video-Conferencing. 6. Corporate Etiquettes- Dressing Etiquettes- Dining Etiquettes- Nonverbal Communication- Proximity of Place. 			

ELECTIVES-I

- 1. VLSI DESIGN
- 2. COMPUTER ORGANIZATION
- **3.** COGNETIVE RADIO
- 4. DATA STRUCTURES

17EC31E1 – VLSI DESIGN

Course category:	Program Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3 - 0- 0
Prerequisite:	Electronic Devices & Circuits,	Sessional Evaluation :	40
	Linear & Digital ICs and Basics of	External Evaluation:	60
	IC Fabrication	Total Marks:	100

	Students undergoing this course are expected:	
Course Objectives	also to introduce the fundamental drinciples of visit circuit design.	
	Upon successful completion of the course, the students will be able to:	
	CO1 Know the trends in semiconductor technology, and how it impacts scaling and performance.	
	CO2 analyze the basic electrical characteristics of MOS & BI-CMOS circuits	
Course Outcomes	CO3 Learn Layout, Stick diagrams, Fabrication steps, Static and Switching characteristics of inverters	
	CO4 Estimate delay in circuits and knows routing techniques for clock and power	
	CO5 Understand design styles in VLSI like full-custom, FPGA etc.	
	CO6 Discriminate various faults in circuits and to develop fault-modeling synthesis.	
Course Content	CO6 Distributive various ratits in circuits and to develop ratit-modeling synthesis. UNIT-I INTRODUCTION: IC fabrication - MOS, PMOS, NMOS, CMOS & Bi-CMOS Technologies - Oxidation, Lithography, Diffusion, Ion implantation, Metallization, Encapsulation, Probe testing, Integrated Resistors and capacitors. UNIT-II BASIC ELECTRICAL PROPERTIES OF MOS & Bi-CMOS CIRCUITS: Ids-Vds relationships, MOSFET threshold voltage, gm, gds, ωo, Pass transistor, NMOS Inverter, Various pull ups, CMOS Inverter analysis and design Bi-CMOS inverters. UNIT-III BASIC CIRCUIT CONCEPTS: Sheet Resistance Rs and its concepts to MOS, Area Capacitance calculations, Inverter Delays, Driving large Capacitive Loads, Wiring Capacitances, Fan-In and Fan-Out.	

	VLSI CIRCUIT DESIGN PROCESSES: VLSI Design Flow, MOS Layers, Stick Diagrams, Design Rules and Layout, $2\mu m$ CMOS Design rules for wires, Contacts and Transistors, Layout Diagrams for NMOS and CMOS Inverters and gates, Scaling of MOS circuits, Limitation of Scaling.
Course Content	UNIT-IV GATE LEVEL DESIGN: Logic gates and other Complex gates, Switch Logic, Alternate Gate circuits. PHYSICAL DESIGN: Floor- Planning, Placement, routing, Power delay estimation, Clock and Power routing
	UNIT-V SUBSYSTEM DESIGN: Shifters, Adders, ALUs, Multipliers, Parity generators, Comparators, Counters, High density Memory Elements. VLSI DESIGN STYLES: Full-custom, Standard Cells, Gate-arrays, FPGAs and CPLDs and Design approach for Full Custom and Semi-Custom devices.
	UNIT-VI VHDL Synthesis: VHDL Synthesis, Circuit Design Flow, Circuit Synthesis, Simulation, Layout, Design capture tools, Design Verification Tools. TEST AND TESTABILITY: Fault-modelling and simulation, test generation, design for testability, Built-in self-test.
Text Books and Reference Books	 TEXT BOOKS: 1. Essentials of VLSI circuits and Systems – Kamran Eshraghian, Eshraghian Douglas and A. Pucknell, PHI, 2005 Edition. 2. Principles of CMOS VLSI Design- Weste and Eshraghian, Pearson Education, 1999 3. ASIC Design Flow by Smith.
	 REFERENCE BOOKS: 1. D. Roy Chowdhury. Linear Integrated circuits, New Age International Edition(2003) 2. Modern VLSI Design-Wayne Wolf, Pearson Education, 3rd Edition 1997.
	 Introduction to VLSI Circuits and Systems – John. P. Uyemura. John Wiley, 2003. Digital Integrated Circuits – John M. Rabaey, PHI.
E-Resources	 http://nptel.ac.in/courses http://tocs.ulb.tu-darmstadt.de/35621702.pdf http://www.ulb.tu-darmstadt.de/tocs/23570458.pdf http://www.academia.edu/download/30922844/L1-print.pdf

17EC31E2– COMPUTER ORGANIZATION

Course Category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3 - 0 - 0
Prerequisite:	Switching Theory & Logic Design,	Sessional Evaluation :	40
	basics of Digital Design	External Evaluation:	60
		Total Marks:	100

	Students undergoing this course are expected to understand:
Course Objectives	 The Register Transfer and Micro Operations The Instruction cycle and various Interrupts. The machine language, Assembly language and Micro Programmed Control. The general Register, Stack Organization, Program Control, Pipeline and vector Processing. The detailed information of I/O devices and their Interface, Data transfer and its modes, Priority Interrupt and D.M.A. Types and Organization of memory; Multiprocessor characteristics and Inter Processor communication.
	Upon successful completion of the course, the students will be able to:
	CO1 Understand registers transfers and arithmetic logic operations, which gives fundamental idea to know about Instruction codes and memory organization.
	CO2 Understand register transfer notations and micro operations, which gives a glance to learn Memory instructions and timing diagrams.
Course Outcomes	CO3 Learn various micro programming languages, which gives an idea of instruction formats execution in CPU.
	CO4 Understand machine level languages, which emphasize the concept of addressing modes in register and stack organization.
	CO5 Learn several of modes of data transfer through IO interface in turn which uses various types of memory.
	CO6 Understand various data transfer communication using IO processor and classifies the hierarchy of memories.
Course	UNIT-I REGISTER TRANSFER AND MICRO OPERATIONS: register transfer, Bus and Memory transfers, Arithmetic micro operations. Logic micro operations, Shift micro operations, Arithmetic logic shift units. UNIT-II
Content	BASIC COMPUTER ORGANIZATION AND DESIGN: Instruction codes, Computer Registers and Instructions, Timing and Control, Instruction cycles, Memory reference Instructions, Input-Output and interrupt.
	UNIT-III PROGRAMMING THE BASIC CONTROL: Machine language, Assembly language, Assembler, Programming Arithmetic and logic operations, Subroutines.

Course	MICRO PROGRAMMED CONTROL: Control memory, Address sequencing, Micro program example, Design of control unit.
	UNIT-IV CENTRAL PROCESSING UNIT: General register organization, Stack organization, Instruction formats, Addressing modes, Program control, R.I.S.C., Parallel processing, Pipelining, Arithmetic pipe-line, Instruction pipe-line.
Content	UNIT-V INPUT – OUTPUT ORGANIZATION: Peripheral devices, Input-Output Interface, Asynchronous Data Transfer. Modes of transfer, Priority interrupt, D.M.A., Input – Output Processor, Serial Communication.
	UNIT-VI MEMORY ORGANIZATION: Memory hierarchy, Main memory, Auxiliary memory, Associative memory, Cache memory, Virtual memory, Characteristics of multi processors, Inter processor arbitration, Inter processor communication and Synchronization and Cache coherence.
Text Books and Reference	 TEXT BOOKS: 1. "Computer System Architechture" 3/e M. Moris Mano PHI-I. 2. "Computer Organization" – V.C. Hemacher, Z.G. Vranesic and others Mc-Graw-Hill.
Books	 REFERENCE BOOKS: 1. "Computer architecture and organization" – Hays& Briggs –P.H.I. 2. "Computer Organization" Willium stallings PHI.
E-Resources	 http://nptel.ac.in/courses/106105085/4 http://nptel.ac.in/courses/106108052/1

17EC31E3 – COGNITIVE RADIO

Course category:	Program Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3 - 0 - 0
Prerequisite:	Computer networks, basic concepts	Sessional Evaluation :	40
	of embedded systems.	External Evaluation:	60
		Total Marks:	100

	Students undergoing this course are expected to understand:	
Course Objectives	 The spectrum scarcity problem and how cognitive radio deals with this problem. The contribution of cognitive radio systems in wireless networks and its architectures that enable the development of the cognitive radio network (both Centralized and distributed). The technologies to allow an efficient use of TVWS for radio communications Discussion about various cognitive radio standards. The various research challenges for deployment of cognitive radio network. The knowledge in issues in next generation wireless networks The current research scenario in this field 	
	Upon successful completion of the course, the students will be able to:	
	CO1 Identify fundamental issues regarding dynamic spectrum access and radio- resource management.	
Course	CO2 Understand Essential functions of the software radio, architecture of SDR	
Outcomes	CO3 Demonstrate energy issues in cognitive radio.	
	CO4 Understand principle of cognitive techniques and AI techniques	
	CO5Illustrate functions and design rules of cognitive radio	
	CO6 Identify layer issues and design cross layer	
Course Content	CO6 Identify layer issues and design cross layer UNIT I INTRODUCTION TO SOFTWARE DEFINED RADIO: Definitions and Potential Benefits, Software defined Radio, Architecture, Evolution, Technology Tradeoffs and Architecture Implications. UNIT II SDR ARCHITECTURE: Essential Functions of The Software defined Radio, Basic SDR, Hardware Architecture, Computational Processing Resources, Software Architecture, Top Level Component Interfaces, Interface Topologies Among Plug And Play Modules. UNIT III INTRODUCTION TO COGNITIVE RADIOS: Marking Radio Self-Aware, Cognitive Techniques – Position Awareness, Environment Awareness in Cognitive Radios, Optimization of Radio Resources, Artificial Intelligence Techniques.	

Course Content	UNIT IV COGNITIVE RADIO ARCHITECTURE: Cognitive Radio – Functions, Components And Design Rules, Cognition Cycle – Orient, Plan, Decide and act Phases, Inference Hierarchy, Architecture Maps, Building the Cognitive Radio Architecture On Software Defined Radio Architecture. UNIT V NEXT GENERATION WIRELESS NETWORKS: The XG Network Architecture, Spectrum Sensing, Spectrum Management, Spectrum Mobility, Spectrum Sharing, Upper Layer Issues, Cross – Layer Design. UNIT VI COGNITIVE TECHNIQUES: PHYSICAL AND LINK LAYERS: Introduction, Optimizing physical and Link Layers for Multiple-Objectives, Under Current Channel Conditions, Defining the Cognitive Radio, developing Radio Controls (Knobs) and Performance Measures (Meters), multi object decision making Theory and Its Application to Cognitive Radio , The Multi-objective genetic algorithm for Cognitive Radios, Advanced GA Techniques ,Need for a Higher-Layer Intelligence.
Text Books and Reference Books	 TEXT BOOKS: Joseph Mitola III, "Software Radio Architecture: Object-Oriented Approaches To Wireless System Engineering", John Wiley & Sons Ltd. 2000. Thomas W.Rondeau, Charles W. Bostain, "Artificial Intelligence in Wireless Communication", ARTECH HOUSE .2009. Bruce A. Fette, "Cognitive Radio Technology", Elsevier, 2009. Ian F. Akyildiz, Won – Yeol Lee, Mehmet C. Vuran, Shantidev Mohanty, "Next Generation / Dynamic Spectrum Access / Cognitive Radio Wireless Networks: A Survey" Elsevier Computer Networks, May 2006. REFERENCES BOOKS: Simon Haykin, "Cognitive Radio: Brain –Empowered Wireless Communications", IEEE Journal on Selected Areas in Communications, Feb 2005. Hasari Celebi, Huseyin Arslan, "Enabling Location And Environment Awareness In Cognitive Radios", Elsevier Computer Communications, Jan 2008. Markus Dillinger, Kambiz Madani, Nancy Alonistioti, "Software Defined Radio", John Wiley, 2003.
E-Resources	 http://www.nptel.ac.in. http://www.ebookee.com/ Cognitive Radio Communication and Networks.

17EC31E4 – DATA STRUCTURES

Course Category:	Program Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3 - 0 - 0
Prerequisite:	Basics of mathematics and Logic	Sessional Evaluation :	40
	with programming knowledge in C	External Evaluation:	60
	or any Language as optional.	Total Marks:	100

	Students undergoing this course are expected to understand:	
Course	 Familiar with basic techniques of data structures and programming development. Master the implementation of linked data structures such as linked lists and binary trees. 	
Objectives	3. Learn several sorting and searching techniques including quicksort, merge sort, heap sort, linear and binary search to application development	
	4. Exposure on graph theory to learn the basics of graph terminology and supporting traversals5. Analyzing problems and writing program solutions to problems using above	
	techniques	
	Upon the successful completion of the course, the students will be able to:	
	CO1 Know the fundamentals of data structures, primitive data types and Programming development	
Course	CO2 Learn and apply the utilization of arrays, Linked lists and supporting applications	
Outcomes	CO3 Study the basic linear data structures like stacks, queues and their applicability	
	CO4 Study one of the non-linear data structure, types and properties to get the support for various application developments.	
	CO5 Understand searching and sorting techniques and apply them for simple to complex applications	
	CO6Get the exposure on graph basics and its applicability in various domains	
	UNIT – I	
Course Content	INTRODUCTION : Overview on data structures, Data representations, Abstract data types, Data types, Primitive data types, Data Structure and structures types, Atomic types, Differences between ADTs, Data types and Data Structures, Refinement stages. PRINCIPLES OF PROGRAMMING : Software engineering, Program design, Algorithms, Different approaches to design algorithms, Structured programming and Recursion.	
	UNIT – II	
	DATA STRUCTURE TYPES AND ARRAY BASICS : Introduction to linear and	
	nonlinear data structures, arrays, array operations, Single, double and multi-dimensional arrays.	
	LINKED LISTS : Introduction, Dynamic memory allocation, Linked list operations, Doubly and circular linked lists.	

Course Content	UNIT – III STACKS: Introduction, Stack as ADT, Representation of stacks using arrays and linked lists, Applications, Stacks and recursion. QUEUES: Introduction, Queue as ADT, Representation of queues, Circular queues, Double ended queues, Priority queues, Applications. UNIT – IV BINARY TREES: Introduction to non-linear data structures, Overview on binary trees, types, Basic definitions and properties, Representation of binary trees, Operations and tree traversals. Applications. UNIT – V SORTING: Introduction, Bubble sort, selection sort, Quick sort, Insertion sort and Merge sort. SEARCHING: Introduction, Linear and Binary search techniques. UNIT – VI GRAPHS: Introduction, Terms associated with graphs, Sequential and linked list representations, Graph traversals, Spanning trees, Shortest path and Graph applications.
Text Books and Reference Books	 TEXT BOOKS: Data Structures using C by ISRD group, Tata Mc. Graw – Hill company ltd. REFERENCE BOOKS: C & data structures / P.S. Deshpande, O.G. Kakde. Charles River Media, INC. Classical Data Structures by Samanta debasis, Prentice Hall of India, 2nd edition. Data structures using C by Reema Thareja, 2nd edition, Oxford University Press.
E-Resources	 https://nptel.ac.in/courses https://freevideolectures.com/university/iitm

NBKR INSTITUTE OF SCIENCE & TECHNOLOGY: VIDYANAGAR

(AUTONOMOUS) (AFFILIATED TO JNTU ANANTAPUR: ANANTHAPURAMU) SPSR NELLORE DIST III YEAR OF FOUR YEAR B.TECH DEGREE COURSE – II SEMESTER ELECTRONICS AND COMMUNICATION ENGINEERING SCHEME OF INSTRUCTION AND EVALUATION

(With effect from the academic year 2017-2018)

(For the batch admitted in the academic year 2017-2018)

						Evaluation										
S.No	S.No Course Code	Course Title		Instruction Hours/Week		Credits	Sessional-I Marks		Sessional-II Marks		Total Sessional End Ser Marks(40) Examin			Maximum Total Marks		
	code	THEORY	L	Т	D/P		Test ^{\$} -I	A#-I	Max. Marks	Test ^{\$} -II	A [#] -II	Max. Marks		Duration In Hours	Max. Marks	100
1	17EC3201	Digital Communication	2	2	-	3	34	6	40	34	6	40		3	60	100
2	17EC3202	Microwave Techniques	2	2	-	3	34	6	40	34	6	40	0.8*Best of	3	60	100
3	17EC3203	Electronic Measurements & Instrumentation	2	2	-	3	34	6	40	34	6	40	two+0.2* least of two	3	60	100
4	17EC3204	Embedded Systems & IOT	2	2	-	3	34	6	40	34	6	40		3	60	100
5	17EC3205	Data & Computer Communication	2	2	-	3	34	6	40	34	6	40		3	60	100
6	17EC32EX	Elective-II	3	0	-	3	34	6	40	34	6	40		3	60	100
		PRACTICALS					PRAC	TICALS								
7	17EC32P1	MP & MC Lab	-	-	3	2	-	-	-	-	-	40	Day to Day Evaluation and a	3	60	100
8	17EC32P2	Digital Communication Lab	-	-	3	2	-	-	-	-	-	40	test (40 Marks)	3	60	100
9	17EC32P3	Digital Signal Processing Lab	-	-	3	2	-	-	-	-	-	40		3	60	100
10	17EC32MP	Mini Project	-	-	-	2	-	-	-	-	-	-	-	-	-	-
11	17AC3201	Audit Course	-	-	-	0	-	-	-	-	-	-	-	-	-	-
		TOTAL	13	10	09	26	-	-	-	-	-	360	-	-	540	900

**Common to ECE, EEE, CSE, IT

* Common to ECE, EEE

A for Assignment (continuous evaluation) \$ Test (Descriptive & Objective) duration = 2 Hours

17EC3201-DIGITAL COMMUNICATION

Course Category:	Program Core	Credits:	3
Course Type:	Theory	Lecture-Tutorial-Practical:	2-2-0
Prerequisite:	Random Signals and Stochastic	Sessional Evaluation:	40
	Processes- Analog Communication	External Evaluation:	60
		Total Marks:	100

	Students undergoing this course are expected to:
Course Objectives	 Understand basic components of digital communication system Apply suitable pulse code modulation schemes and coding for various applications. Understand transmission and detection of digital carrier modulation schemes. Analyze error performance of a digital communication system in presence of noise and other interferences. Design of band limited signals for no Inter Symbol Interference (I.S.I.) and controlled I.S.I and understand various M-ary signaling schemes. Understand various information theory techniques. Prepare mathematical background for communication signal analysis and learn techniques for encoding and decoding of different digital codes.
Course Outcomes	After completing the course the student will be able toCO1Describe each block in PCM with help of digital communication systemCO2Derive signal to noise ratio in different digital modulation schemes and explain Bandwidth-S/N trade off.CO3Characterize Band Limited Channels and explain generation and Reception of ASK signals.CO4Acquire knowledge of I.S.I. and different Shift Keying techniques.CO5Gain knowledge of coding efficiency of Shannon fano coding technique.CO6Acquire knowledge of encoding and decoding of cyclic code and channel capacity theorem.
Course Content	UNIT – I UNIT – I ELEMENTS OF DIGITAL COMMUNICATION SYSTEMS: Model of Digital Communication Systems- Digital Representation of Analog Signal- Certain issues in Digital Representation of Analog Signal- Certain issues in Digital Representation of Analog Signal- Certain issues in Digital Transmission- Advantages of Digital Communication Systems- Bandwidth-S/N trade off- Hartley Shannon Law- Sampling Theorem. UNIT – II PULSE CODE MODULATION: PCM Generation and Reconstruction- Quantization noise- Non uniform Quantization and Companding- DPCM- DM and Adaptive DM. Noise in PCM and DM. UNIT – III DIGITAL CARRIER MODULATION TECHNIQUES: Introduction- ASK MODULATION TECHNIQUES: Introduction- ASK Modulator and Demodulator- Coherent and Non-Coherent FSK- BPSK- Coherent PSK Detection- OPSK- Differential PSK.

Course Content	UNIT – IV BASEBAND TRANSMISSION AND OPTIMAL RECEPTION OF DIGITAL SIGNAL: BASEBAND DATA TRANSMISSION: Characterization Of Band Limited Channels – Design of band limited signals for no Inter Symbol Interference (I.S.I.) – The Nyquist criterion –Design of band-limited signals with controlled I.S.I. BASEBAND SIGNAL RECEIVER: Optimum- Matched Filters and Correlator – Transmitting & Receiving Filters for Optimum Performance. M-ARY SIGNALLING SCHEMES: Binary Vs M-ary – Equalization schemes – Eye diagrams. UNIT – V INFORMATION THEORY: Information and entropy- conditional entropy and redundancy- Shannon Fano coding- Mutual Information- Information loss due to noise- source codings - Bandwidth-S/N Trade off-Huffman Code- variable length coding- Source coding to Increase average Information per bit. Lossy source coding. UNIT – VI ERROR CONTROL CODING LINEAR BLOCK CODES: Matrix description of Linear Block Codes- Error detection and error Correction capabilities of linear block codes. HAMMING CODES: Error detection and error Correction capabilities of Hamming codes. CYCLIC CODES: Algebraic Structure – Encoding Using Shift Register – Syndrome Calculation Decoding.
Text Books and Reference Books	 TEXT BOOKS: Digital Communication - Simon Haykin- Jon Wiley- 2005. Digital and Analog Communicator Systems - Sam Shanmugam- John Wiley-2005. REFERENCE BOOKS: Principles of communication systems - Herbert Taub. Donald L Schiling-Goutam Sana- 3rd Edition-McGraw-Hill- 2008. Communication Systems- Analog & Digital –R. P. Singh & S.D. Sapre- T.M.H. Publishers Digital Communications - John G. Proakis. Masoud salehi – 5th Edition-McGraw-Hill- 2008.
E-Resources	 http://www.nptel.ac.in. http://www.ebookee.com/digitalcommunicationsystems.

17EC3202 – MICROWAVE TECHNIQUES

Course category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	2 - 2 - 0
Prerequisite:	Electro Magnetic Fields & Waves,	Sessional Evaluation :	40
	Antenna & wave Propagation.	External Evaluation:	60
		Total Marks:	100

	Students undergoing this course are expected:
Course Objectives	 To understand the operation of Klystron amplifier, Reflex Klystron oscillator, Travelling Wave Tube amplifier and Magnetron oscillators. To study the operation of different microwave semiconductor devices like Tunnel diode, Gunn diode, IMPATT diode, Schottkey Barrier diode, PIN diode and varactor diodes. To understand different microwave components like Resonators, attenuators, TEEs, Directional couplers, Isolators and S-parameters of networks. To study the measurement of frequency, VSWR, impedance, S-parameter and 'Q' of a cavity.
	 To study parabolic reflector antenna, Horn and Lens antennas. To study Hybrid MICs, strip lines, micro strip lines
Course Outcomes	Upon successful completion of the course , the students will be able to:CO1Demonstrate the Magnetron and tunnel diode as oscillator.CO2Derive the power efficiency in parametric amplifier and klystron amplifier.CO3Understand the measurement of impedance using Microwave TEEs.CO4Measure various parameters like power, VSWR at microwave frequencies with the help of various microwave components.CO5Design Parabolic antenna and explain MIC.CO6Understand the fabrication technique of MICs and radiation pattern of Horn Antenna.
Course Content	UNIT-I MICRO WAVE TUBES: Klystron Amplifier, Reflex Klystron Oscillator, Travelling Wave Tube Amplifier and Magnetron Oscillator. UNIT-II MICROWAVE SEMOCONDUCTOR DEVICES: Tunnel Diode, Gunn Diode, IMPATT Diode, PIN Diode, SchottKey Barrier Diode, Varactor Diode and Parametric Amplifier, MASER. UNIT-III MICROWAVE COMPONENTS: Waveguides, Cavity Resonators, Attenuators, TEEs, Bends, Corners, Windows, Phase Shifters, Directional Couplers, Matching elements, Isolators, Circulators, S-Parameters of Networks.

Course Content	UNIT-IV MICROWAVE MEASUREMENTS: Measurement of Frequency, Power, VSWR, Impedance, Reflection Coefficient, Attenuation Constant and Dielectric Constant, S- parameters, 'Q'- of a Cavity. UNIT-V MICROWAVE ANTENNAS: Parabolic Reflector Antenna, Passive Reflector Antenna, Helical antenna, Horn and Lens Antennas UNIT-VI MICs: Fabrication of MICs, Advantages of MICs, Hybrid MICs, Strip Lines, and Microstrip Lines, Monolithic MICs
Text Books and Reference Books	 TEXT BOOKS: Samuel Y Liao, "Microwave Devices and Circuits", Prentice Hall, 1999. M. Kulkarni, "Microwave and Radar Engineering", Umesh Publications, 1998. Annapurna Das and Sisir K. Das, "Microwave Engineering", TMH, 2000 REFERENCE BOOKS: D. C. Dube, "Microwave Devices and Applications", Narosa Publications, 2011. David M. Pozar, "Microwave Engineering", IE, 1997. Robert E. Collin, "Foundations for Microwave Engineering", John Wiley and Sons, 2007
E-Resources	 http://nptel.ac.in/syllabus/117105029/ https://www.youtube.com/user/nptelhrd

17EC3203 – ELECTRONIC MEASUREMENTS & INSTRUMENTATION

Course category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	2-2 - 0
Prerequisite:	Electronic Devices and Circuits,	Sessional Evaluation :	40
_	Pulse and Analog Circuits, Signals	External Evaluation:	60
	& Systems	Total Marks:	100
	-		

	Studer	ts undergoing this course are expected to understand:			
Course Objectives	2. 3. 4. 5.	The various standards and units of measurements, electronic instruments, their construction, applications, and principles of operation. The internal structure of analog and digital instruments that are used in measuring parameters and also difference between analog meters and digital meters and their performance characteristics. The importance of different waveforms and their generation. The functioning of CRO including digital oscilloscope and its operation. The measurement using bridges for resistances, inductance and capacitances. Different type of sensors and transducers and their application.			
	Upon	successful completion of the course, the students will be able to:			
	CO1	Explain various performance characteristics of instruments like accuracy, sensitivity, resolution and speed of response and their importance in meters.			
	CO2	Design basic meters with good performance characteristics.			
Course Outcomes	CO3	Generate various signals using signal generators and harmonic distortion analyzer with the help of oscilloscope.			
	CO4	Analyse the waveforms and signals with the help of digital oscilloscope.			
	CO5	Understand precision measurement techniques to measure resistance, capacitar using different transducers.			
	CO6	Identify the transducers for various applications like to measurement of force, voltage, and speed with the help of bridges.			
Course Content	Static Sensiti Lag an METI voltme	UNIT-I ORMANCE CHARACTERISTICS OF INSTRUMENTS: characteristics, Accuracy, Resolution, Precision, Expected value, Error, ivity. Errors in Measurement, Dynamic Characteristics-speed of response, Fidelity, ad Dynamic error. UNIT-II ERS: D.C. Voltmeters- D.C. Ammeters Multi range, Range extension, A.C. eters- multi range, range extension, Ohmmeters - series type, shunt type, neter for Voltage, Current and resistance measurements.			
	AF sin noise,	UNIT-III D AND VARIABLE SIGNAL GENERATORS: AF oscillators, Standard and the and square wave signal generators, Function Generators, Square pulse, Random sweep, Arbitrary waveform. Wave Analyzers, Harmonic Distortion Analyzers, um Analyzer.			

Course Content	UNIT-IV OSCILLOSCOPES: C.R.T. features, vertical amplifiers, horizontal deflection system, sweep, trigger pulse, delay line, sync selector circuits, triggered sweep C.R.O., Dual beam C.R.O., Measurement of Amplitude and Frequency, Dual Trace Oscilloscope, Sampling Oscilloscope, Storage Oscilloscope, Digital Readout Oscilloscope, Digital Storage Oscilloscope, Lissajous method of frequency measurement, standard specifications of C.R.O., Frequency counter, Time and Period measurement. UNIT-V BRIDGE MEASUREMENT: Wheatstone bridge, Measurement of Resistance, A.C. Bridges, Measurement of inductance- Maxwell's bridge, and Measurement of capacitance - Schering Bridge. Errors and precautions in using bridges, Q-meter. UNIT-VI TRANSDUCERS: Active & Passive transducers : Resistance, Capacitance, Inductance; Strain gauges, L.V.D.T., Piezo Electric transducers, Resistance Thermometers, Thermocouples, Thermistors, Sensistors. Measurement of physical parameters force, Pressure, Velocity, Humidity, Moisture, Speed, Proximity and Displacement. Data acquisition systems.				
Text Books and Reference Books	 TEXT BOOKS: 1. Modern Electronic Instrumentation and Measurement Techniques – A. D. Helfrick and W. D. Cooper, P.H.I., 5th Edition, 2002. 2. Electronic instrumentation, second edition - H. S. Kalsi, Tata McGraw Hill, 2004 REFERENCE BOOKS: 1. Electronic Instrumentation & Measurements - David A. Bell, P.H.I., 2nd Edition, 2003. 2. Electronic Test Instruments, Analog and Digital Measurements - Robert A. Witte, Pearson Education, 2nd Ed., 2004. 				
E-Resources	 http://www.nptel.ac.in. http://www.ebookee.com/electronicmeasurementand instrumentation. 				

17EC3204 – EMBEDDED SYSTEMS & IOT

Course category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	2 - 2- 0
Prerequisite:	Microcontrollers and	Sessional Evaluation :	40
	Microprocessors, C-Programming.	External Evaluation:	60
		Total Marks:	100

Course Objectives	Students undergoing this course are expected to understand:
	1. the basic idea regarding the nature of embedded systems.
	2. the advantages of using Aurdino and MSP430 microcontrollers in Embedded and
	IoT applications.
	3. basics of MSP430 controller.
	4. skill in simple program writing for MSP430 and applications.
	5. basics of IoT concepts.
	6. different Wireless services to access/control IoT devices.
Course Outcomes	After completing the course the student will be able to understand:
	CO1 the selection procedure of Processors in the Embedded domain.
	CO2how Embedded Systems can be developed on Arduino and MSP430.
	CO3 the internal architecture and organization of MSP430.
	CO4 the interfacing techniques to MSP 430 and can design and implement programs on MSP430 controller.
	CO5 the application areas of IoT.
	CO6 Develop Wireless Technologies to access/control IoT devices.
Course Content	UNIT-I INTRODUCTION TO EMBEDDED SYSTEMS: Introduction, Hardware and Software requirements, Processor selection, categories of embedded system, applications of embedded systems. Development Process: Development process of embedded systems, linkers and locators UNIT – II INTRODUCTION TO AURDINO AND MSP430: ARDUINO: AVR Family with Arduino ATMega 328- Interfaces - Arduino IDE – Programming – Interfacing LED- Interfacing LED and Switch with Arduino. MSP430: Introduction, Features of MSP430, Architecture of MSP430, Exceptions, Addressing Modes of MSP430, Instruction Set, Interrupts, Timers.
	UNIT – III MSP430 I/O REGISTERS AND MODES: I/O ports pull up/down registers concepts, Interrupts and interrupt programming. Watchdog timer. System clocks. Low Power aspects of MSP430: low power modes, Active vs Standby current consumption, FRAM vs Flash for low power & reliability.

Course	UNIT – IV MSP430 INTERFACING: Timer & Real Time Clock (RTC), PWM control, timing generation and measurements. Analog interfacing and data acquisition: ADC and Comparator in MSP430, data transfer using DMA. UNIT – V
Content	INTRODUCTION TO IOT: Definition & Characteristics of IoT, Physical design, Logical
	design, IoT Enabling Technologies, IoT Levels and Deployment Templates, IoT vs M2M.
	UNIT-VI
	WIRELESS TECHNOLOGIES FOR IOT (LAYER 1 & 2):WiFi (IEEE 802.11), Bluetooth/Bluetooth Smart, ZigBee/ZigBeeSmart, UWB (IEEE 802.15.4).
Text Books and Reference	 TEXT BOOKS : Introduction to Embedded Systems - Shibu K.V, Mc Graw Hil. Manoel Carlos Ramon, "Intel® Galileo and Intel® Galileo Gen 2: API Features and Arduino Projects for Linux Programmers", Apress, 2014. MSP430 microcontroller basics. John H. Davies, Newnes Publication, I st Edition. Vijay Madisetti, ArshdeepBagha,"Internet of Things A Hands-On- Approach",2014, ISBN:978-1-118-43062-0
Books	REFERENCE BOOKS :
	 Adrian McEwen, "Designing the Internet of Things", Wiley Publishers. Marco Schwartz, "Internet of Things with the Arduino Yun", Packt Publishing, 2014.
	3. Daniel Kellmereit, "The Silent Intelligence: The Internet of Things".
	 Peter Waher, 'Learning Internet of Things', Packt Publishing, 2015 Editors OvidiuVermesan Peter Friess,'Internet of Things – From Research and
	Innovation to Market
	 http://processors.wiki.ti.com/index.php/MSP430_LaunchPad_Low_Power_Mode http://processors.wiki.ti.com/index.php/MSP430_16-
E-Resources	Bit_UltraLow_Power_MCU_Training
	3. nptel.ac.in/courses

17EC3205 – DATA & COMPUTER COMMUNICATION

Course category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	2 - 2- 0
Prerequisite:	Data types, Communication theory,	Sessional Evaluation :	40
	basics of computer networks	External Evaluation:	60
		Total Marks:	100

	Students undergoing this course are expected to understand:
Course Objectives	 Data networks, communication model with protocols and architecture. Data Transmission with signal encoding and error correction and detection techniques. Link control techniques and various multiplexing techniques for efficient data transmission. Types of networks and their standards (LAN, WAN, Bluetooth etc.,). Advanced protocols like IPV6 and internet applications.
	Upon successful completion of the course , the students will be able to:
	CO1 Clear understanding of the basic concepts of data communications including the key aspects of networking and their interrelationship. Able to differentiate among and discuss the four levels of addresses (physical, logical, port and specific used by the Internet TCP/IP protocols)
	CO2 Distinguish between the different types of bit errors and can explain the concept of bit redundancy and how it is generally achieved in the facilitation of error detection and the main methods of error correction
Course Outcomes	CO3 Understand the basic concepts of data logical link control; can discuss logical link control with reference to framing, flow and error control, software implemented protocols (for the noiseless and noisy channel) to facilitate reliable inter-node transmission of frames; and show the ability to compare and contrast high-level data link control protocol and point-to-point protocol (HDLC, PPP)
	CO4 Understand the LAN's with IEEE standards and specifications
	CO5 Understand the Internetworking principles and how the Internet protocols IP, IPv6, demonstrate the mechanics associated with IP addressing, device interface, association between physical and logical addressing
	CO6 Identify the requirements for a high-order communication systems Demonstrate the ability for effective verbal communication.
Course Content	UNIT I DATA COMMUNICATIONS, DATA NETWORKS AND THE INTERNET: Data Communications and Networking for Todays Enterprise, A Communications Model, The Internet, The Need for a Protocol Architecture, The TCP/IP Protocol Architecture, Standardization within a Protocol Architecture, Traditional Internet- Based Applications, Multimedia.
	UNIT II DATA TRANSMISSION: Concepts and Terminology, Analog and Digital Data Transmission, Transmission Impairments, Channel Capacity, Signal Encoding Techniques: Digital Data, Digital Signals; Analog Data, Analog Signals, Types of

	Errors, Error Detection and Correction, Error Detection with parity Check, Cyclic
	Redundancy Check (CRC) and Forward Error Correction.
	UNIT-III
	DATA LINK CONTROL PROTOCOLS: Flow Control, Error Control, High-Level Data Link Control (HDLC), Multiplexing: Frequency-Division Multiplexing, Synchronous Time-Division Multiplexing, Asymmetric Digital Subscriber Line, xDSL.
	WIDE AREA NETWORKS (WAN): Introduction, Switched Communications Networks, Circuit-Switching Networks, Soft switch Architecture, Packet-Switching Principles.
	UNIT-IV
Course Content	LOCAL AREA NETWORKS : Overview, Bus and Star Topologies, LAN Protocol Architecture, Bridges, Hubs and Switches, Ethernet: Traditional Ethernet, High-Speed Ethernet, Digital Signal Encoding for LANs, Wireless LANs: Overview, IEEE 802.11 Architecture and Services.
	UNIT-V
	INTERNET PROTOCOLS: Principles of Internetworking, Internet Protocol Operation, Internet Protocol, IPv6.
	TRANSPORT PROTOCOLS: Connection-Oriented Transport Protocol Mechanisms, TCP, UDP, Wireless Networks: Fixed Broadband Wireless Access, WiMAX/IEEE 802.16, Bluetooth.
	UNIT-VI
	INTERNET APPLICATIONS : Electronic Mail: SMTP and MIME, Internet Directory Service: DNS, Web Access: HTTP, Internet Multimedia Support: Real-Time Traffic, Voice Over IP, Real-Time Transport Protocol (RTP).
	TEVT DOOKS.
	TEXT BOOKS : 1. Data & Computer communication by William Stallings, Pearson education 9 th
Text Books	edition, 2014.
and	2. Data communications & networking by Forouzon 4 th edition.
Reference Books	REFERENCE BOOKS :
	1. Introduction to Data communications & networking by Wayne Tomasi Pearson
	education 4 th edition 2005. 2. Computer networks by Andrew. S. Tanenbaum 3 rd edition.
E-Resources	2. Computer networks by Andrew. S. Tanenbaum 3 ⁻² edition. 1. https://nptel.ac.in/courses/106105082

17EC32P1 – MP & MC LAB

Course Category:	Program Core	Credits:	2
Course Type:	Practical	Lecture-Tutorial- Practice:	0-0-3
Prerequisite:	Basic knowledge in programming C, knowledge in microprocessors and programming	Sessional Evaluation: External Evaluation : Total Marks:	

	Students undergoing this course are expected to understand:			
	1. The features of the software tool – T.A.S.A.M. simulator.			
Course		e arithmetic and data transfer instructions of 8086.		
Objectives		e various hardware modules to be interfaced with μp and μc .		
Objectives	4. The interfacing knowledge with Microprocessor kit			
		w to develop the ALP for simple logical and arithmetic operations.		
		welop assembly language programs for various applications using 8051µc.		
	Upon	successful completion of the course , the students will be able to:		
	CO1	Set up programming strategies and select proper mnemonics and run their		
		program on the training boards.		
	CO2	Acquire interfacing knowledge with microprocessor kit.		
Course Outcomes	CO3	Design the high speed communication circuits using serial bus connection		
Outcomes	CO4	Use a commercial C.P.U.(s) as realistic vehicles to demonstrate these concepts by		
	001	introducing students to C.P.U. instructions and internal register structures		
	CO5	Understand the full internal workings of a typical simple C.P.U. including the		
		utilization of the various hardware resources during the execution of instructions.		
	CO6	Develop testing and experimental procedures on Microprocessor and		
	Microcontroller analyse their operation under different cases.			
		LIST OF EXPERIMENTS		
	1.	Summation & Block Transfer of Data		
		a) Write and execute 8086 to add the given series of B.C.D. numbers and show		
		the result.		
		b) Write and execute 8086 A.L.P. to transfer a Block of data from one memory		
		area to another memory area. c) Write and execute 8086 A.L.P. to perform the following multiplications.		
~		1) Repeated addition		
Course		2) Using SHIFT and ADD instruction		
Content		d) Write and execute 8086 A.L.P. to perform the following.		
		1)Binary division		
		2)B.C.D. division		
	2.	Searching & Sorting Data		
		a) Write and execute 8086 A.L.P. to find the minimum and maximum number		
		from a given data array		
		b) Write and execute 8086 A.L.P. to arrange the given data array in ascending order and descending order		

	 Logic Controller Module Write and execute 8086 A.L.P. to design the logical expression using Logic controller interface module
	 Stepper Motor Module Write and execute 8086 A.L.P. to rotate a stepper motor either in clockwise direction or in anticlockwise direction and to control the speed of rotation
	 Serial Input Display Unit Module(S.I.D.U.) Write and execute 8086 A.L.P. to display the desired word in a display of serial input display unit interface module
Course Content	 Parallel Input Display Unit Module (P.I.D.U.) Write and execute 8086 A.L.P. to design an up and down counter using P.I.D.U. Interface module
	 Digital to Analog Converter Interface Module Write and execute 8086 A.L.P. to generate given waveform through C.R.O. using D.A.C.
	8. Arithmetic & Logical operations using 8051.
	9. (a) To find smallest number from given array of numbers using 8051.(b) To find largest number from given array of numbers using 8051.
	10. Programming using arithmetic, logical and bit manipulation instructions of 8051.
Reference Books	 A K Ray and K M Bhurchandi, "Advanced Microprocessors & Peripherals", 2nd ed., TMH, 2006. Mohamed Ali Mazidi, Janice Gillispie Mazidi, "The 8051 microcontroller and embedded systems", Pearson education, 2004.

17EC32P2-DIGITAL COMMUNICATION LAB

Course Category:	Program Core	Credits:	2
Course Type:	Practical	Lecture-Tutorial- Practice:	0 - 0 - 3
Prerequisite:	Analog Communication, Digital Communication	Sessional Evaluation: External Evaluation : Total Marks:	40 60 100

~	Stude	nts undergoing this course are expected to understand:	
Course Objectives	1. Analog signal sampling and re- construction.		
Objectives	2.	Different modulation and demodulation schemes.	
	Upon	successful completion of the course , the students will be able to:	
	CO1	Modulate and demodulate a message Signal with a high frequency carrier using DM.	
Course	CO2	Modulate and demodulate a message Signal with a high frequency carrier using PCM	
Outcomes	CO3	Understand signal sampling and re- construction	
	CO4	Understand time division multiplexing & demultiplexing	
	CO5	Know the different shift keying methods.	
	CO6	Understand the encoder and decoders of Linear Block Codes.	
		LIST OF EXPERIMENTS	
		1. Verifying Sampling Theorem	
		2. Time Division Multiplexing and Demultiplexing	
		3. Pulse Code Modulation and Demodulation	
		4. Differential Pulse Code Modulation and Demodulation	
Course		5. Companding	
Content		6. Delta Modulation and Demodulation	
		7. Amplitude Shift Keying Modulation and Demodulation	
		8. Frequency Shift Keying Modulation and Demodulation	
		9. Binary Phase Shift Keying Modulation and Demodulation	
		10. Differential Phase Shift Keying Modulation and Demodulation	
		11. Linear Block Code-Encoder and Decoder	
		12. Binary Cyclic Code- Encoder and Decoder	

17EC32P3 – DIGITAL SIGNAL PROCESSING LAB

Course Category:	Program Core	Credits:	2
Course Type:	Practical	Lecture-Tutorial- Practice:	0 - 0 - 3
	Signals and system, digital signal	Sessional Evaluation:	40
Prerequisite:	processing and digital image	External Evaluation :	60
-	processing.	Total Marks:	100

G	Students undergoing this course are expected to understand:				
Course Objectives	 Basic operations varies filters and images. Verification of various systems. 				
	2.	verification of various systems.			
	Upon	successful completion of the course, the students will be able to:			
	CO1	Generate various filters using MAT lab.			
Course	CO2	Find the Inverse z-transform using residue method.			
Outcomes	CO3	Perform linear convolution and cross correlation of two sequences.			
	CO4	Compute the DFT and IDFT of a given sequence.			
	CO5	Perform linear convolution using DFT			
	CO6	Design digital band pass and band stop filters.			
Course Content	 Per Co Co Co Co Co Co Lir Inv De De De De De De De De De 	LIST OF SIGNAL PROCESSING EXPRIMENTS neration of discrete time signals like sine, cosine, exponential, square and sawtooth form linear convolution and cross correlation of two sequences. nstant co-efficient difference equation. mputation of the DTFT of a given sequence x (n). mputation of the dFT and IDFT of a given sequence. mputation of the efficiency of FFT algorithm with the DFT algorithm. hear convolution using DFT. verse Z-transform using residue method. sign Chebyshew digital low pass filter using bilinear transformation. esign a Butterworth digital low pass filter. esign fIR digital low pass filter. esign digital band pass filter.			

ELECTIVES-II

- 1. PRINCIPLES OF MODERN RADAR SYSTEMS
- 2. MACHINE LEARNING
- **3.** IC FABRICATION TECHNOLOGY
- 4. **OPTOELECTRONICS**

17EC32E1 – PRINCIPLES OF MODERN RADAR SYSTEMS

Course category:	Program Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3 - 0- 0
Prerequisite:	Analog and digital communication	Sessional Evaluation :	40
	systems, Microwave techniques and	External Evaluation:	60
	Radiating systems.	Total Marks:	100

	Students undergoing this course are expected to:		
Course Objectives	1. Analyze the fundamentals of radar block diagram and range equation.		
	2. understand different components of radar system.		
	3. know types of radar systems.		
	4. illustrate Radar detection techniques.		
	5. learn special radars.		
	6. understand fundamentals ECM and ECCM.		
	Upon successful completion of the course , the students will be able to:		
	CO1 Understand the components of a radar system and their relationship to overall system and measure of performance.		
	CO2 Analyze the performance of radar components.		
Course Outcomes	CO3 Familiarized in different radar systems.		
o accontes	CO4 Develop skills in designing Radar systems in different noise environments.		
	CO5Demonstrate knowledge in special radars.		
	CO6 Describe the fundamentals ECM and ECCM.		
Course Content	CO6 Describe the fundamentals ECM and ECCM. UNIT-I THE NATURE OF RADAR: The simple form of the Radar equation, Radar block diagram and operation, Radar frequencies and Applications of Radar. Minimum Detectable signal, Receiver noise, Probability Density Functions, Signal to Noise Ratio, Integration of Radar pulses, Radar Cross Section of Targets, Cross section fluctuations, Pulse Repetition Frequency and Range Ambiguities. UNIT-II RADAR COMPONENTS: Klystron Power Amplifier, Travelling Wave Tube, Magnetron Oscillator, Cross Field Amplifier, Modulators, Mixers: Conversion Loss, Noise Figure, Balanced mixer, Image recovery mixer, Duplexers: Branch type, Balanced type and Solid State Duplexers, limiters, Displays: CRT Display, A,B,C,D Scopes, PPI and RHI. UNIT-III RADAR SYSTEMS: Doppler Effect, Simple CW Radar, FM-CW Radar, MTI Radar: Delay line Cancellers, Blind speeds, Range Gated Doppler Filters, Limitations and types of MTI radars. TRACKING RADAR: Sequential Lobbing, Conical Scanning and Monopulse		

Course Content	UNIT- IV RADAR DETECTION TECHNIQUES: Coherent & Non-Coherent Detection – Matched Filters-Different methods of Integration of Pulse Trains – Detection of Fluctuating Targets – Fluctuation laws – Diversity gain – Binary Integration of Fluctuation Targets – Cumulative Integration of Fluctuating Targets – Sequential Detection with Rapid Confirmation – Constant False Alarm Rate Detection – Cell Averaging – Two Parameter Averaging & Non-Parametric Averaging. UNIT-V SPECIAL RADARS: Bi-Static Radar – Synthetic Aperture Radar – HF Over The Horizon Radar –Air Surveillance Radar – Height Finder & 3D radar. UNIT-VI RADAR ELECTRONIC COUNTER MEASURES (ECM) AND ELECTRONIC COUNTER-COUNTER MEASURES (ECCM): Noise Jamming of Surveillance Radar – Detection Range in Noise Jamming – ECCM Provisions for Surveillance Radar – Objective of ECM.
Text Books and Reference Books	 TEXT BOOKS: David. K. Barton-"Modern Radar Systems"- Artech House INC 1988. Introduction to Radar Systems-Merrill. I. Skolnik, TMH, 2ndEdition, 2007. Radar: Principles, Technology and Applications-Byron Edde, Pearson Education, 2004. REFERENCE BOOKS: Microwave and Radar Engineering- M. Kulakarni, Umesh Publications, 4th Edition, 2012. Hamish. D. Meikle- "Modern Radar Systems" - Artech House INC 1988. David. K. Barton-"Radar system Analysis & Modeling" - Artech House INC 2003.
E-Resources	 https://www.ll.mit.edu/outreach/introduction-radar-systems http://lej4learning.com.pk/videos-introduction-to-radar-systems-mit/

17EC32E2 – MACHINE LEARNING

Course category:	Program Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3 - 0- 0
Prerequisite:	Probability Theory and Linear	Sessional Evaluation :	40
	Algebra.	External Evaluation:	60
		Total Marks:	100

	Students undergoing this course are expected:	
Course Objectives	 To introduce fundamental concepts in machine learning and popular machine learning algorithms. To become familiar with the fundamentals of Supervised Learning techniques To understand & analyze various Unsupervised Learning techniques. To acquire knowledge on principles and techniques of Artificial Neural Networks. To understand different types of Perceptron. To have a profound understanding of Computational Learning Theory. 	
	Upon successful completion of the course, the students will be able to:	
	CO1 Understand the fundamental principles, techniques and applications of Machine Learning.	
Course	CO2 Design and implement machine-learning solutions to classification, regression and clustering problems.	
Outcomes	CO3 Evaluate and interpret the results of the Unsupervised Learning techniques.	
	CO4 Design the neural network to meet the needs of control systems and pattern classification issues.	
	CO5 Recognize and Implement various ways of selecting suitable model parameters for different Machine Learning techniques.	
	CO6 Gain the knowledge of Computational Learning Theory.	
Course Content	Coin the knowledge of Computational Learning Theory	

Course Content	t network, Multilayer feed forward networks, Pattern classification, Delta learning rul multilayer perceptron, Error back propagation algorithm. UNIT - VI COMPUTATIONAL LEARNING THEORY: Introduction, PAC learning m				
Text Books and Reference Books	 Sample complexity, VC Dimension, Ensemble learning, Introduction to Clustering, k-means clustering, adaptive hierarchical clustering. TEXT BOOKS: Mitchell Tom, Machine Learning, McGraw Hill, 1997. Christopher Bishop, Pattern Recognition and Machine Learning, Springer 2006. Jacek M. Zurada, Introduction to Artificial Neural Systems, Jaico Publications. 				
E-Resources	 https://onlinecourses.nptel.ac.in/noc18_cs40 http://nptel.ac.in/courses/108104049/13 				

17EC32E3 – IC FABRICATION TECHNOLOGY

Course category:	Program Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3 - 0 - 0
Prerequisite:	Electronic Devices & Circuits,	Sessional Evaluation :	40
_	Switching Theory & Logic Design,	External Evaluation:	60
	Analog IC Applications,	Total Marks:	100
	Digital Design, VLSI Design.		

	tudents undergoing this course are expected to understand:	
Course Objectives	 The fundamental process involved in IC fabrication and able to describe the CMOS and Bi-CMOS IC Fabrication Process The modelling of resistor and capacitor in IC fabrication considering the parasitic effects and design rules The gate structures, Network layout design and sequential machines The gain adequate knowledge on subsystems and physical design The floor planning, touting, distribution The automatic test pattern generator and BIST. 	
Course Outcomes	Pon successful completion of the course , the students will be able to: PO1 Understand the fundamental process involved in IC fabrication process and Model resistor and capacitor in IC fabrication and understand transistor parasitic, stick diagrams PO2 Describe the CMOS and BiCMOS IC Fabrication Process and SCMOS design rules.	
	Understand the gate structures and sub systems	
Course Content		

Course Content	UNIT-III GATES, NETWORK AND SEQUENTIAL MACHINES: Static complementary gates- Gate structures, Basic gate layouts, delay, Power consumption, Speed- power product, parasitic, Wires and delay. Network layout design- Single row layout, Standard cell layout. Network delay- Fan-out, Path delay, Transistor sizing. Sequential machines- Latches and Flip-flops. UNIT-IV SUBSYSTEMS: Subsystems- Pipelining, Data paths, 4-bit arithmetic processor as example of subsystem design. UNIT-V FLOOR PLANNING: Floor planning methods – Block placement and channel distribution, Global routing, power distribution, Clock distribution. Off-chip connections- Packages, I/O Architecture, Pad design. UNIT-VI TESTING AND TESTABILITY: System partitioning, Design for testability, Fault models. ATPG, Testing combinational logic, Testing sequential logic, Scan design techniques BIST.				
Text Books and Reference Books	 TEXT BOOKS: S.M. Sze, "VLSI Technology", Mc Graw-Hill Int. Edn. Wayne Wolf, "Modern VLSI design", Pearson Education Asia. REFERENCE BOOKS: Douglas A. Pucknell and Kamran Eshraghian, "Basic VLSI design", Prentice-Hall of India Pvt. Ltd. "Introduction to VLSI Circuits and Systems" – John. P. Uyemura. John wiley, 2003. "Digital Integrated Circuits" – John M.Rabaey, PHI, 				
E-Resources	 www.iue.tuwien.ac.at/phd/ceric/node8.html www.eecs.berkeley.edu/~hu/ChenmingHu_ch3.pdfwww.nptel.ac.in/courses/1 1310602/Lec22.pdf 				

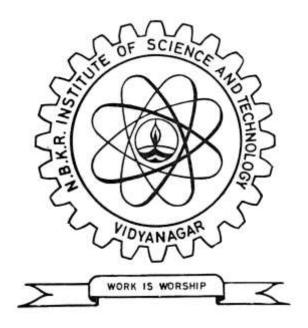
17EC32E4 – OPTOELETRONICS

Course category:	Program Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3 - 0 - 0
Prerequisite:	Engineering physics	Sessional Evaluation :	40
		External Evaluation:	60
		Total Marks:	100

	Students undergoing this course are expected to understand:	
Course	 The operation of semiconductor optoelectronic devices. The Hetero junctions and quantum wells and their application to Optoelectronic devices. 	
Course Objectives	3. The design, analysis and modelling of semiconductor lasers (D.C. & Modulation	
	Properties).	
	 The design and small-signal circuit modelling of various types of Photo Detectors. 	
	5. The Fourier optics, nonlinear optical signal processing.	
	6. The Holography, pattern recognition.	
	Upon successful completion of the course , the students will be able to:	
	CO1 Acquire knowledge about optical radiation, black body radiation and material interactions.	
Course	CO2 Analyse radioactive processes, laser excitations and Gaussian characteristics of laser beam.	
Outcomes	CO3 Analyse Q-switching and mode locking.	
	CO4 Analyse specific lasers, Helium, Neon, Argon ion, carbon dioxide, neodymium and Semiconductor free electron.	
	CO5 Understand modulation of light, electro optic modulation, Acousto-optic modulation and magneto optic devices.	
	CO6 Understand Image Binarization using photographic process.	
	UNIT-I OPTICAL RADIATION: Radiometric and Photortietric definitions, Blackbody radiation, Material interactions, Temperature.	
Course Content	UNIT-II LASERS: Radioactive Processes, Laser excitations, Gaussian characteristics of the laser beam, optical feedback, Q-switching and mode locking.	
	UNIT-III SPECIFIC LASERS – Helium – Neon Laser, Argon ion Laser, Carbon dioxide Laser, Neodymium Laser, Semiconductor Laser, Free electron Laser	

Course Content	UNIT-IV MODULATION OF LIGHT: Polarization, Light propagation in crystals, Electro- optic modulation, Acousto-optic modulation, Magneto-optic devices, Image Binarization using photographic process UNIT-V FOURIER OPTICS: Scalar theory of diffraction, Fourier transform properties of Lenses, Optical information processing systems, special filtering using binary filters, Nonlinear optical signal processing using contact screens, Apodization. UNIT-VI ELECTRO-OPTIC SYSTEMS: Holography, phase contrast microscopy, Pattern recognition, Optical computing systems.
Text Books and Reference Books	 TEXT BOOKS: Electro-Optical Devices and systems by M. A. Karim PWS-KENT publishing company Optical Electronics by A. K. Ghatak and K. Thygarajan, Cambridge University press. REFERENCE BOOKS: Optoelectronics-Emmanual Rosencher & Borge Vinter by Cambridge University Laser Principals and Applications by J. Wilson, J. F. B. Hawkes, PHI Publications.
E-Resources	1. http://nptel.ac.in/courses/117103063/262. https://www.youtube.com/user/nptelhrd

17AC3201 – AUDIT COURSE


Course category:	Basic sciences	Credits:	0
Course Type:	Theory	Lecture - Tutorial - Practical:	0 - 0 - 0
Prerequisite:	English and mathematics	Sessional Evaluation :	40
		External Evaluation:	60
		Total Marks:	100

	Students undergoing this course are expected to understand:
Course Objective	Keeping in mind the previous exposure of the students towards English & Quant, this focuses on improving the student's efficiency in Communicative English and quantitative ability can sharpen thinking ability and fasten their problem solving skills, which will be helpful for the students personally & professionally.
G	Upon successful completion of the course , the students will be able to:
Course Outcome	Gain adequate knowledge on Quantitative Aptitude, Reasoning ,Professional Ethics and Human Values Business, Etiquette and Personal Grooming, Accent Neutralization Identifying and dealing with Mother Tongue Influence (MTI), Verbal Ability.
	UNIT-I
	QUANTITATIVE APTITUDE : Number System-L.C.M & H.C.F- Find the Unit digit-Remainder Theorem- Problems on Ages- Problems on Averages-Percentages-Simple Interest-Compound Interest-Profit and Loss, Permutations and Combinations, Probability, Boats and Streams- Pipes and Cisterns- Data Interpretation-Table Graph-Bar Graph- Line Graph- Pie Chart.
	UNIT-II
Course Content	REASONING : Number and Letter Series- Coding and Decoding, Directions, Classifications-Venn Diagrams- Syllogism-Seating Arrangement-Analogy-Blood Relation-Clocks-Calendars- Puzzle Test-Coded Inequality- Data Sufficiency.
	UNIT-III
	PROFESSIONAL ETHICS AND HUMAN VALUES :Morals, Values and Ethics – Integrity – Work Ethic – Service Learning – Civic Virtue – Respect for Others – Living Peacefully – caring – Sharing – Honesty – Courage – Valuing Time – Cooperation – Commitment – Empathy – Self-Confidence – Character – Spirituality
	UNIT-IV
	BUSINESS ETIQUETTE AND PERSONAL GROOMING MAKING A GREAT FIRST IMPRESSION : How to present yourself to people, Greetings, Introductions The art of small talk - How to make proper introductions, Paying & Receiving

	Compliments, Small Talk & Networking ,Developing Professional and Personal Image, Personal Hygiene & Polish interpersonal skill.				
	ETIQUETTE OF DRESSING: The do's and don'ts in dressing, Understanding various dress codes, Clothes and Corporate Culture				
	UNIT -V				
G	ACCENT NEUTRALIZATION: P – Pitch, I – Inflection, C – Courtesy, T – Tone, U – Understanding, R – Rate of speech & E – Enunciation				
Course Content	IDENTIFYING AND DEALING WITH MOTHER TONGUE INFLUENCE (MTI) PREPARATION FOR INTERVIEWS : Conducting Research & Commonly asked questions, speaking up during interviews, GDs, Debate & Resume Building.				
	UNIT - VI				
	VERBAL ABILITY: Essay Writing, Comprehension, Email writing, Correction of				
	Sentences, Synonyms & Antonyms				
	Sentences, Synonyms & Antonyms				
Text Books					
Text Books and	Sentences, Synonyms & Antonyms TEXT BOOKS: 1. Quantitative Aptitude by R.S.Agarwal 2. , Non-Verbal Reasoning by R.S.Agarwal				
	Sentences, Synonyms & Antonyms TEXT BOOKS: 1. Quantitative Aptitude by R.S.Agarwal				

N.B.K.R. INSTITUTE OF SCIENCE & TECHNOLOGY (AUTONOMOUS)

COLLEGE WITH POTENTIAL FOR EXCELLENCE (CPE) Affiliated to JNTUA, Anantapuramu Re-Accredited by NAAC with 'A' Grade B.Tech. Courses Accredited by NBA under TIER-I

SYLLABUS B.TECH. DEGREE COURSE

IV B.TECH I & II Semesters

ELECTRONICS AND COMMUNICATION ENGINEERING

(With effect from the batch admitted in the academic year 2017-2018)

VIDYANAGAR - 524413 SPSR Nellore-Dist. Andhra Pradesh www.nbkrist.org

INSTITUTE:

Vision:

To emerge as a comprehensive Institute that provides quality technical education and research thereby building up a precious human resource for the industry and society.

Mission:

- 1. To provide a learner-centered environment that challenges individuals to actively participate in the education process.
- 2. To empower the faculty to excel in teaching while engaging in research, creativity and public service.
- 3. To develop effective learning skills enabling students pick up critical thinking thus crafting them professionally fit and ethically strong.
- 4. To reach out industries, schools and public agencies to partner and share human and academic resources.

VISION AND MISSION OF THE DEPARTMENT

Vision:

To develop high quality engineers with sound technical knowledge, skills, ethics and morals in order to meet the global technological and industrial requirements in the area of Electronics and Communication Engineering.

Mission:

- 1. To produce high quality graduates and post-graduates of Electronics and Communication Engineering with modern technical knowledge, professional skills and good attitudes in order to meet industry and society demands.
- 2. To develop graduates with an ability to work productively in a team with professional ethics and social responsibility.
- 3. To develop highly employable graduates and post graduates who can meet industrial requirements and bring innovations.
- 4. Moulding the students with foundation knowledge and skills to enable them to take up postgraduate programmes and research programmes at the premier institutes.

Programme Educational Objectives (PEOs):

- **1.** To provide the students with strong fundamental and advanced knowledge in mathematics, Science and Engineering with respect to Electronics and Communication Engineering discipline with an emphasis to solve Engineering problems.
- 2. To prepare the students through well designed curriculum to excel in bachelor degree programme in Electronics and Communication Engineering in order to engage in teaching or industrial or any technical profession and to pursue higher studies.

- **3.** To train students with intensive and extensive engineering knowledge and skill so as to understand, analyze, design and create novel products and solutions in the field of Electronics and Communication Engineering.
- **4.** To inculcate in students the professional and ethical attitude, effective communication skills, team spirit, multidisciplinary approach and ability to relate engineering issues to broader social context.
- **5.** To provide students with an excellent academic environment to promote leadership qualities, character molding and lifelong learning as required for a successful professional career.

Program Outcomes (POs):

- **PO1:** Ability to acquire and apply knowledge of science and engineering fundamentals in problem solving.
- **PO2:** Acquire in-depth technical competence in a specific information technology discipline.
- **PO3:** Ability to undertake problem identification, formulation and providing optimum solution.
- **PO4:** Ability to utilize systems approach to design and evaluate operational performance.
- **PO5:** Understanding of the principles of inter-disciplinary domains for sustainable development.
- **PO6:** Understanding of professional & ethical responsibilities and commitment to them.
- **PO7:** Ability to communicate effectively, not only with engineers but also with the community at large.
- **PO8**: Ability to Communicate effectively on complex engineering activities with the engineering community and with society at large.
- **PO9**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO11**: Understanding of the social, cultural, global and environmental responsibilities as a professional engineer.
- **PO12**: Recognizing the need to undertake life-long learning, and possess/acquire the capacity to do so.

NBKR INSTITUTE OF SCIENCE & TECHNOLOGY: VIDYANAGAR

(AUTONOMOUS) (AFFILIATED TO JNTU ANANTAPUR: ANANTHAPURAMU) SPSR NELLORE DIST IV YEAR OF FOUR YEAR B.TECH DEGREE COURSE – I SEMESTER ELECTRONICS AND COMMUNICATION ENGINEERING SCHEME OF INSTRUCTION AND EVALUATION

(With effect from the academic year 2017-2018)

(For the batch admitted in the academic year 2017-2018)

				Instruction				Evaluation								
S.No	Course Code	Course Title		Hours/Week		Credits	S	Sessional Marks	·I		sional-II Marks		Total Sessional Marks(40)	End Sen Examin		Maximum Total Marks
	Code	THEORY	L	Т	D/P		Test ^{\$} -I	A#-I	Max. Marks	Test ^{\$} -II	A [#] -II	Max. Marks		Duration In Hours	Max. Marks	100
1	17SH4102	Management Science**	3	0	-	3	34	6	40	34	6	40		3	60	100
2	17EC4101	Cellular & Mobile Communications	2	2	-	3	34	6	40	34	6	40	0.8*Best of	3	60	100
3	17EC4102	DD using FPGA	2	2	-	3	34	6	40	34	6	40	two+0.2* least of two	3	60	100
4	17EC4103	Digital Image Processing	2	2	-	3	34	6	40	34	6	40		3	60	100
5	17EC41EX	Elective-III	3	0	-	3	34	6	40	34	6	40		3	60	100
6	17XX410X	Open Elective-I	3	0	-	3	34	6	40	34	6	40		3	60	100
		PRACTICALS					PRAC	TICALS								
7	17EC41P1	Microwave & Optical Communication Lab	-	-	3	2	-	-	-	-	-	40	Day to Day	3	60	100
8	17EC41P2	IOT Lab	-	-	3	2	-	-	-	-	-	40	Evaluation and a test (40 Marks)	3	60	100
9	17EC41P3	VLSI Lab	-	-	3	2	-	-	-	-	-	40	(40 Marks)	3	60	100
		TOTAL	15	6	09	24	-	-	-	-	-	360	-	-	540	900

**Common to ECE, EEE, CSE, IT

* Common to ECE, EEE

A for Assignment (continuous evaluation)

\$ Test (Descriptive & Objective) duration = 2 Hours

17SH4102 – MANAGEMENT SCIENCE (Common to ECE, EEE and CSE)

Course Category:	Humanities	Credits:	3
Course Type:	Theory	Lecture-Tutorial-Practical:	3-0-0
Pre-requisite:	Economics and	Sessional Evaluation:	40
	accountancy	Univ.Exam Evaluation:	60
		Total Marks:	100

	Students undergoing this course are expected:
Course Objectives	 To understand the disciplines of management science and manager's role in business and other decision-making To gain an overview of the process of developing and using quantitative techniques in decision making and planning. To aware of the ethical dilemmas faced by managers and the social responsibilities of business. To know the significance of strategic management in competitive and dynamic global economy
	After completing the course the student will be able to :
	CO1 Explain the concepts of management, ethical and social responsibilities and principles of Organization
C.	CO2 Evolution of Management Thought and hierarchy of layouts of plants.
Course Outcomes	CO3 Apply work-study techniques for increased productivity in Corporate world.
Outcomes	CO4 Manage human resources efficiently and effectively with best HR practices with marketing management plans.
	CO5Develop marketing strategies based on product, price, place and promotion
	objectives with Project Cost Analysis.
	CO6 Determine activities' times (early start, early finish, late start, late finish, total
	float, and free float) and schedule the project using the CPM and PERT.
	UNIT – I INTRODUCTION TO MANAGEMENT : Concept of Management — Functions of Management, Evolution of Management Thought: Taylor's Scientific Management Theory, Fayal's Principles of Management- Maslow's theory of Hierarchy of Human Needs- Douglas McGregor's Theory X and Theory Y - Hertzberg Two Factor Theory of Motivation - Leadership Styles.
Course Content	UNIT – II DESIGN OF ORGANIZATION: principles of Organization –Organisation process- Types of organisation: line, line and staff organization, function, committee, matrix, virtual, cellular, team organization. Boundary less organization, inverted pyramid structure, lean and flat organization. Managerial objectives and social responsibilities.
	UNIT-III STRATEGIC MANAGEMENT: Corporate planning – Mission, Objectives, programmers, SWOT analysis – Strategy formulation and implementation. MARKETING MANAGEMENT: Functions of Marketing, Marketing Mix, and Marketing Strategies based on Product Life Cycle, Channels of distribution.

Course Content	UNIT-IV HUMAN RESOURCES MANAGEMENT- Manpower planning – Personnel management – Basic functions of personnel management, Job Evaluation and Merit Rating – Incentive plans. UNIT-V PRODUCTION AND OPERATIONS MANAGEMENT: Plant Location and Plant Layout concepts- methods of production (Job, Batch & Mass)-Production Planning and control. Work study- Basic procedure involved in Method Study -Work Measurement. UNIT-VI PROJECT MANAGEMENT (PERT/ CPM): Network Analysis- Programme Evaluation and Review Technique (PERT), Critical Path Method (CPM), identifying critical path, probability of completing the project within given time, Project Cost Analysis, Project Crashing (simple problems).				
Text Books & Reference Books	 TEXT BOOKS: Dr. T.P. Singh Er. Arvind Kumar "Applied management Science and Operations Research" A.R.Aryasri "Management Science" O.P.Kanna "Industrial Engineering and Management" REFERENCE BOOKS: C.B.Gupta "Business organisations and management" T.R.Banga,S.C.Sharma "Industrial Engineering and Management (Including Production Management)" 				
E-Resources	 http://nptel.ac.in/courses http://iete-elan.ac.in http://freevideolectures.com/university/iitm 				

17EC4101-CELLULAR MOBILE COMMUNICATION

Course Category:	Program Open Elective	Credits:	3
Course Type:	Theory	Lecture -Tutorial-Practical:	2-2-0
Prerequisite:	Antenna and Wave Propagation,	Sessional Evaluation:	40
	Radar Engineering	External Evaluation:	60
		Total Marks:	100

	Students undergoing this course are expected to understand:					
Course Objectives	 The basic Cellular system The elements of cellular radio system design. The various Prediction models for cell coverage in terms of signal and traffic. The interference problem and its reduction by designing proper antenna system. Frequency spectrum utilization techniques channel & traffic management and evaluation of dropped call rate. The need for digital mobile telephony and studying various mobile systems like GSM & CDMA. 					
	Upon successful completion of the course , the students will be able to:					
	CO1 Understand cellular communication system with cell splitting, consideration of cellular system, cell-site antennas like elements.					
	CO2 Design elements for Analog and Digital cellular systems.					
Course Outcomes	CO3 Acquire knowledge about propagation mechanisms, Multipath fading, and channel modeling and co-channel interference.					
	CO4 Know about different types of channel interferences with cell-site antenna heights and signals coverage cells					
	CO5 Gain knowledge about Frequency management and Channel assignment a multiple access schemes					
	CO6 Acquire knowledge about the evolution of GSM, TDMA & CDMA technologies for proper Frequency spectrum utilization.					
Course Content						

	UNIT-III
	CELL COVERAGE FOR SIGNAL & TRAFFIC: General introduction, obtaining the mobile point-to-point model, propagation over water or flat open area, foiling loss, propagation in near distance, long distance propagation, point-to-point prediction model characteristics, cell-site antenna heights and signals coverage cells, mobile propagation.
Course Content	UNIT-IV INTERFERENCE: Introduction to co-channel interference, real time co-channel interference measurement, design of antenna system, diversity receiver, types of non-co-channel interference, interference between systems.
	UNIT-V FREQUENCY MANAGEMENT & CHANNEL ASSIGNMENT: Frequency spectrum utilization, setup channels, management & traffic channel assignment, Handoff & their characteristics, dropped call rates and their evaluations. Real-time co-channel interference measurement.
	UNIT-VI
	DIGITAL CELLULAR SYSTEM: Why digital, digital mobile telephony, practical multiple access schemes, Global System for Mobile (GSM), TDMA & CDMA, miscellaneous mobile systems.
Text Books and Reference	 TEXT BOOKS: 1. Lee. W. C. Y – "Mobile Cellular Telecommunication – Analog and Digital Systems", Mc Graw Hill. 2. G.K. behere lopamudra das" Mobile communication" SciTech publications
Books	REFERENCE BOOKS:
	 Principles of communication systems Taub & shilling TMH Celullar mobile communications –Willium stallings –PHI
E-Resources	 www.iitg.ernet.in/scifac/qip/public_html/cd_cell/EC632.pdf www.morse.colorado.edu/~tlen5510/text/

17EC4102 – DIGITAL DESIGN with FPGA

Course category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	2-2-0
Prerequisite:	Electronic Devices and Circuits,	Sessional Evaluation :	40
	Switching Theory & Logic Design,	External Evaluation:	60
	Programming Skills	Total Marks:	100

	Students undergoing this course are expected to:
	1. Learn various logic families.
	2. Study various objects in VHDL along with libraries and packages.
Course	3. Understand how digital circuit can be built in a methodological way, starting
Objectives	from Boolean logic and applying a set of rigorous techniques.
Ŭ	4. Study various design examples of combinational circuits
	5. Design and analyze sequential circuits using V.H.D.L. language.
	6. Learn various digital IC's of Registers and Counters.
	Upon successful completion of the course, the students will be able to:
	CO1 Implement the various combinational circuits using logic families.
	CO2 Understand the various objects in VHDL along with libraries and packages.
Course	CO3 Implement the various combinational circuits using V.H.D.L. language
Outcomes	CO4 Design and analyze sequential circuits for various practical problems using basic
	gates and flip flops
	CO5 Design the various counters using digital ICs
	CO6 Implement the various sequential circuits using V.H.D.L. language
	UNIT – I
	DIGITAL LOGIC FAMILIES: Evaluation of ICs, Advantages and classification of
	ICs. Digital IC characteristics, Introduction to Logic Families: Bipolar logic, DTL,
	HTL, ECL, TTL, MOS, CMOS, Comparison of Logic Families and IC packaging's.
	UNIT – II
~	VHDL: History Of VHDL ,Features Of VHDL, Design Flow, VHDL Program Structure, Objects In V.H.D.L-Signals, Variable, Constants, Files ; Libraries And
Course Content	Packages, functions and procedures.
Content	VHDL DESIGN ELEMENTS: Structural Design Elements, Data Flow Design
	Elements, Behavioural Design Elements, Time Dimension And Simulation, Synthesis,
	Examples.
	UNIT – III COMBINATIONAL LOGIC DESIGN: Multiplexers And Demultiplexers, Decoders,
	Encoders, Three State Devices, Code Converters, Parity Circuits, Comparators, Adders
	And Subtractors. ALUs, Design considerations with relevant Digital ICs, VHDL modes
	for the above circuits.

	UNIT – IV SEQUENTIAL LOGIC DESIGN: SSI Latches and Flip-Flops, Design considerations with relevant Digital ICs, VHDL modes for the above circuits.
Course Content	UNIT – V COUNTERS AND REGISTERS: Introduction to Counters, Design of Counters using Digital ICs, Ring Counter, Johnson Counter, Shift Registers, VHDL modes for the above circuits.
	UNIT – VI PROGRAMMABLE LOGIC DEVICES: Introduction, Evolution: PROM, PLA, PAL, Architecture of PAL's, Design Flow, Complex PLD's (MAX - 7000, APEX). FPGA's.: Introduction, Logic Block Architecture, Routing Architecture, Design Flow, Xilinx Vertex-II (Architecture).
Text Books and Reference Books	 TEXT BOOKS: "Design of Analog CMOS Integrated Circuits" by Behzad Razhavi. Mc. Graw-Hill PLD, FPGA data sheets. B.S. sonde, "Introduction to system design using ICs" Wiley Eastern. S.S. Limaye, "VHDL – A design oriented Approach", 'TMH edition (2008). John Wakerley "Digital Design Principles", PHI. REFERENCE BOOKS: Stephen Brown and zvonkovranesic, 'Fundamentals of digital design with VHDL", TMH edition (2007).
E-Resources	 2. Zainalabedin Navabi, VHDL, analysis and modeling of digital systems, McGraw-Hill. 3. Kevin Skahil, VHDL for programmable logic, Addison Wesley. 1. http://nptel.ac.in/courses/117106086/1 2. http://nptel.ac.in/courses/117106086/31 3. https://www.youtube.com/user/nptelhrd

17EC4103-DIGITAL IMAGE PROCESSING

Course Category:	Program Core	Credits:	3
Course Type:	Theory	Lecture-Tutorial-Practical:	2-2-0
Prerequisite:	Engineering Mathematics, Signals and	Sessional Evaluation:	40
	Systems, Digital Signal Processing	External Evaluation:	60
		Total Marks:	100

	Students undergoing this course are expected:	
	1. To learn the fundamentals of digital image processing and the relationship	
	between pixels.	
Course	2. To understand transformations used in digital image processing algorithms.	
Objectives	3. To understand the spatial and frequency domain image processing	
	4. To learn the restoration techniques used in image enhancement.	
	5. To learn how to code and compress the images.	
	6. To understand fundamentals of color image processing.	
	After completing the course the student will be able to :	
	CO1 Describe how digital images are represented and how they are sampled and quantized and Define the image processing system and basic relations among pixels.	
~	CO2 Analyze the need for image transforms, types and their properties.	
Course Outcomes	CO3 Study different techniques employed for the enhancement of images in both spatial and frequency domain.	
	CO4 Explore causes for image degradation and various restoration techniques.	
	CO5 Understand the techniques for image segmentation and Define different image coding techniques and compression models.	
	CO6 Describe the techniques of colour image processing.	
	UNIT-I DIGITAL IMAGE FUNDAMENTALS: Digital Image Representation – Digital Image Processing System – Visual Perception – Sampling and quantization – Basic Relationship between pixels – Imaging geometry.	
Course Content	UNIT – II IMAGE TRANSFORMS: Discrete Fourier Transform – Properties of 2-D Fourier transform – 2-D Fast Fourier Transform – Walsh Transform – Hadamard Transform – D.C.T. – Haar Transform – Slant Transform – Hotelling Transform.	
	UNIT – III IMAGE ENHANCEMENT: Back ground enhancement by point processing – Histogram Processing – Spatial Filtering – Enhancement in frequency Domain – Image Smoothing – Image Sharpening.	

Course Content	UNIT – IV IMAGE RESTORATION: Degradation model – Algebraic approach to restoration – Inverse filtering – Least Mean Square filters – Constrained Least Mean Square restoration – Inverse Restoration. IMAGE SEGMENTATION: Detection of Discontinuities – Edge Linking – Boundary detection and Boundary Description – Thresholding – Region Oriented Segmentation. UNIT – V IMAGE CODING & COMPRESSION: Fidelity Criteria – Encoding Process – Transform Encoding – Redundancies and their removal methods – Image compression models and methods – Source coder and decoder – Error free compression – Lossy compression. UNIT-VI COLOUR IMAGE PROCESSING: Colour Image Processing – Colour Model, Pseudo colour image processing – Full colour image processing, Colour Image Filtering, Colour Image Segmentation	
Text Books and Reference Books		
E-Resources	 nptel.ac.in/courses/117105079/ www.ee.columbia.edu/~xlx/courses/ee4830-sp08/notes/lect1-parta.pdf 	

17EC41P1-MICROWAVE & OPTICAL COMMUNICATION LAB

Course Category:	Program Core	Credits:	2
Course Type:	Practical	Lecture-Tutorial- Practice:	0 - 0 - 3
Prerequisite:	Microwave techniques	Sessional Evaluation: External Evaluation : Total Marks:	40 60 100

	Students undergoing this course are expected to understand:
	1. The reflex klystron, it is used as amplifier and oscillator in radar stations and radio
Course	stations etc.
Objectives	2. The wave-guide characteristics
	3. The antenna parameters
	4. The unknown load impedance measurement using VSWR method.
	5. The working of directional couplers.
	Upon successful completion of the course, the students will be able to:
	CO1 Study reflex klystron characteristics and understands how it can be used as an amplifier, oscillator in microwave applications
Course	CO2 Calculate the power in the parts of direction couplers
Outcomes	CO3 Know the cut off, free space and guided wavelength of waveguide.
	CO4 Know how to power can be mixed and split up phase reversal etc. using magic tee
	CO5 Measure Antenna Parameters like Gain , Aperture Area and the directivity
	CO6 Know how to measure numerical aperture and bending losses of OFC
	LIST OF EXPERIMENTS
	1. Reflex klystron characteristics –I
	 Reflex klystron characteristics –II Reflex klystron characteristics –II
Course	3. Direction couplers
Content	4. Wave guide parameters
	5. Characteristics of GUNN diode
	6. Characteristics of MAGIC TEE
	7. Antenna measurements
	8. Measurement of V.S.W.R.
	9. Measurement of impedance
	10. Measurement of numerical aperture

17EC41P2- IOT LAB

Course Category:	Program Core	Credits:	2
Course Type:	Practical	Lecture-Tutorial- Practice:	0 - 0 - 3
Prerequisite:	Micro controllers and embedded systems	Sessional Evaluation: External Evaluation : Total Marks:	40 60 100

	Students undergoing this course are expected to understand:	
Course Objectives	 Use Embedded C language to develop embedded applications. Apply, Construct and demonstrate various in-build interfaces/modules of Aurdino and MSP430 for specific applications. Apply Embedded C code for utilizing Low power modes of MSP430. 	
Course Outcomes	Upon successful completion of the course , the students will be able to:CO1Design the home appliances and toys using Microcontroller chips.CO2Design Logic controller module and SIDU module.CO3Design the high speed communication circuits using serial bus connectionCO4Interfacing and programming GPIO ports in c using MSP430CO5Understand the PWM generation using timer on MSP430 GPIOCO6Know how to connect and communicate to cloud	
Course Content	 LIST OF EXPERIMENTS 1. BASIC LED PROGRAMMING IN C USING AURDINO 1.1 Study and Install IDE of Arduino and different types of Arduino 2. Write program using Arduino IDE for Blink LED 1.3 Write Program for RGB LED using Arduino 2. INTERFACING AND PROGRAMMING GPIO PORTS IN C USING MSP430 2.1: Blink LED 2.2: Fade RGB LED (PWM) 2.3:Push Button (Input) 3. INTERFACING AND PROGRAMMING GPIO PORTS IN C USING MSP430 3.1: Multiple LED (Many Outputs) 3.2:Shift Register (Integrated Circuit) 3.3: Photoresistor (Light Sensor) 4. INTERFACING AND PROGRAMMING GPIO PORTS IN C USING MSP430 4.1: Spin the Motor 4.2: Seven-Segment Display (Digital Display) 5. A BASIC WI-FI APPLICATION – COMMUNICATION BETWEEN TWO SENSOR NODES 	

	 6. INTERFACING POTENTIOMETER WITH MSP430 6.1: Alter the threshold to 75% of Vcc for the LED to turn on. 6.2: Modify the code to change the Reference Voltage from Vcc to 2.5V.
	 7. CONNECT AND COMMUNICATE TO CLOUD 7.1: Creating a simple HTML web server using MSP430 Launch Pad& CC3100 Wi-Fi Booster Pack 7.2: Create a Wi-Fi-connected IoT sensor that calls you when sensor values exceed a threshold
	 8. CONNECT AND COMMUNICATE TO CLOUD 8.1: Playing Music – (Buzzer) 8.2: Potentiometer – (Rotary Angle Sensor)
	 9. PWM GENERATION USING TIMER ON MSP430 GPIO 9.1: Observe the PWM waveform on a particular pin using CRO. 9.2: What is the maximum resolution of PWM circuitry in MSP430G2 Launch Pad? 9.3: Change the above code to create a PWM signal of 75% duty cycle on particular PWM pin.
Course Content	 10. PWM BASED SPEED CONTROL OF MOTOR CONTROLLED BY POTENTIOMETER CONNECTED TO MSP430 GPIO 10.1: Interface a Stepper motor with MSP-EXP430G2 Launch Pad to run it in a Predetermined uniform speed. 10.2: Describe the applications of PWM in a digital power supply control. 10.3: Create Switch case code from the example code to run the DC Motor in 3 set of Speeds.
	 11. A BASIC WI-FI APPLICATION 11.1: In the terminal output window, we have received a debug message "Pinging!" Search in the code and change the message to "Pinging the Website". Repeat the experiment to observe this change in the Serial Window.
	12. INTERRUPT PROGRAMMING EXAMPLES THROUGH GPIOS12.1: Write the code to enable a Timer interrupt for the pin P1.1.12.2: Write the code to turn on interrupts globally.

17EC41P3 – VLSI LAB

Course Category:	Program Core	Credits:	2
Course Type:	Practical	Lecture-Tutorial- Practice:	0 - 0 - 3
Prerequisite:	Switching theory & logic design, Digital design and digital IC's	Sessional Evaluation: External Evaluation : Total Marks:	40 60 100

	Studer	nts undergoing this course are expected to understand:	
Course Objectives	 How to write VHDL programs of different digital circuits. How to simulate the VHDL programs of different digital circuits. 		
	Upon	successful completion of the course, the students will be able to:	
	CO1	Write and simulate the various logic gates by using VHDL.	
Course	CO2	Write and simulate the adders and subtractors by using VHDL.	
Outcomes	CO3	Verify the truth table of various digital circuits and IC's.	
	CO4	Design the various digital circuits.	
	CO5	Write and simulate the various counters by using VHDL.	
	CO6	Write and simulate the various registers by using VHDL.	
	Minin	num of 10 experiments to be completed out of the following:	
		LIST OF EXPERIMENTS	
	1 Los	gic Gates	
	2. Half Adder & Full Adder		
	3. Half Subtractor & Full Subtractor		
	4. 3 to 8 Decoder – IC 74x138		
	5. 8 to 3 Encoder-IC 74x148		
Course	6. 4 bit Comparator – IC 74x85		
Content	7. $8x1$ Multiplexer – IC 74x151		
	8.16x1 Multiplexer – IC 74x150 9. 1x4 Demultiplexer–IC 74x155		
	10. D Flip-Flop - IC 74x74		
	11. Decade Counter – IC 74x90		
	12. Shift Register – IC 74x95		
	13. BCD to 7-segment display code converter		
	14. 3 bit up/down Ripple counter		
	15. 2 bit synchronous counter		
	16. Bi	-directional shift register	

ELECTIVES-III

- 1. OPTICAL COMMUNICATION
- 2. VLSI DIGITAL SIGNAL PROCESSING
- 3. RADAR SIGNAL PROCESSING
- 4. TELECOMMUNICATION & SWITCHING NETWORKS

17EC41E1 – OPTICAL COMMUNICATION

Course category:	Program Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3 - 0 - 0
Prerequisite:	Electro Magnetic Fields and waves,	Sessional Evaluation :	40
	Antenna and Wave Propagation,	External Evaluation:	60
	Electronic Devices and Circuits.	Total Marks:	100

	Students undergoing this course are expected to understand:
Course Objectives	 An overview of the Ray theory. Optical materials, dispersion, diffraction, absorption, scattering, fiber losses, fiber modes and configurations, fiber types and rays and fiber materials. L.E.D., Lasers and their excitations and noises of light sources and coupling to single mode fibers, splicing and connectors. The operating principles of optical Detectors and Receivers. The behavior of the optical amplifiers, semiconductor and doped optical amplifiers, and optical networks. The knowledge of measurement of optical parameters and applications of optical fibers in different fields.
	Upon successful completion of the course, the students will be able to:
	CO1 Acquire knowledge about optical materials, fiber characteristics, classification with different losses.
	CO2 Understand the fibre modes, configurations and fibre materials for proper optical propagation.
Course Outcomes	CO3 Acquire knowledge of L.E.D., Laser excitations, fiber noises, coupling of fibers and its receivers.
Outcomes	CO4 Analyse optical sources and detectors and receivers' performance and calculation
	CO5 Understand the optical amplifiers and basic noise networks in optical fiber applications.
	CO6 Understand the measurements of optical parameters and applications of optical fibers in different fields.
Course	UNIT-I INTRODUCTION TO OPTICAL FIBERS : Introduction- Ray theory transmission- Total internal reflection-Acceptance angle –Numerical aperture – Skew rays – Electromagnetic mode theory of optical propagation –EM waves modes in planar Guide – phase and group velocity – cylindrical fibers – SM fibers.
Content	UNIT –II TRANSMISSION CHARACTERISTICS OF OPTICAL FIBERS: Attenuation –
	Material absorption losses in silica glass fibers – Linear and Nonlinear Scattering losses - Fiber Bend losses – Midband and Farband infrared Transmission – Intra and inter
	Modal Dispersion – Over all Fiber Dispersion – Polarization- nonlinear Phenomena.
	Optical fiber connectors, Fiber alignment and Joint Losses – Fiber Splices – Fiber connectors –Expanded Beam Connectors – Fiber Couplers.

	UNIT –III FIBER OPTICAL SOURCES: Light Emitting Diodes, LED structures, Surface and edge emitters, mono and hetero structures - internal - quantum efficiency, injection laser diode structures - comparison of LED and ILD UNIT –IV	
	FIBER OPTICAL DETECTORS AND RECEIVERS: OPTICAL DETECTORS : PIN Photo detectors, Avalanche photo diodes, construction, characteristics and properties, Comparison of performance, Photo detector noise -Noise sources, Signal to Noise ratio, Detector response time. OPTICAL RECEIVERS : Fundamental receiver operation, Pre amplifiers, Error sources – Receiver Configuration-Probability of Error – Quantum limit.	
Course Content	UNIT- V FIBER OPTICAL AMPLIFIERS AND NETWORKS: Semiconductor Optical amplifiers – EDFA- Raman amplifier. WDM SYSTEM: Principles of WDM networks. Nonlinear effects in fiber optic links. Concept of self-phase modulation, group velocity dispersion and solution based communication.	
	UNIT- VI FIBER OPTICAL MEASUREMENTS: Fiber Attenuation measurements- Dispersion measurements –Fiber Refractive index profile measurements – Fiber cut- off Wavelength Measurements –Fiber Numerical Aperture Measurements – Fiber diameter measurements. OPTICAL FIBER APPLICATIONS: Telephony Telemetry- video distribution and military applications.	
Text Books and Reference Books	TEXT BOOKS: 1. "Optical Communications", C. Gerd Keiser 3 rd Edition, Mc Graw-Hill-2000. 2. "Optical Fiber Communication", John M Senior, Pearson publications. REFERENCE BOOKS: 1. Electronic Communications Systems-Williams Schweber, Prentice Hall, 1999. 2. Optical Fiber Communication Systems- C.P. Saud Bance, John Wiley 1980.	
E-Resources	 3. Modern Electronic Communication-G.M. Miller 6th edition Prentice Hall 1999. 1. http://nptel.ac.in/courses/117103063/1 2. https://www.youtube.com/user/nptelhrd 	

17EC41E2– VLSI DIGITAL SIGNAL PROCESSING

Course Category:	Program core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	2 - 2 - 0
Prerequisite:	VLSI Design, Digital Signal	Sessional Evaluation :	40
	Processing algorithms, graph-	External Evaluation:	60
	theoretic concepts, and	Total Marks:	100
	combinatorial algorithms.		

	Students undergoing this course are expected to understand:	
	1. fundamentals of graph theory in VLSI signal processing	
Course Objectives	2. transformations for high speed using pipelining, retiming, and parallel	
	processing techniques	
Objectives	3. area reduction using folding techniques	
	4. mapping of algorithms on array structures, DSP systems, and FPGAs	
	 low Power Design Techniques VLSI systems for some typical signal processing applications 	
	Upon successful completion of the course , the students will be able to:	
	CO1 Understand VLSI design methodology for signal processing systems in different signal processing application.	
G	CO2 Apply the concepts with VLSI algorithms for computing digital signal processing applications.	
Course Outcomes	CO3 Be familiar with architectures for DSP and its Properties.	
	CO4 Design Families of Architectures for specified algorithm complexity and speed	
	constraints for Systolic Array Design	
	CO5 Design low power constrained systems with Power estimation approach.	
	CO6 Describe signal processing computation and its relevance to some specific applications with proper power management.	
	UNIT-I	
	INTRODUCTION FOR DSP ALGORITHMS: VLSI Design flow, Mapping	
	algorithms into Architectures: Graphical representation of DSP algorithms – signal flow	
	graph (SFG), data flow graph (DFG), critical path, dependence graph (DG). Data path	
	synthesis, control structures, Optimization at Logic Level and architectural Design, Loop	
	bound and iteration bound, Algorithms for computing iteration bound, Iteration bound of	
	Multi-rate data-flow graphs. UNIT-II	
Course	PARALLEL AND PIPELINE OF SIGNAL PROCESSING APPLICATION:	
Content	Architecture for real time systems, latency and throughput related issues, clocking	
	strategy, power conscious structures, array architectures; Pipelining processing of Digital	
	filter, Parallel processing, Parallel and pipelining for Low power design, Optimization	
	with regard to speed, area and power, asynchronous and low power system design, ASIC and ASISP design.	
	UNIT-III	
	SYSTOLIC ARRAY ARCHITECTURE: Methodology of systolic array architecture,	
	FIR based Systolic Array, Selection of Scheduling Vector, Matrix Multiplication and 2D	
	Systolic Array Design, Systolic Design for Space Representations Containing Delays.	

Course Content	UNIT-IV ARCHITECTURE OF DIFFERENT SIGNAL PROCESSING MODULES: Convolution technique, Folding /Unfolding Transformation, CORDIC architecture, Retiming: Introduction, Definition and Properties, Solving System of Inequalities, Retiming Techniques. UNIT-V LOW POWER DESIGN: Theoretical background, Scaling v/s power consumption, power analysis, Power reduction techniques, Power estimation approach.
	UNIT-VI APPLICATION IN COMMUNICATION AND SIGNAL PROCESSING SYSTEM: Transformation architectures, source and channel coding structures, Motion Estimation and motion compensation for video, Speech processing algorithm.
Text Books and Reference Books	 TEXT BOOKS: VLSI Digital Signal Processing Systems: Design and Implementation By K.K. Parhi, John Wiley & Sons, 1999 Richard J, Higgins, Digital Signal Processing in VLSI, Prentice Hall REFERENCES BOOKS : M.A. Bayoumi, VLSI Design Methodology for DSP Architectures, Kluwer, 1994 U. Meyer – Baese, Digital Signal Processing with FPGAs, Springer, 2004
E-Resources	1. http://people.ece.umn.edu/users/parhi/SLIDES/

17EC41E3 – RADAR SIGNAL PROCESSING

Course category:	Program Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3 - 0 - 0
Prerequisite:	Analog and digital communication	Sessional Evaluation :	40
	systems, DSP, Basic Radar	External Evaluation:	60
	engineering.	Total Marks:	100

	Students undergoing this course are expected:
	1. To learn the fundamentals of radar block diagram and range equation.
C	2. To understand the matched filter receiver.
Course Objectives	3. To understand detection criteria of radar signals in noise environment.
Objectives	4. To learn the Radar waveform design requirements.
	5. To learn the Pulse compression techniques.
	6. To understand fundamentals different phase coding techniques.
	Upon successful completion of the course, the students will be able to:
	CO1 Understand the components of a radar system and their relationship to overall system and measure of performance with and without noise.
Course	CO2 Analyze the radar performance and Frequency Response Characteristic of matched filter receiver with noise.
Outcomes	CO3 Develop skills in designing Radar systems in different noise environments by choosing proper Waveform Design Requirements.
	CO4 Familiarized Detection Criteria of radar and ambiguity function and basic radar signals.
	CO5 Demonstrate knowledge in radar pulse compression techniques with coding techniques.
	CO6 Describe the different phase coding techniques in Decoding the received Waveforms.
	UNIT-I
	RADA RRANGE EQUATION : Introduction– Radar Frequencies, Radar Block Diagram, Radar Equation, Information Available from Radar Echo. Review of Radar
	Range Performance-General Radar Range Equation, Radar Detection with NoiseJamming,BeaconandRepeaterEquations,BistaticRadar.
	UNIT – II MATCHED FILTER RECEIVER: Impulse Response, Frequency Response
Course	Characteristic and its Derivation, Matched Filter and Correlation Function, Correlation
Content	Detection and Cross-Correlation Receiver, Efficiency of Non-Matched Filters, Matched
	Filter for Non-White Noise.
	UNIT – III DETECTION OF BADAD SIGNALS IN NOISE: Detection Criteria Neuman
	DETECTION OF RADAR SIGNALS IN NOISE : Detection Criteria – Neyman- Pearson Observer, Likelihood-Ratio Receiver, Inverse Probability Receiver, Sequential
	Observer, Detectors –Envelope Detector, Logarithmic Detector, I/Q Detector. Automatic
	Detection – CFAR Receiver, Cell Averaging CFAR Receiver, CFAR Loss, CFAR Uses
	in Radar. Radar Signal Management –Schematics, Component Parts, Resources and
	Constraints.

UNIT – IVWAVEFORM SELECTION: Radar Ambiguity Function and Ambiguity Di Principles and Properties; Specific Cases – Ideal Case, Single Pulse of Sin Periodic Pulse Train, Single Linear FM Pulse, Noise like Waveforms. Waveform Requirements. Radar clutter- Introduction, surface clutter, Land clutter, Dete targets in Clutter.UNIT – VPULSE COMPRESSION IN RADAR SIGNALS: Introduction, Significance Linear FM Pulse Compression – Block Diagram, Characteristics, Reduction Side lobes, Stretch Techniques, Generation and Decoding of FM Waveforms Schematic and Characteristics of Passive System, Digital Compression, SAV Compression.		
Text Books and Reference Books	3. M.I. Skolnik, <i>Radar Hanabook</i> , McGraw Hill, 2nd Edition, 1991.	
E-Resources	 https://www.ll.mit.edu/outreach/introduction-radar-systems https://ocw.mit.edu/resources/res-ll-001-introduction-to-radar-systems- spring-2007/ http://lej4learning.com.pk/videos-introduction-to-radar-systems-mit/ 	

17EC41E4 – TELECOMMUNICATION & SWITCHING NETWORKS

Course category:	Program Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3 - 0- 0
Prerequisite:	Basics of Analog and Digital	Sessional Evaluation :	40
	communication signals and	External Evaluation:	60
	Systems	Total Marks:	100

	Students undergoing this course are expected:	
Course Objectives	 To teach the basic concepts of analog and digital communication principles. To educate the students about the concepts and principles of optical fiber communications To get the knowledge and principles learnt to analyze, design, install and manage typical wired and wireless communication systems and networks To educate the students satellite communication systems, public switched telephone networks, digital transmission system standards. To get the knowledge about network planning and principle of digital Switching systems. To educate the students about tele traffic theory 	
	Upon successful completion of the course, the students will be able to:	
	CO1 Understand various multiplexers techniques like TDM, FDM, BPSK in different communication networks.	
Course	CO2 Memorize SONET optical standards and describes frequency justification and utilization with different techniques.	
Outcomes	CO3 Describe network planning and principle of digital switching systems for proper network management.	
	CO4 Understand the principles of network synchronization control and management with switching techniques.	
	CO5 Gain the knowledge and principles digital subscriber access, ISDN and Network Blocking.	
	CO6 Understand the Public switched telephone networks, tele traffic theory, digital transmission system standards and Digital Subscriber Loops.	
Course Content		

	UNIT-III DIGITAL SWITCHING: Switching Functions, Space division Switching, Time Division Switching, Two dimensional Switching: STS Switching, TST Switching, No.4 ESS Toll Switch, Digital Cross Connect Systems, Digital Switching In Analog Environment, Elements of SS7signaling.
Course	UNIT-IV NETWORK SYNCHRONIZATION CONTROL AND MANAGEMENT: Timing, timing recovery, Phase locked loop, Clock instability, jitter measurements, Systematic jitter, Timing inaccuracies: slips, Asynchronous Multiplexing, Network synchronization, U.S. Network synchronization, Network Control, Network Management
Content	UNIT-V DIGITAL SUBSCRIBER ACCESS, ISDN: ISDN Basic Rate Access Architecture, ISDN U interface, ISDN D channel protocol, High Data Rate Digital Subscriber Loops, Asymmetric Digital Subscriber Line, VDSL, Digital Loop Carrier Systems, Universal Digital Loop Carrier Systems, Integrated Digital Loop Carrier Systems, Next generation Digital Loop Carrier , Fiber in the loop, Hybrid fiber coax systems, Voice band modems: pcm modems, Local microwave distribution service, Digital satellite services
	UNIT-VI TRAFFIC ANALYSIS: Traffic Characterization, Arrival Distribution, Holding Time Distribution, Loss Systems, Network Blocking Probabilities, End To End Blocking Probabilities, Overflow Traffic, Delay Systems, Exponential Service Times, Constant Service Time, Finite Queues
Text Books and Reference Books	 TEXT BOOKS: JE FLOOD, "Telecommunication Switching, Traffic and Networks" Telecommunication Switching systems and networks by Viswanathan. REFERENCE: J.Bellamy, "digital telephony", john wiley, 2003, 3rd edition Fundamentals of Telecommunication Networks by T.N.Saawivi
E-Resources	 http://www.nptel.ac.in. http://www.ebookee.com/Telecommunication switching networks

OPEN ELECTIVES-I

- 1. DATA BASE MANAGEMENT SYSTEM
- 2. GREEN ENERGY SOURCES
- **3. INTRODUCTION TO ROBOTICS**
- 4. NANO TECHNOLOGY

17CS41O2– DATA BASE MANAGEMENT SYSTEM

Course category:	Open Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3 - 0 - 0
Prerequisite:	Basic foundations in mathematics	Sessional Evaluation :	40
	and preliminary fundamentals of data	External Evaluation:	60
	and information	Total Marks:	100

	Students undergoing this course are expected to understand:	
Course Objectives	 Understand the areas of databases and composition of queries using Structured Query Language To study various database design models for building applications Evaluate a business situation while designing a database system 	
	Upon successful completion of the course, the students will be able to:	
	CO1 Master the basic concepts and their applicability	
~	CO2 Understand Relational Model and the Relational Algebraic operations.	
Course Outcomes	CO3 Learn ER model and its usage in applications.	
0	CO4 Familiar with SQL to create simple databases	
	CO5 Identify the basic issues of normalization and exposure on relational database design.	
	CO6 Acquire knowledge in Transaction Management and Recovery.	
	UNIT – I	
	INTRODUCTION : Database-System Applications, Purpose of Database Systems, View of Data, Database Languages, Relational Databases, Data Storage and Querying, Transaction Management, Database Architecture, Database Users and Administrators.	
	UNIT – II	
Course ContentRELATIONAL MODEL: Structure of Relational Databases, Fundament Algebra Operations, Additional Relational-Algebra Operations, Extended Algebra Operations, Null Values, Modification of the Database.		
	UNIT – III	
	DATABASE DESIGN AND THE E-R MODEL : Overview of the Design Process, The Entity-Relationship Model, Constraints, Entity-Relationship Diagrams, Entity- Relationship Design Issues, Weak Entity Sets, Extended E-R Features, Reduction to Relational Schemas, Other Aspects of Database Design.	
	UNIT – IV	
	SQL: Data Definition, SQL Data Types and Schemas, Integrity Constraints, Basic Structure of SQL Queries, Set Operations, Aggregate Functions, Null Values, Nested Sub queries, Complex Queries, Views, Modification of the Database, Joined Relations.	

	UNIT – V					
Course Content	RELATIONAL DATABASE DESIGN: Features of Good Relational Design, Atomic Domains and First Normal Form, Decomposition Using Functional Dependencies, Functional Dependency Theory, Algorithms for Functional Dependencies, Decomposition Using Multivalued Dependencies ,More Normal Form, Database-Design Process . UNIT – VI					
	TRANSACTION MANAGEMENT AND RECOVERY : Lock Based and timestamp based Protocols, Multiple Granularity, Multiversion Schemes, Deadlock Handling, Weak Levels of Consistency, Recovery and Atomicity, recovery algorithm, Buffer Management, Remote Backup Systems.					
Text Books and	 Text Books: 1. Silberschatz, Korth, Sudarshan, "Database System Concepts", McGrawHill, 6th Edition, 2011. 					
Reference	Reference Books:					
Books	 Ramez Elmasri and Shamkant Navathe, Durvasula V L N Somayajulu, Shyam K Gupta, "Fundamentals of Database Systems", Pearson Education, 2006. Thomas Connolly, Carolyn Begg, "Database Systems – A Practical Approach to Design, Implementation and Management", Pearson Education, 3rd Edition, 					
	 2002. 4. Raghu ramakrishnan ,"Database Management Systems", Publisher: McGraw Hill, Third edition. 					
E-Resources	1. https://nptel.ac.in/courses					
	2. https://freevideolectures.com/university/iitm					

17EE4102-GREEN ENERGY SOURCES

Course category:	Open Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3 - 0 - 0
Prerequisite:	Nil	Sessional Evaluation :	40
		External Evaluation:	60
		Total Marks:	100

	T									
	Students undergoing this course are expected to understand:									
	1. The basic concepts of the energy scenario.									
Course	2. The operation, construction and design of various components of hydro power									
Objectives	plant.3. The working principle of PV cell and applications of solar energy.									
	 The working principle of P v cen and appreations of solar energy. The concepts of wind power generation. 									
	5. The concepts of Biomass energy.									
	6. The concepts of Fuel cell and Geothermal systems.									
	Upon successful completion of the course, the students will be able to:									
	CO1 Understand the basic concepts of the energy scenario.									
Course	CO2 Gain the knowledge of operation, construction and design of various components of hydro power plant.									
Outcomes	CO3 Understand the working principle of PV cell and applications of solar energy.									
	CO4 Gain the knowledge on wind power generation.									
	CO5 Gain the knowledge on Biomass energy.									
	CO6 Gain the knowledge on Fuel cell and Geothermal systems.									
Course	UNIT-I GLOBAL AND NATIONAL ENERGY SCENARIO: Over view of conventional & renewable energy sources, need & development of renewable energy sources, types of renewable energy systems, Future of Energy use, Global and Indian Energy scenario, Renewable and Non renewable Energy sources, Energy for sustainable development, Potential of renewable energy sources, renewable electricity and key elements, Global climate change, CO2 reduction potential of renewable energy- concept of Hybrid systems.									
Content	UNIT-II HYDRO-ELECTRIC POWER PLANTS: Introduction, Selection of site for Hydro –									
	electric Power plants, classification of Hydro – electric plants, Layout of Hydro Electric Power plant, working principle, Description of main components, water power equation, types of turbines - Pelton, Fransis & Kaplan turbines, Pumped storage plant, Advantages and disadvantages of hydro power plant - Hydro power plants in India.									
	UNIT –III SOLAR ENERGY: Introduction, solar radiation, solar energy collectors, Flat plate collectors, concentrating collectors, solar thermal power plant, working principle of photo voltaic cell, solar energy storage, solar applications.									

Course Content	UNIT –IV WIND ENERGY: Introduction, power in the wind mills, site selection considerations for installing wind mill, Construction details of the wind mill (Wind Turbine Gear System), working principle of wind mill, variation of power output with wind speed, Betz criterion, Applications. UNIT –V BIOMASS: Biomass Energy: Fuel classification – Pyrolysis – Direct combustion of heat – Different digesters and sizing. UNIT –VI FUEL CELL: Classification – Efficiency – V-I characteristics. GEOTHERMAL: Classification – Dry rock and acquifer – Energy analysis.						
Text Books and Reference Books	 TEXT BOOKS: 1. "Acourse in power systems", by J.B.Guptha, S.K.Kataria&sons, Eleventh edition, Reprint-2014. 2. "Generation of Electrical Energy"- by B.R Gupta-S.Chand Publications,6th Edition, Reprint-2014. 3. Renewable Energy Resources, John Twidell and Tony Weir, Taylor and Francis - second edition, 2013. REFERENCE BOOKS: Renewable Energy- Edited by Godfrey Boyle-oxford University, press, 3rd edition, 2013. Renewable Energy Technologies /Ramesh & Kumar /Narosa. Renewable energy technologies – A practical guide for beginners – Chetong Singh Solanki, PHI. Non-conventional energy source –B.H. Khan- TMH-2nd edition. 						
E-Resources	 http://nptel.ac.in/courses http://iete-elan.ac.in http://freevideolectures.com/university/iitm 						

17ME4101-INTRODUCTION TO ROBOTICS

Course category:	Program Open Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3 - 0 - 0
Prerequisite:	Physics, Differential Equations,	Sessional Evaluation :	40
	Matrices and basic Geometry.	External Evaluation:	60
	Computer Simulation skills using	Total Marks:	100
	MATLAB		

	Students undergoing this course are expected to understand:						
Course Objectives	 Classification of robotic manipulators and related technologies. Skills associated with robot control Skills associated with sensors and machine vision systems to robot control Kinematics analysis of robot systems 						
	 Robot programming. Interactive applications of industrial robots 						
	Upon successful completion of the course , the students will be able to:CO1Understand robotics in today and future and robot configuration and subsystems						
Course	CO2 Gain knowledge about Control systems for motion control						
Outcomes	CO3 Understand about sensors and machine vision.						
	CO4 Relate kinematics for robot motion						
	CO5 Design and implement programming for robot systems by using programming.						
	CO6 Gain knowledge about Industrial robots applications.						
	UNIT –I INTRODUCTION: Need, Anatomy of robot, types of joints, types of constructions- degree of freedom, coordinate system workspace/work volume. Robot. Specification. END-EFFECTORS: Types - mechanical, magnetic, pneumatic						
Course Content	UNIT –II ACTUATORS: Introduction, actuators – Characteristics, Types, comparison – Hydraulic, pneumatic, Electric- DC, AC, Servo, stepper. MOTION CONTROL SYSTEMS: Introduction, basic components and terminology, transfer function, open loop, feed-forward and closed-loop. Microprocessor control of electric motor.						
	UNIT-III SENSORS: Introduction, characteristics. Types - Position, velocity, acceleration, force and pressure, torque, proximity, micro switches, touch and tactile, range finders. MACHINE VISION: Introduction to Machine Vision, the sensing and digitizing function in machine vision, Image processing and analysis- training the vision system. Robotic applications						

Course Content	UNIT-IV KINEMATICS OF ROBOTS: Introduction, reference frames. Robots as mechanisms - Matrix representation, transformations, forward and inverse kinematics of 2R and 3R robots. DH representation. degeneracy and dexterity UNIT-V ROBOT PROGRAMMING: Methods of robot programming- A robot program as a path in space Motion interpolation wait signal and delay commands branching ROBOT LANGUAGES: Introduction-Generation of Robot Programming Languages- robot language Structure –operating systems –Robot language elements and functions UNIT-VI ROBOT APPLICATIONS: manufacturing-material transfer and machine loading and unloading .Processing operations-welding-other processing operations, assembly and Inspection-robotic assembly, parts presentation methods. Inspection Automation
Text Books and Reference Books	 TEXT BOOKS: Industrial Robotics 2e by MP Groover McGraw-Hill Education (SIE) Introduction To Robotics: Analysis,Control,Applications,2nd Edition Saeed B Niku Wiley REFERENCE BOOKS: Introduction to Robotics by Subir Kumar Saha Tata McGraw-Hill Education. Robotics: Fundamental Concepts And Analysis by Ashitava Ghosal oxford
E-Resources	 university press 3. Craig John J, Introduction to Robotics: Mechanics and Control, 3rd Edition, Prentice-Hall, 2005 4. P. Corke. Robotics, Vision and Control. Springer Verlag, 2011. 1. http://nptel.ac.in/courses 2. http://freevideolectures.com/university/iitm

17SH4101-NANO TECHNOLOGY

Course Category:	Program Open Elective	Credits:	3
Course Type:	Theory	Lecture -Tutorial-Practical:	3-0-0
Prerequisite:	Basics of semiconductors	Sessional Evaluation:	40
		External Evaluation:	60
		Total Marks:	100

	Students undergoing this course are expected to understand:								
Course	1. The basic concepts of semiconductor nano devices.								
Objectives	2. Types of photonic and molecular materials								
Objectives	3. Design of thermal and gas sensors								
	4. Bio sensors and DNA based bio sensors								
	5. Criteria for the choice of materials								
	6. Protein based biosensors								
	Upon successful completion of the course , the students will be able to:								
	CO1 Understand various types of nano devices and nano mechanics								
Course	CO2 Develop nano technology based LED,LASERetc								
Outcomes	CO3 Develop the Electroluminescent Organic materials								
	CO4 Develop the different thermal sensors								
	CO5 Evaluate the response various materials								
	CO6 Design different types of bio sensors								
Course Content	UNIT -I SEMICONDUCTOR NANODEVICES -I: Single-Electron Devices; Nano scale MOSFET – Resonant Tunnelling Transistor - Single-Electron Transistors; Single- Electron Dynamics; Nanorobotics and Nano manipulation UNIT-II SEMICONDUCTOR NANODEVICES -II: Mechanical Molecular Nano devices; Nano computers: Theoretical Models; Optical Fibers for Nano devices; Photochemical Molecular Devices; DNA-Based Nano devices; Gas-Based Nano devices; Micro and Nano mechanics. UNIT-III ELECTRONIC AND PHOTONIC MOLECULAR MATERIALS: Preparation – Electroluminescent Organic materials - Laser Diodes - Quantum well lasers:-Quantum cascade lasers- Cascade surface-emitting photonic crystal laser- Quantum dotlasers- Quantum wire lasers:- White LEDs - LEDs based on nanowires - LEDs based on nanotubes- LEDs based on nanorods High Efficiency Materials for OLEDs- High Efficiency Materials for OLEDs - Quantum well infrared photo detectors.								

Course Content	UNIT-IV THERMAL SENSORS: Thermal energy sensors -temperature sensors, heat sensors- Electromagnetic sensors electrical resistance sensors, electrical current sensors, electrical voltage sensors, electrical power sensors, magnetism sensors - Mechanical sensors - pressure sensors, gas and liquid flow sensors, position sensors - Chemical sensors - Optical and radiation sensors. UNIT-V GAS SENSOR MATERIALS: Criteria for the choice of materials, Experimental aspects – materials, properties, measurement of gas sensing property, sensitivity; Discussion of sensors for various gases, Gas sensors based on semiconductor devices. UNIT-VI BIOSENSORS: Principles- DNA based biosensors – Protein based biosensors – materials for biosensor applications- fabrication of biosensors—future potential.
Text Books and Reference Books	 TEXT BOOKS: 1. W. Ranier, —Nano Electronics and Information Technologyl, Wiley, (2003). 2. K.E. Drexler, —Nano systemsl, Wiley, (1992). REFERENCE BOOKS: 1. M.C. Petty, —Introduction to Molecular Electronicsl1995.

NBKR INSTITUTE OF SCIENCE & TECHNOLOGY: VIDYANAGAR

(AUTONOMOUS) (AFFILIATED TO JNTU ANANTAPUR: ANANTHAPURAMU) SPSR NELLORE DIST IV YEAR OF FOUR YEAR B.TECH DEGREE COURSE – II SEMESTER ELECTRONICS AND COMMUNICATION ENGINEERING SCHEME OF INSTRUCTION AND EVALUATION

(With effect from the academic year 2017-2018)

(For the batch admitted in the academic year 2017-2018)

							Evaluation									
S.No	S.No Course			Instruction Hours/Week		Credits	Sessional-I Marks		Sessional-II Marks			Total Sessional Marks(40)	End Sen Examin		Maximum Total Marks	
	Code	THEORY	L	Т	D/P		Test ^{\$} -I	A#-I	Max. Marks	Test ^{\$} -II	A [#] -II	Max. Marks	0.8*Best of	Duration In Hours	Max. Marks	100
1	17EC42EX	Elective-IV	3	-	-	3	34	6	40	34	6	40	two+0.2* least of two	3	60	100
2	17XX420X	Open Elective-II	3	-	-	3	34	6	40	34	6	40		3	60	100
		PRACTICALS								Continuous						
3	17EC42PR	PROJECT WORK	-	-	3	11	-	-	-	-	-	-	Assessment and Seminar (80 Marks)	3	120	200
4	17EC42MO	MOOCs	-	-	-	3	-	-	-	-	-	-		-	-	-
5	17EC42IS	INTERNSHIP	-	-	-	2	-	-	-	-	-	-		-	-	-
		TOTAL	6	-	3	22	-	-	-	-	-	-	-	-	240	400

A for Assignment (continuous evaluation)

\$ Test (Descriptive & Objective) duration = 2 Hours

ELECTIVES-IV

- 1. SATELLITE COMMUNICATION
- 2. ADAPTIVE SIGNAL PROCESSING
- **3. ERROR CONTROL CODING**
- 4. **RELIABILITY ENGINEERING**

17EC42E1 – SATELLITE COMMUNICATION

Course category:	Program Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3 - 0 - 0
Prerequisite:	Antenna and Wave Propagation,	Sessional Evaluation :	40
	Radar Engineering	External Evaluation:	60
		Total Marks:	100

	Students undergoing this course are expected to:	
Course Objectives	 Understand the origin, brief history, current state and future trends of Satellite Communications. Understand the principles, concepts and operation of satellite communication systems. Calculate and interpret key geometric and timing parameters for a variety of common satellite orbits. Understand different types of satellite subsystems. Describe the concepts of signal propagation affects, link design, rain fading, link availability and perform interference calculations. Understand different components of satellite Earth Stations. 	
	Upon successful completion of the course , the students will be able to:	
	CO1 Understand history, current state and future trends of Satellite Communications.	
	CO2 Identify, formulate and solve engineering problems related to orbital aspects of satellite communication.	
Course Outcomes	CO3 Know about working of different subsystems in the satellite.	
	CO4 Design satellite link budgets to account for channel losses, noise, and interference in satellite communications systems for specific communications requirements.	
	CO5 Gain knowledge about different multiple access techniques.	
	CO6 Acquire knowledge about of Earth Station components.	
Course Content	UNIT-I INTRODUCTION: The Origin of Satellite Communications, A brief history of Satellite Communications, Frequency allocations for Satellite Services, Applications, Current State of Satellite Communications and Future trends of Satellite Communications. UNIT-II ORBITAL ASPECTS OF SATELLITE COMMUNICATION: Orbital Mechanics,	
	Lock Angle determination, Orbital perturbations, Orbit determination, Launches and Launch Vehicles, Orbital effects in Communication Systems Performance. UNIT-III	
	SATELLITE SUBSYSTEMS: Introduction, Attitude and Orbit Control System (AOCS), Telemetry, Tracking, Command and Monitoring (TTC&M), Power Systems, Communication Subsystems, Satellite Antennas, Equipment reliability and Space Qualification.	

Course Content	UNIT-IV SATELLITE LINK DESIGN: Basic Transmission Theory, System Noise Temperature and G/T ratio, Design of Down Link, Up Link design, Design of Satellite links for specified C/N, System Design examples. UNIT-V MULTIPLE ACCESS: Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA), Frame Structure and Code Division Multiple Access (CDMA), Spread Spectrum Transmission and Reception. UNIT-VI EARTH STATION: Types of Earth Station, Earth Station Architecture, Earth Station Design Considerations, Earth Station Testing, Earth Station Hardware and Satellite
Text Books and Reference Books	 Tracking. TEXT BOOKS : "Satellite Communication" - Timothy Pratt, Charles Bostian and Jeremy Allnutt, WSE, Wiley Publications, 2nd Edition, 2003. "Satellite Communications" - Anil K.Maini and Varsha Agarwal, Wiley India Pvt. Ltd., 2011. REFERENCE BOOKS : "Satellite Communication"- D.C Agarwal, Khanna Publications,5th edition "Satellite Communications" - Dennis Roddy, McGraw Hill, 4th Edition, 2009.
E-Resources	1. http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-851-satellite- engineering-fall-2003/lecture-notes/

17EC42E2- ADAPTIVE SIGNAL PROCESSING

Course Category:	Program Elective	Credits:	3
Course Type:	Theory	Lecture -Tutorial-Practical:	3-0-0
Prerequisite:	Signals & Systems	Sessional Evaluation:	40
	Digital Signal Processing	External Evaluation:	60
	-	Total Marks:	100

	Students undergoing this course are expected to understand:		
Course Objectives	1. know some practical aspects of signal processing, and in particular adaptive systems using adaptive signal processing algorithms (e.g., the LMS algorithm) and many		
Objectives	applications, such as adaptive noise cancellation, interference canceling, system identification, etc.		
	Upon successful completion of the course, the students will be able to:		
	CO1 Understand the concept of adaptive filter theory and develop a filter for any real time application.		
Course	CO2Know how to get desired response from a filter and various searching methods.		
Outcomes	CO3Design a filter using Steepest Descent algorithm and LMS algorithm.		
	CO4Compare Eigen filters with LMS algorithm in any real time application.		
	CO5Apply RLS algorithm design an adaptive filter equalization and Kalman filtering.		
	CO6 Develop an adaptive filter for target tracking using only DOA.		
	UNIT I INTRODUCTION TO ADAPTIVE SYSTEMS: Definitions, Characteristics, Applications, Example of an Adaptive System. The Adaptive Linear Combiner - Description, Weight Vectors, Desired Response Performance function, Gradient & Mean Square Error.		
Course Content	UNIT II DEVELOPMENT OF ADAPTIVE FILTER THEORY AND SEARCHING METHODS: Introduction to Filtering, Smoothing and Prediction, Linear Optimum Filtering, Problem statement, Principle of Orthogonality - Minimum Mean Square Error, Wiener- Hopf equations, Error Performance - Minimum Mean Square Error. Methods & Ideas of Gradient Search methods, Gradient Searching Algorithm & its Solution, Stability & Rate of convergence - Learning Curves.		
	UNIT III STEEPEST DESCENT ALGORITHMS, EIGEN VALUES AND VECTORS: Gradient Search by Newton's Method, Method of Steepest Descent, Comparison of Learning Curves. Eigen Value Problem, Properties of Eigen values and Eigen vectors, Eigen Filters, Eigen Value computations.		

Course Content	UNIT IV LMS ALGORITHM & APPLICATIONS: Overview - LMS Adaptation algorithms, Stability & Performance analysis of LMS Algorithms - LMS Gradient & Stochastic algorithms, Convergence of LMS algorithm, Noise cancellation, Cancellation of Echoes in long distance telephone circuits. UNIT-V RLS ALGORITHM : Matrix Inversion lemma, Exponentially weighted recursive least square algorithm, update recursion for the sum of weighted error squares, convergence analysis of RLS Algorithm, Application of RLS algorithm on Adaptive Equalization. UNIT-VI KALMAN FILTERING: Statement of Kalman filtering problem, Filtering, Initial conditions, Variants of Kalman filtering, Extend Kalman filtering, Introduction to Recursive Mean Square Estimation Random variables, Target tracking using only DOA.
Text Books and Reference Books	 TEXT BOOKS: Adaptive signal processing- Bernard Widrow, Samuel D.Strearns, 2005, PE. Adaptive Filter Theory - Simon Haykin-, 4th ed., 2002, PE Asia REFERENCE BOOKS: Optimum signal processing: An introduction - Sophocles. J. Orfamadis, 2 ed., 1988, McGraw-Hill, New York Adaptive signal processing-Theory and Applications, S.Thomas Alexander, 1986, Springer-Verilog.
E-Resources	1. https://nptel.ac.in/courses/117105075/

Г

17EC42E3- ERROR CONTROL CODING

Course Category:	Program Elective	Credits:	3
Course Type:	Theory	Lecture -Tutorial-Practical:	3-0-0
Prerequisite:	Knowledge of Probability,	Sessional Evaluation:	40
	Matrices, Modulation.	External Evaluation:	60
		Total Marks:	100

	Students undergoing this course are expected to understand:	
Course Objectives	1. Know some aspects of mutual information, channels, coding, in particular to source coding, linear block codes, cyclic codes, convolutional coding and error control in data storage systems.	
	Upon successful completion of the course , the students will be able to:	
	CO1 Acquire knowledge about various information sources, Fixed Length and Variable Length Coding.	
	CO2 Develop skills in obtaining the Entropy and finding the Efficiency of source codes.	
Course Outcomes	CO3 Attain skills in creating various Hamming Codes, Syndrome decoding and parity check matrices	
	CO4 Acquire knowledge in Error correction using syndrome vector and Cyclic Redundancy Check (CRC).	
	CO5 Apply appropriate coding methods such as Golay Codes- BCH code and Error control for computer main processor.	
	CO6 Develop skills for the Error control in IBM 3850 main storage system and able to compare the performance of Convolutional codes and Block codes.	
Course Content	UNIT – I INFORMATION AND CODING: Definition of Information- sources-types mathematical models-information content of discrete memory less source- informatio content of a symbol-Entropy-Information Rate-Discrete Memory less Channels-Types of channels-Mutual information-over view of error control coding techniques-classificatio of codes. UNIT – II SOURCE CODING: Fixed Length and Variable Length Coding, properties of Prefix codes, Shannon-Fanon Coding, Huffman code, Huffman code applied for pair of Symbols, Efficiency Calculations, Lempel-Ziv Codes	

Course Content	UNIT – III LINEAR BLOCK CODES: Structure of linear block code- Hamming Codes-Error detection and correction capabilities of Hamming code-Encoder of (7, 4) Hamming code Syndrome decoding-Error correction using syndrome vector. UNIT – IV CYCLIC CODES: Definition- Generator polynomial for cyclic code-systematic an Non-systematic code words-Generator and parity check matrices of cyclic codes-Encode for (n, k) cyclic code. Syndrome decoding –Cyclic Redundancy Check (CRC). UNIT – V CONVOLUTIONAL CODES: Golay Codes-Bose Chaudhri Hocquenghem (BCF codes-Encoder for Convolutional code-Graphical representation for Convolutional encoding-Decoding methods- Viterbi algorithm-performance comparison of Convolutional codes and Block codes. Application of Viterbi and Sequential Decoding. UNIT – VI ERROR CONTROL IN DATA STORAGE SYSTEMS: Error control for computer main processor- Error control for magnetic tapes-syndrome computation- Error control in IBM 3850 main storage system.				
Text Books and Reference Books	 TEXT BOOKS: Communication Systems – Dr.Sanjay Sharma-S.K. Kataria &sons-New Delhi. Shu lin and Daniel J. Costello, Jr. "Error Control Coding – Fundamentals and Applications", Prentice Hall Inc. REFERENCE BOOKS: Digital Communications-John G.Proakis, Masoud Salehi-Mc Graw Hill-5e Bernard Sklar,"Digital Communications Fundamental and Application", Pearson Education, Asia. B.P.Lathi,Zhi Ding-Modern Digitl and Analog communication systems-4/e - Oxford university press-2016 Simon Haykin- Communication systems-4/e,Wiley India,2011 				

17EC42E4 – RELIABILITY ENGINEERING

Course category:	Program Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3 - 0 - 0
Prerequisite:	Basics of Analog and Digital	Sessional Evaluation :	40
	communications Signals and	External Evaluation:	60
	Systems	Total Marks:	100

	Stude	nts undergoing this course are expected to:	
Course Objectives	 To acquire Knowledge about Quality and reliability and Probability concepts and failure time of Electronic system. To become familiar with system reliability and failure rates. To cater the knowledge Device Reliability and faults. 		
	4. To understand & analyze various Reliability Techniques of electronic systems.		
		derstanding the need of Reliability improvement methods of systems. analyze various Reliability Life Testing Methods	
	Upon	successful completion of the course , the students will be able to:	
	CO1	Gain adequate knowledge about Quality and reliability and Probability concepts and failure time of Electronic system.	
Course Outcomes	CO2	Understand the system reliability and failure rates.	
Outcomes	CO3	Know about different faults and Device Reliability	
	CO4	Able understand & analyze various Reliability Techniques of electronic systems.	
	CO5	Analyse Reliability improvement methods of systems.	
	CO6	Know about various Reliability Life Testing Methods	
	param curve	UNIT-I RODUCTION: Quality and reliability, importance of reliability, reliability neters, Methods of achieving reliability, Reliability fundamentals and bath tub , Reliability measures and parameters, Electronic system reliability, Hazard rate l, Probability concepts and failure time distribution.	
Course Content	UNIT-II SYSTEM RELIABILITY: System reliability modeling, v-out of 'n' system, Analysis of complex reliability structures, System reliability estimation. Measure of central tendency and dispersion system reliability with constant and variable failure rates.		
		UNIT-III ICE RELIABILITY: Accelerated life testing, Early life reliability, Long-term e reliability, Electrostatic discharge, Electrical stress, Steady state hazard rate.	

Course Content	UNIT-IV RELIABILITY TECHNIQUES: Reliability prediction, Cut set, Tie set, FME set, PTA, Markov, Monte Carlo Simulation, Application to electronic systems. VLSI reliability: reliability screening and modeling, electrostatic discharge damage, Metal Electro-migration phenomena, dielectric breakdown, instabilities in ICs. UNIT-V MAINTAINABILITY AND AVAILABILITY CONCEPTS: Guidelines for design for maintainability, MITR, BIT / BITE facility, Spares provisioning, Electronics system, packaging and interconnections. Serial and parallel reliability maintainability and availability failure mechanisms, reliability data and analysis, Reliability improvement methods. UNIT-VI RELIABILITY LIFE TESTING METHODS: Reliability Life Testing - Test time calculations, Burn-in testing, Acceptance testing, accelerated life testing and Experimental Design - Reliability Growth Testing - Growth process, Idealized growth curve and other growth modals.
Text Books and Reference Books	 TEXT BOOKS: David J. Klinger, Yoshinao Nakada and Maria A. Menendez, "AT & T Reliability Manual ", Von Nostrand Reinhold, New York, 5th Edition, 1998. Gregg K. Hobbs, "Accelerated Reliability Engineering - HALT and HASS ", John Wiley & Sons, New York, 2000. Lewis, "Introduction to Reliability Engineering ", 2nd Edition, Wiley International, 1996. REFERENCE BOOKS: O' Connor, P.D.T., "Practical Reliability Engineering ", Hayden Book Company, New Jersey, 1981. S. K. Sinha, Reliability and Life Testing, Wiley Eastern Ltd., 1986.
E-Resources	 http://www.nptel.ac.in. https://outofprint.cc/downloads/introduction-to-reliability-engineering-lewis.pdf

OPEN ELECTIVES-II

- 1. **PYTHON PROGRAMMING**
- 2. DIGITAL CONTROL SYSTEMS
- **3.** SMART GRID TECHNOLOGY
- 4. DISASTER MANAGEMENT AND MITIGATION

17CS42O4 – PYTHON PROGRAMMING

Course Category:	Open Elective	Credits:	3
Course Type:	Theory	Lecture -Tutorial-Practical:	3-0-0
Prerequisite:	Require the fundamental concepts of	Sessional Evaluation:	40
	computers and any programming	External Evaluation:	60
	basics	Total Marks:	100

	Students undergoing this course are expected:	
Course Objectives	 To introduce Object Oriented Programming using an easy to use language To use iterators and generators. To test objects and handle changing requirements. To be exposed to programming over the web to develop various applications. 	
	Upon successful completion of the course , the students will be able to:	
	CO1 Understand the concepts of object oriented programming in python.	
Course	CO2 Study to compose a group of characters and utilization of strings into various applications	
Outcomes	CO3 Use generators and iterators to develop different applications	
	CO4 Develop test cases and handle refactoring to identify its advantages.	
	CO5 Use serializing objects to program over the web.	
	CO6 Lean how to create and utilize the advantages of packages	
Course Content	CO6 Lean now to create and utilize the advantages of packages UNIT-I INTRODUCTION: Function Declaration - Import - Objects - Indenting as Requirement - Exceptions – Unbound Variables - Case Sensitive - Scripts - Native Data Types - Booleans - Numbers - Lists -Tuples - Sets - Dictionaries - Comprehensions - List Comprehensions – Dictionary Comprehensions - Set Comprehensions. UNIT-II STRINGS: Strings - Unicode - Formatting - String Methods - Bytes - Encoding - Regular Expressions Verbose - Case Studies UNIT-II CLASSES: Closures - List of Functions - List of Patterns - File of Patterns - Generators - Defining Classes - Instantiating Classes - Instance Variables - Iterators - Assert -Generator Expressions UNIT-IV FILES: Reading and Writing Text Files - Binary Files - Stream Objects - Standard Input, Output and Error.	
	UNIT-V XML and SERILIZATION: XML - Atom Feed - Parsing HTML - Searching for Nodes - html - Generation – Serializing Objects - Pickle Files - Versions - Debugging - Serializing to JSON	

Course Content	UNIT-VI PACKAGING PYTHON LIBRARIES: Directory Structure, Writing Your Setup Script - Classifying Your Package - Examples of Good Package Classifiers - Checking Your Setup Script for Errors - Creating a Source Distribution - Creating a Graphical Installer - Building Installable Packages for Other Operating Systems - Adding Your Software to the Python Package Index - The Many Possible Futures of Python Packaging.
Text Books and	 TEXT BOOKS: 1. Mark Pilgrim, "Dive into Python 3", Apress, 2009. 2. Allen Downey, Jeffrey Elkner, Chris Meyers, "How to Think Like a Computer Scientist - Learning with Python", Green Tea Press, 2002.
Reference Books	 REFERENCE BOOKS: 1. John V. Guttag, "Introduction to Computation and Programming using Python", Prentice Hall of India, 2014 2. Mark Lutz, "Learning Python: Powerful Object-Oriented Programming", Fifth Edition, O'Reilly, Shroff Publishers and Distributors, 2013
E-Resources	1. https://nptel.ac.in/courses 2.https://freevideolectures.com/university/iitm

17EE42O1-DIGITAL CONTROL SYSTEMS

Course Category:	Program Open Elective	Credits:	3
Course Type:	Theory	Lecture -Tutorial-Practical:	3-0-0
Prerequisite:	Signals and Systems,	Sessional Evaluation:	40
	Linear Control Systems, Digital	External Evaluation:	60
	Design	Total Marks:	100

	Stude	nts undergoing this course are expected to understand:	
Course Objectives	2. 3. 4.	The design of digital control systems for different engineering model. The state variable analysis, Routh criterion The transient & steady state analysis	
	Upon successful completion of the course, the students will be able to:		
	CO1	Obtain dynamic responses of linear systems and determine their stability, construct root-locus and bode plots, and apply Nyquist criterion in the context of controller design.	
Course	CO2	Translate a set of performance specifications given in words to a formal description of a design problem, and then design a suitable feedback-controller using design tools, followed by simulation and verification using software tools.	
Outcomes	CO3	Know the techniques for relaxing the constraints or redesigning the controller for achieving closed-loop specifications either in the time-domain or in the frequency domain.	
	CO4	Debug their controller design	
	CO5	Design digital controllers, assess their design through the constraint specifications, and decide whether their initial design is acceptable or can be improved	
	CO6	Obtain dynamic responses of linear systems and determine their stability, construct root-locus and bode plots, and apply Nyquist criterion in the context of controller design.	
Course Content	and A differ	UNIT – I CODUCTION: Examples of Data control systems – Digital to Analog conversion Analog to Digital conversion, sample and hold operations. Introduction, Linear ence equations, pulse response, Z – transforms, Theorems of Z – Transforms, the se Z – transforms, Modified Z- Transforms.	
	solvin	UNIT-II AL PROCESSING AND DIGITAL CONTROL: Z-Transform method for ag difference equations; Pulse transforms function, block diagram analysis of ed – data systems, mapping between s-plane and z-plane.	

	UNIT-III State Space Representation of discrete time systems, Pulse Transfer Function Matrix solving discrete time state space equations, State transition matrix and its Properties, Methods for Computation of State Transition Matrix, Discretization of continuous time state – space equations. UNIT – IV
Course Content	STATE VARIABLE ANALYSIS: Concepts of Controllability and Observability, Tests for controllability and Observability. Duality between Controllability and Observability, Controllability and Observability conditions for Pulse Transfer Function. Mapping between the S-Plane and the Z-Plane – Primary strips and Complementary Strips – Constant frequency loci, Constant damping ratio loci, Stability Analysis of closed loop systems in the Z-Plane. Jury stability test – Stability Analysis by use of the Bilinear Transformation and Routh Stability criterion.
	UNIT – V DESIGN OF DIGITAL CONTROLLER: Transient & steady – State response Analysis – Design based on the frequency response method – Bilinear Transformation & Design procedure in the w-plane, Lead, Lag & Lead Lag compensators & digital PID controllers.
	UNIT – VI POLE PLACEMENT DESIGN AND STATE OBSERVERS: Design of state feedback controller through pole placement – Necessary and sufficient conditions, Ackerman's formula. State Observers–Full order and Reduced order observers.
Text Books and Reference	TEXT BOOKS: 1. Discrete-Time Control systems - K. Ogata, Pearson Education/PHI, 2nd Edition. 2. Digital Control Systems, Kuo, Oxford University Press, 2nd Edition, 2003.
Books	REFERENCES BOOKS: 1. Digital Control and State Variable Methods by M. Gopal, TMH
E-Resources	 nptel.ac.in/syllabus/108103008/ http://ocw.mit.edu/courses/mechanical-engineering/2-171-analysis-and-design-of- digital-control-systems-fall-2006/

17EE42E4-SMART GRID TECHNOLOGY

Course Category:	Program Open Elective	Credits:	3
Course Type:	Theory	Lecture -Tutorial-Practical:	3-0-0
Prerequisite:		Sessional Evaluation:	40
	Nil	External Evaluation:	60
		Total Marks:	100

	Students undergoing this course are expected to:
Course Objectives	 Learn introduction to Smart Grid Learn necessity of smart grid Learn operation and construction of measuring the smart grid signals Learn automation technologies of smart grid Learn Island, protection and applications of smart grid Learn Distributed Energy Resources
	After completing the course the student will be able to
	CO1 Gain the knowledge on introduction to Smart Grid
	CO2 Gain the knowledge on necessity of smart grid
Course	CO3 Know the operation and construction of measuring the smart grid signals.
Outcomes	CO4 Understand the automation technologies of smart grid
	CO5 Gain knowledge on Island, protection and applications of smart grid
	CO6 Understand the concepts on Distributed Energy Resources
Course Content	UNIT-I INTRODUCTION TO SMART GRID: Evolution of Electric Grid, Concept of Smart Grid, Definitions, Need of Smart Grid, Functions of Smart Grid, Opportunities & Barriers of Smart Grid, Difference between conventional & smart grid, Concept of Resilient & Self-Healing Grid, Present development & International policies in Smart Grid. Case study of Smart Grid ,CDM opportunities in Smart Grid. UNIT-II NECESSITY OF SMART GRID: The Smart Grid Enables the ElectriNetSM, Local Energy Networks, Electric Transportation, Low-Carbon Central Generation, the Attributes of the Smart Grid- Need of a Smart Grid- Is the Smart Grid a "Green Grid"- Smart Grid Initiative for Power Distribution Utility in India.
	UNIT –III
	SENSING AND MEASUREMENT: Smart metering and demand-side integration, Introduction, Smart metering, Evolution of electricity metering, Key Components of smart metering, Smart meters: An overview of the hardware used Signal acquisition, Signal conditioning, Analogue to digital conversion, Computation, Input/output, Communication, Communications infrastructure and protocols for smart metering,

Course Content	UNIT –IV CONTROL AND AUTOMATION TECHNOLOGIES :Home-area network, neighbourhood area network, Data concentrator, Meter data management system, Protocols for communications, Demand-side integration, Services provided by DSI, Implementations of DSI, Hardware support to DSI implementations, Flexibility delivered by prosumers from the demand side, System support from DSI. Smart Appliances, Automatic Meter Reading (AMR), Outage. Management System (OMS), Plug in Hybrid Electric Vehicles (PHEV), Vehicle to Grid, Grid to Vehicle, Coordination of PHEV charging and discharging cycle, Smart Sensors, Home & Building Automation, Phase Shifting Transformers. UNIT –V CONCEPT OF MICRO GRIDS: Concept of micro grid, need & applications of micro grid, formation of micro grid, issues of interconnection, protection & control of micro grid. Islanding, need and benefits, different methods of islanding detection. UINT-VI DISTRIBUTED ENERGY RESOURCES: Distributed Energy Resources: Small scale distributed generation, Distributed Generation Technology, Internal Combustion Engines, On The Vene Conduction of Detection of Combustion Engines, Detection of Detection of Combustion Engines, Detection of Detection of Combustion Engines, Detection of Detection of	
	Gas Turbines, Combined Cycle Gas Turbines, Micro turbines, Fuel Cells, Solar Photovoltaic, Solar thermal, Wind power, Geothermal, - all sources as a DG. Advantages and disadvantages of DG.	
	TEXT BOOKS: 1. "Integration of Green and Renewable Energy in Electric Power Systems", by Ali	
	K., M.N. Marwali, Min Dai, -Wiley.2. "The Smart Grid: Enabling Energy Efficiency and Demand Response", by Clark	
Text Books	 W. Gellings, - CRC Press. 3. "Smart Grid: Technology and Applications", by Janaka Ekanayake, N. Jenkins, K. Liyanage, J. Wu, Akihiko Yokoyama - Wiley. 	
and		
Reference Books	REFERENCE BOOKS: 1. "Smart Grids" by Jean Claude Sabonnadiere, Nouredine Hadjsaid - Wiley Blackwell.	
	 "Securing the Smart Grid" by Tony Flick and Justin Morehouse- Elsevier Inc. "Smart Power: Climate Change, the Smart Grid, and the Future of Electric Utilities" by Peter S. Fox-Penner - Island Press. 	
	4. "SMART GRID Fundamentals of Design and Analysis "by James Momoh - IEEE press, A John Wiley & Sons, Inc., Publication.	
E-Resources	1. http://nptel.ac.in/courses	
	2. http://iete-elan.ac.in	
	3. http://freevideolectures.com/university/iitm	

17CE42O1-DISASTER MANAGEMENT AND MITIGATION

Course category:	Program Open Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3 - 0 - 0
Prerequisite:	Environmental science	Sessional Evaluation :	40
		External Evaluation:	60
		Total Marks:	100

	Students undergoing this course are expected to understand:		
Course Objectives	 The basic knowledge of Environmental Hazards and disasters. The basics of Endogenous and Exogenous hazards and gives a suitable picture on the different types of hazard and disaster mitigation methods and some case studies related to disasters The cumulative atmosphere hazards, cyclones. The soil erosion, sedimentation, population explosion The approaches of pre-disaster, post disaster preparation The various case studies. 		
Course Outcomes	Upon successful completion of the course , the students will be able to:CO1Understand Hazards and disasters and different approaches to disaster and their mitigationCO2Explore the types of disasters, exogenous disasters and their effectsCO3Explore the Endogenous disasters and their effectsCO4Know the man induced disasters and their effectsCO5Understand the Disaster management through engineering applications		
	CO5Understand the Disaster management through engineering applicationsCO6Understand the disasters in national and international level.		
Course Content	UNIT-I ENVIRONMENTAL HAZARDS & DISASTERS: Meaning of Environmental hazards, Environmental Disasters and Environmental stress. Concept of Environmental Hazards, Environmental stress & Environmental Disasters. Different approaches & relation with human Ecology - Landscape Approach - Ecosystem Approach - Perception approach - Human ecology & its application in geographical researches. UNIT-II TYPES OF ENVIRONMENTAL HAZARDS & DISASTERS: Natural hazards and Disasters - Man induced hazards & Disasters Natural Hazards- Planetary Hazards/ Disasters - Extra Planetary Hazards/ disasters Planetary Hazards- Endogenous Hazards - Exogenous Hazards Endogenous Hazards - Volcanic Eruption, Earthquakes, Landslides; Volcanic Hazards/ Disasters - Causes and distribution of Volcanoes - Environmental impacts of volcanic eruptions Earthquake Hazards/ disasters - Causes of Earthquakes - Distribution of earthquakes - Hazardous effects of earthquakes - Human adjustment, perception & mitigation of earthquake.		

Course Content	UNIT –III Exogenous hazards/ disasters - Infrequent events- Cumulative atmospheric hazards/ disasters Infrequent events; Cyclones – Lightning – Hailstorms Cyclones: Tropical cyclones & Local storms - Destruction by tropical cyclones & local storms - causes , distribution human adjustment, perception & mitigation)Cumulative atmospheric hazards/ disasters; Floods- Droughts- Cold waves- Heat waves. Floods:- Causes of floods- Flood control measures (Human adjustment, perception & mitigation); Droughts:- Impacts of droughts- Drought control measures; Extra Planetary Hazards/ Disasters UNIT –IV Soil Erosion- Mechanics & forms of Soil Erosion- Factors & causes of Soil Erosion- Conservation measures of Soil Erosion. Chemical hazards/ disasters - Release of toxic chemicals, nuclear explosion- Sedimentation processes. Sedimentation processes: - Global Sedimentation problems- Regional Sedimentation problems- Sedimentation & Environmental problems- Corrective measures of Erosion & Sedimentation. Biological hazards/ disasters: - Population Explosion. <i>UNIT –V</i> Emerging approaches in Disaster Management- Three Stages 1. Pre- disaster stage (preparedness) 2. Emergency Stage 3. Post Disaster stage-Rehabilitation <i>UNIT – VI</i> Case study of - Bhuj earthquake, Gujarat 2001 Indian Occan earthquake and Tsunami, 2004 Chernobyl disaster, Ukraine 1986 Bhopal Gas tragedy, 1984 Kerala Floods, 2018.
Text Books and Reference Books	 TEXT BOOKS: Disaster Management by Rajib Shah, Universities Press, India, 2003 Disaster Science and Management by Tushar Bhattacharya, TMH Publications. Disaster Mitigation: Experiences And Reflections by <u>PardeepSahni</u> Natural Hazards & Disasters by Donald Hyndman & David Hyndman – Cengage Learning REFERENCES: The Environment as Hazards by Kates, B.I & White, G.F, Oxford Publishers, New York, 1978 Disaster Management by R.B. Singh (Ed), Rawat Publication, New Delhi, 2000 Disaster Management by H.K. Gupta (Ed), Universiters Press, India, 2003 Space Technologyfor Disaster Mitigation in India (INCED) by R.B. Singh, University of Tokyo,1994.
E-Resources	1.nptel.ac.in/courses/117105079/