N.B.K.R. INSTITUTE OF SCIENCE & TECHNOLOGY

(AUTONOMOUS) COLLEGE WITH POTENTIAL FOR EXCELLENCE (CPE) Affiliated to JNTUA, Ananthapuramu Re-Accredited by NAAC with 'A' Grade B.Tech. Courses Accredited by NBA under TIER-I

SYLLABUS

B.TECH. DEGREE COURSE

CIVIL ENGINEERING

(With effect from the batch admitted in the academic year 2020-2021)

&

B.Tech (Lateral entry scheme) (for the batches admitted from the academic year 2021-22)

> VIDYANAGAR - 524413 SPSR Nellore-Dist., Andhra Pradesh <u>www.nbkrist.org</u>

VISION AND MISSION OF THE INSTITUTE

Vision

• To emerge as a comprehensive Institute that provides quality technical education and research thereby building up precious human resource for the industry and society.

Mission

- To provide a learner-centered environment that challenges individuals to actively participate in the education process.
- To empower the faculty to excel in teaching while engaging in research, creativity and public service.
- To develop effective skills enabling learners to pick up critical thinking thus crafting them to be professionally fit and ethically strong.
- To reach out industries, schools and public agencies to partner and share human and academic resources.

VISION AND MISSION OF THE CIVIL ENGINEERING DEPARTMENT

Vision

• To promote excellence in civil engineering education, enrich research and provide quality professional service to the society in all areas of civil engineering.

Mission

- To provide a learner-centered environment for students to gain comprehensive knowledge in civil engineering.
- To provide a learning experience that fosters an aptitude for research.
- To provide graduates with contemporary skills and tools required to excel in civil engineering profession or alternate fields. To produce graduates to serve within the constraints of complex needs of the society with high integrity.

PROGRAMME EDUCATIONAL OBJECTIVES OF THE DEPARTMENT

- **PEO 1** : Graduates will be proficient in the fundamental knowledge of basic science, engineering science including mathematical and computational skills appropriate for civil engineering.
- **PEO 2** : Graduates will be successful practicing engineers in civil engineering and allied fields or alternate careers using their technical knowledge, teamwork, communication skills and leadership qualities.
- **PEO 3** : Graduates will be innovative problem solvers within the realistic constraints of economic, environmental, social, political, health, safety and sustainability impacts and serve the society as responsible professionals with integrity.
- **PEO 4** : Graduates will engage in lifelong learning within the profession or through higher studies.

PROGRAMME OUTCOMES OF THE DEPARTMENT

The programme outcomes are the skills and knowledge which the graduates have at the time of graduation:

- Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
- 2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

- 8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PSO1: The graduate will excel in software tools related to major diciplines of civil engineering.

PSO2: The graduates will provide innovative solutions to the civil engineering problems.

PSO3: The graduates will exhibit prowess to serve as entrepreneuring civil engineering consultants.

N.B.K.R. INSTITUTE OF SCIENCE & TECHNOLOGY:: VIDYANAGAR (AUTONOMOUS) CIVIL ENGINEERING SCHEME OF INSTRUCTION AND EVALUATION (With effect from the batch admitted in the academic year 2020-2021) I YEAR OF FOUR YEAR B.TECH. DEGREE COURSE – I SEMESTER

Induction Program:

Induction program (Mandatory)	3 weeks duration			
Induction program for students to be offered right at	(1) Physical activity	(2) Creative Arts	(3) Universal Human Values	(4) Literary
the start of the first year.	(5) Proficiency Modules	(6) Lectures by Eminent People	(7) Visits to local Areas	(8) Familiarization to Dept./Branch & Innovations

											Evalua	tion				
S.NO.	Course	Course Title THEORY		urse Title Contact Hours/ Week		Credits		Sessional Test-I			Sessional Test-II		Total Sessional Marks (Max. 40)	Seme En Examir	d	Max.
	Code			Т	Р		Test-I (2 hrs.)	Assignm ent-I	Max. Marks	Test-II (2 hrs.)	Assign ment-II	Max Marks	0.8(Better of two	Durati on In Hours	Max Mar ks	Total Marks
1	20SH1101	Engineering Chemistry [#]	3	0	0	3	34	6	40	34	6	40	sessional	3	60	100
2	20SH1102	Engineering Mathematics –I*	3	0	0	3	34	6	40	34	6	40	tests)	3	60	100
3	20SH1103	Communicative English*	3	0	0	3	34	6	40	34	6	40	0.2(Other)	3	60	100
4	20CS1101	Programming for Problem Solving ϕ		0	0	3	34	6	40	34	6	40		3	60	100
		PRACTICALS														
1	20SH11P1	Engineering Chemistry Laboratory [#]	0	0	3	1.5	-	-	-	-	-	-		3	60	100
2	20CS11P1	Programming for Problem Solving Laboratory [¢]	0	0	3	1.5	-	-	-	-	-	-	Day-to-day Evaluation	3	60	100
3	20ME11P1	Computer Aided Engineering Drawing Laboratory ^δ		0	6	3	-	-	-	-	-	-	and a test (40 marks)	3	60	100
4.	20SH11P2	English Language Lab	0	0	3	1.5	-	-	-	-	-	-		3	60	100
		TOTAL				19.5		N1 1 M								

CE & ME; * Common to all; \$ Other than ME; ϕ CE, ME & ECE; δ CE & ECE

20SH1101-ENGINEERING CHEMISTRY (Common to CE and ME)

Course Ca	tegory:	Basic Science	Credits	3			
Course	e Type:	Theory	Lecture-Tutorial-Practical:	3-0-0			
Pre-ree	quisite:	Fundamental concepts of Chemistry	Sessional Evaluation: External Exam Evaluation: Total Marks:	40 60 100			
Course Objectives	L I I to familiarize engineering chemistry and its applications						
Course	CO1	Explain the principles of reverse osmosis a	nd electro dialysis				
Outcomes	CO2	Apply Nernst equation for calculating elect	rode and cell potentials				
	CO3	Demonstrate the factors affecting corrosion	n and corrosion prevention metho	ds			
	CO4	Differentiate between thermoplastics and the	nermosetting plastics				
	CO5	Solve the numerical problems based on Ca	olve the numerical problems based on Calorific value				
	CO6	Enumerate the reactions at setting and hard	ening of cement				
		UNIT I					
	WATE	CR TECHNOLOGY					
Course content	Introduction: Hardness of water, types of hardness, units of hardness, disadvantages of hard water, Estimation of hardness of water by EDTA Method - Boiler troubles - scale and sludge Priming and foaming, caustic embrittlement, Boiler corrosion, Industrial water treatment - Lime-soda, zeolite and ion-exchange processes - desalination of brackish water, reverse osmosis (RO) and electro dialysis. UNIT II						
	Electro electro probler Prima Second reaction Fuel co Potent Condu strong CORR Introdu	ry cells: Zinc-air battery. lary cells: lead acid and lithium ion batterins. ells: hydrogen-oxygen fuel cell– working of f iometry: potentiometric titration (strong acid ctometry: Conductometric titrations (strong base). UNIT III OSION ction to corrosion, definition, types of con	t equation, reference electrodes (ell, cell potential calculations, m es-working of the batteries includ the cells. d vs. strong base). g acid vs. strong base & weak I rrosion, Mechanism of corrosion-	umerical ling cell acid vs.			
	oxide formation by dry corrosion, Pilling Bed worth ratios and uses and electrochemicaltheory of corrosion, differential aeration cell corrosion, galvanic corrosion, Factors affecting						

	the corrosion, prevention methods of corrosion- Cathodic protection (Sacrificial anodic protection and Impressed current cathodic protection) and Metallic coatings (Electroplating).
	UNIT IV POLYMER CHEMISTRY Introduction to polymers, Polymerization and Types of polymerisation (addition, condensation and co-polymerisation).
	 Plastomers: Thermoplastics and Thermo setting plastics, Preparation, properties and applications of PVC, Bakelite, Urea-Formaldehyde and Nylons. Elastomers: Preparation, properties and applications of Buna S, Buna N and Thiokol.
	UNIT V
	FUEL TECHNOLOGY Chemical fuels : Introduction, classification, characteristics of a good fuel, calorific value, determination of calorific value (Bomb and Boy's gas calorimeters), numerical problems based on calorific value. Solid Fuels - Analysis of coal (Proximate and Ultimate analysis).
	Liquid Fuels -Refining of petroleum, knocking and anti-knock agents, Octane and Cetane values.
	Gaseous Fuels-Flue gas analysis by Orsat's apparatus. UNIT VI
	ADVANCED ENGINEERING MATERIALS Refractories: Classification, properties, criteria for a good Refractory material and Applications Lubricants: Classification, Functions of lubricants, Mechanism, Properties of lubricants- Viscosity, viscosity index, Flash and Fire points, Cloud and Pour points and Applications Building materials- Cement – classification, Portland Cement - constituents, Setting and Hardening of Portland Cement.
Textbooks & Reference	 TEXTBOOKS: 1. Jain and Jain, "Engineering Chemistry", Dhanpat Rai Publishers, 16th edition, 2013. 2. Peter Atkins, Julio de Paula and James Keeler, "Atkins' Physical Chemistry", 10th edition, Oxford University Press, 2010.
books	REFERENCE BOOKS:
	 K N Jayaveera, G V Subba Reddy and C Rama Chandraiah, "Engineering Chemistry" 1st edition, Mc Graw Hill Education (India) Pvt. Ltd, New Delhi 2016. Dr. S.S. Dara and Dr. S.S Umare, "A Text book of Engineering Chemistry", 1st edition, Chand & Company Ltd., 2000. K Sesha Maheswaramma and Mridula Chugh, "Engineering Chemistry" 1st edition, Pearson India Education Services Pvt. Ltd, 2016.

20SH1102-ENGINEERING MATHEMATICS –I

(Common to all branches)

Course		Basic Science	Credits:	3				
Course Category:		Dasie Science	Cicuits.	5				
Course Typ	e:	Theory	Lecture-Tutorial-Practical:	3-0-0				
Pre – requis		Intermediate Mathematics	Sessional Evaluation:	40				
			External Evaluation:	60				
			Total Marks:	100				
	To ma	ake the student learn about						
Course	1. 7	The concepts of Newton's law	w of cooling, Law of natural growth	and decay.				
Objectives	2. 8	Solving higher order differ	rential equations with RHS of d	ifferent types by using				
	a	nalytical techniques.						
	3. 7	The concepts of first shifting	theorem, Change of scale property	, Laplace transformation				
	C	of multiplied by t and division	n by t and transformation of derivati	ves and integrals.				
	4. 1	The application of solutions of	of Ordinary Differential Equations.	_				
	5. 7	The basic concepts of Matrice	es.					
		-	ries, Maxima and Minima of the fu	nctions of two and three				
		variables. Learn about Gamm	-					
Course	CO1	Attains skills in solving fir	st order differential equations and it	s applications.				
Outcomes		8		······································				
	000							
	CO2		lving higher order differential equ	lations by using various				
		types.						
	CO3	Acquire basic knowledge i	Acquire basic knowledge in Laplace transforms and their applications.					
	CO4	Develop analytical skills i Laplace transform techniqu	Develop analytical skills in solving the Ordinary Differential Equations by using the Laplace transform technique.					
	CO5		Understand effectively the analyzation of the Rank of the matrix, Consistency of system of linear equations, Eigen values and Eigen vectors.					
	CO6	Attains skills in analyzin	ng the Taylor's and Maclaurin's	series and Maxima and				
		Minima of the functions of two and three variables. Apply Gamma and Beta functions to evaluate integrals.						
Course			UNIT – I					
Content	Diffe	rential equations of first ord		and Bernoulli equations				
	Differential equations of first order and first degree – Exact, linear and Bernoulli equations. Applications: to Newton's law of cooling, law of natural growth and decay, orthogonal trajectories.							
			UNIT - II					
	coeffi	-	ntial equations of second and hig type e ^{ax} , Sin ax, cos ax, polynomia					

	UNIT - III
	Laplace transform of standard functions – First shifting Theorem, Change of scale property – Laplace transformation of multiple by t and division by t –Transforms of derivatives and integrals – Unit step function – Second shifting theorem – Laplace transform of Periodic function.
	UNIT - IV
	Inverse Laplace transform of standard functions – Method of partial fractions – Shifting property – Inverse Laplace transform of a multiple by s and division by s – Differentiation and integration of Inverse Laplace transform – Convolution theorem – Application of Laplace transforms to ordinary differential equations of first and second order.
	UNIT - V
	Matrices: Rank of Matrix by Echelon form, System of homogenous and non-homogenous linear equations, Eigen values and Eigen vectors and their properties. Cayley-Hamilton Theorem (without proof).
	UNIT - VI
	Calculus : Taylor's and Maclaurin's series – Maxima and Minima of function of three variables with Lagrangian multipliers method – Beta and Gamma functions and their applications.
Textbooks & Reference	 TEXTBOOKS: 1. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi. 44th edition, 1965.
books	2. B.V. Ramana, <i>"Engineering Mathematics"</i> , Tata McGraw-Hill Education Pvt. Ltd, New Delhi, 1 st editon, 2017.
	REFERENCES:
	1. H.K. Dass, Er. Rajnish Verma, "Higher Engineering Mathematics", S. Chand
	Publications, New Delhi, 2014.2. N.P. Bali & M. Goyal, "Advanced Engineering Mathematics", Lakshmi Publishers, New
	Delhi. 1 st edition, 2015.
	3. Erwin Kreyszig, "Advanced Engineering Mathematics" Wiley publications, India. 10 th edition, 2010.

20SH1103 - COMMUNICATIVE ENGLISH

Course Category:	Humanities and Social Science	Credits:	3
Course Type:	Theory	Lecture-Tutorial-Practical:	3-0-0
Pre-requisite:	Basic Level of LSRW skills	Sessional Evaluation: External Exam Evaluation: Total Marks:	40 60 100

	Stude	nts undergoing this course are expected:
Course Objectives	2. 7 3. 7 4. 7 5. 7	To develop basic writing skills in English. To achieve specific linguistic and communicative competence. To acquire relevant skills and make use them effectively in realistic working context. To inculcate the habit of reading and aware of appropriate reading strategies. To learn writing paragraphs effectively with unity and coherence. To learn writing simple and analytical essays.
Course Outcomes	CO1	Relate activity based teaching-learning methods to ensure that learners would be engaged in use of language.
	CO2	Demonstrate effective listening skills for better comprehension of academic lectures and English spoken by native speakers.
	CO3	Improve knowledge of grammatical structures and vocabulary and encourage their appropriate use in speech and writing.
	CO4	Interpret graphic elements used in academic texts and produce a coherent paragraph interpreting a figure/graph/chart/table
	CO5	Evaluate reading/listening texts and to write summaries based on global comprehension of these texts.
	CO6	Make use of appropriate reading strategies of comprehension in various academic texts and authentic materials and comprehend, discuss and respond to academic texts orally and in writing

UNIT-I

Lesson: On the Conduct of Life: William Hazlitt

Writing: Paragraph Writing: Sentence Structures- use of phrases and clauses in sentences- importance of proper punctuation- creating coherence- beginnings and endings of paragraphs - introducing the topic, summarizing the main idea and/or providing a transition to the next paragraph.

Grammar and Vocabulary: Content words and function words; word forms: verbs, nouns, adjectives and adverbs; nouns: countables and uncountables; singular and plural; basic sentence structures; simple question form - wh-questions; word order in sentences, **Vocabulary : Word formation - Suffixes**

UNIT-II

Lesson: The Brook: Alfred Tennyson

Writing: Descriptions: Nature and style of sensible writing - describing - defining - classifying –providing examples and evidence - writing introduction and conclusion **Grammar and Vocabulary:** Cohesive devices - linkers, sign posts and transition signals; use of articles and zero article, prepositions,

Vocabulary: Word formation- Prefixes

UNIT-III

Lesson: The Death Trap: Saki

Writing: Drafting of Public Speech: Introduction – structure -content - informing facts - conclusion.

Grammar: Pronoun – Agreement, subject-verb agreement **Vocabulary:** Synonyms

UNIT-IV

Lesson: Innovation: Muhammad Yunus:

Writing: Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables.

Grammar: Quantifying expressions - adjectives and adverbs; comparing and contrasting; degrees of comparison

Vocabulary: Antonyms

UNIT-V

Lesson: Politics and the English Language: George Orwell Writing: Letter Writing: Official Letters & E-mail letters Grammar: Verbs - Tenses; Active voice & Passive Voice, Question Tags, Reported speech Vocabulary: One word substitutes

Vocabulary: Common Abbreviations

UNIT –VI						
Reading: Comprehension: Different Reading Strategies - skimming – scanning - inferring, predicting and responding to content - guessing from context and vocabulary extension.						
Writing: Essay writing: Writing structured essays on specific topics - introducing the issue - analyzing and arguing - creating coherence –usage of proper punctuation – importance of conclusion Grammar: Editing short texts – identifying and correcting common errors in grammar						
and usage (articles, prepositions, tenses, subject verb agreement).						
TEXTBOOKS:						
 Orient Black Swan "Language and Life: A Skills Approach", Orient Black Swan publications, 1st edition 2018. 						
REFERENCE BOOKS:						
1. Bailey, Stephen, "Academic writing: A hand book for international students", Routledge Publishers, 5 th edition 2017.						
2. Chase, Becky Tarver, " <i>Pathways: Listening, Speaking and Critical Thinking</i> ", Heinley ELT, 2 nd edition, 2018.						
3. Louis Rogers, Jennifer Wilkin and Dorothy Zemach, " <i>Skillful Level 2 Reading & Writing Student's Book</i> ") Macmillan Educational, 2013.						
 Raymond Murphy, "English Grammar in Use", Cambridge English 4th edition E- book, 2012. 						
 Hewings, Martin, "<i>Cambridge Academic English</i>", Cambridge University Press; Student edition, 2012. 						
WEB LINKS:						
 www.englishclub.com www.easyworldofenglish.com www.languageguide.org/english/ www.bbc.co.uk/learningenglish www.eslpod.com/index.html www.myenglishpages.com 						

20CS1101 - PROGRAMMING FOR PROBLEM SOLVING (Civil Engineering)

Course category:	Engineering Science	Credits:	3
Course Type:	Theory	Lecture – Tutorial – Practical:	3-0-0
Prerequisite:	Knowledge on computer	Sessional Evaluation:	40
	fundamentals and basic	Univ. Exam Evaluation:	60
	mathematics	Total Marks:	100

	4				
Course	1.	To learn the procedure how to develop algorithms, representations and			
Objectives	-	programming development steps			
Objectives	2.	To learn the basic building blocks of C language.			
	3.	Usage of C constructs (arrays, structures, pointers and file management) to			
		develop various programs.			
	4.	To create better awareness how effectively utilizes the concepts of C for			
		application development.			
Course	CO1	Learn the fundamentals of programming development, structure of C and basic data types			
Outcomes	CO2	Find the usage of operators in expression evaluation and construction of I/O Statements.			
	CO3	Acquire knowledge on various control structures to develop simple programs			
	CO4	Explore the concept of arrays, strings and its effective utilization			
	CO5	Understand the concepts of Pointers and Functions for exploring the dynamic memory usage			
	CO6	Explore the basics of Structures, Unions, File operations and supporting implementations			
Course	INTR	UNIT – I ODUCTION: Algorithms, Flow charts, Program development steps.			
Content	execut	DAMENTALS OF C: History, Structure of a C program, Programming rules and ion. Character set, Delimiters, C keywords, Identifiers, Constants, Variables, for defining Variables, Data types, Declaration and Initialization of Variables.			
	UNIT – II				
	OPERATORS AND EXPRESSIONS: Introduction, Operator Precedence and Associativity, Operator Types				
	INPUT AND OUTPUT IN C: Formatted and Unformatted functions, Commonly used library functions. UNIT – III				
		$\mathbf{U}_{\mathbf{U}\mathbf{U}\mathbf{U}} = \mathbf{U}_{\mathbf{U}}$			
		SION STATEMENTS: Introduction, Types of If statements, switch statement, , continue, go to.			

	ITERATIVE STATEMENTS : while, do-while and for loops.						
	UNIT – IV						
	ARRAYS: Definitions, Initialization, Characteristics of an array, Array Categories.						
	STRINGS: Declaration and Initialization of strings, String handling functions.						
	STORAGE CLASSES: Automatic, External, Static and Register Variables.						
	UNIT – V						
	POINTERS: Fundamentals, Declaration and initialization of Pointers, Arithmetic Operations, Pointers and Arrays.						
	FUNCTIONS: Definition, Function Prototypes, Types of functions, Call by Value and Call by Reference, Recursion.						
	UNIT – VI						
	STRUCTURES: Definition, Declaration and Initialization of Structures.						
	UNIONS: Definition, Declaration and Initialization of Union.						
	FILES: Introduction, File Types, Basic operations on Files, File I/O, Command Line Arguments.						
Text Books and Reference	TEXT BOOKS: 1. Ashok N. Kamthane, " <i>Programming with ANSI & TURBO C</i> ", Pearson Education, 3 rd edition, 2007.						
Books	REFERENCE BOOKS:						
	 Al Kelley, Ira Pohl, "<i>Programming in C</i>", Addison-Wesley, 4th edition, 1999. Yashavant Kanetkar, "<i>Let Us C</i>", BPB Publications, 16th edition, 2019. 						
	 Fashavan Hanedaa, "Develope", DEP Fachearding, 10° canon, 2019. Balaguruswamy, "Programming in ANSI C", 6th edition, Tata McGraw Hill Education, 2018. 						

20SH11P1 - ENGINEERING CHEMISTRY LABORATORY

(Common to	CE and ME)
------------	------------

Course Category:	Basic Science	Credits:	1.5
Course Type:	Practical	Lecture-Tutorial-Practical:	0-0-3
	Eurodomantal concents of	Sessional Evaluation:	40
Pre-requisite:	Fundamental concepts of Chemistry	External Exam Evaluation:	60
		Total Marks:	100

	The n	nain objective is to provide students to learn about experimental techniques							
Course	in chemistry with knowledge in theoretical aspects so that they can excel in the								
Objectives	particular field.								
	CO1	Determine the cell constant and conductance of solutions							
Course	CO2	Prepare advanced polymer materials							
Outcomes	02	repare advanced porymer materials							
	Minin	num of 8 experiments to be completed out of the following:							
		LIST OF EXPERIMENTS							
	1.	Determination of total hardness of water by EDTA method							
	2.	Determination of total alkalinity of water							
Course	3.	Estimation of chlorides using potassium chromate indicator							
Content	4. Determination of cell constant and conductance of solutions								
	5.	Conductometric titration of strong acid vs. strong base							
	6.	Conductometric titration of weak acid vs. strong base							
	7.	Determination of pH of unknown solution							
		Potentiometry - determination of redox potentials and emfs							
		Determination of Strength of an acid in Pb-Acid battery							
). Preparation of a polymer							
		. Determination of viscosity of oils with Redwood viscometer							
	12	2. Estimation of calcium in Portland cement							
	TEXT	Г BOOKS:							
Text Books		1. Mendham J et al, "Vogel's text books of quantitative chemical							
		analysis", 5 th edition, Pearson publications, 2012.							
		2. KN Jayaveera, Subba Reddy & Chandra Sekhar, "Chemistry Lab							
		Manual", SM Enterprises, Hyderabad, 1 edition, 2014.							
		3. Chatwal & Anand, "Instrumental methods of chemical analysis", 2 nd							
		edition, Himalaya Publications, 2006.							

20CS11P1 - PROGRAMMING FOR PROBLEM SOLVING LABORATORY (Civil Engineering)

Course **Engineering Science Credits:** 1.5 Category: **Course Type:** Practical **Lecture-Tutorial- Practice:** 0 - 0 - 3 **Prerequisite:** Basic mathematical 40 **Sessional Evaluation:** knowledge to solve 60 **External Evaluation:** problems and computer 100 Total Marks: fundamentals

	Students undergoing this course are expected:										
Course Objectives	To learn the C programming constructs and its implementation										
Objectives	Upon successful completion of the course, the students will be able:										
Course											
Outcomes	CO1 To Solve problems using C programming concepts										
	LIST OF EXPERIMENTS										
	1. To evaluate expressions.										
Course	2. To implement if constructs.										
Content	3. To implement Switch statement.										
	4. To implement all iterative statements.										
	5. To implement Arrays.										
	6. To implement operations on Strings without using Library functions.										
	7. To implement arithmetic operations using pointers.										
	8. Implement both recursive and non-recursive functions.										
	9. To implement parameter passing techniques.										
	10. To implement Structures.										
	11. To implement basic File operations.										
	TEXT BOOKS:										
Text Books	1. Ashok N. Kamthane, "Programming with ANSI & TURBO C", Pearson										
and	Education, 3 rd edition, 2007.										
Reference											
Books	REFERENCE BOOKS:										
	1. Al Kelley, Ira Pohl, " <i>Programming in C</i> ", Addison-Wesley, 4 th edition, 1999.										
	2. Yashavant Kanetkar, "Let Us C", BPB Publications, 16 th edition, 2019.										
	3. Balaguruswamy, "Programming in ANSI C", 6 th edition, Tata McGraw										
	Hill Education, 2018.										

20ME11P2-COMPUTER AIDED ENGINEERING DRAWING LABORATORY

Course Category	Engineering Science	Credits	3
Course type	Practical	Lecture- Tutorial-Practical	0-0-6
		Sessional Evaluation:	40
Prerequisite	Geometrical Construction	External Exam Evaluation:	60
		Total Marks:	100

Course	Marks	Exan	nination and Evaluation	Scheme of examination						
	60	SemesterendExamination60 marks are allotted for thfor 3 hoursduration in theexamination during semesterCAD Laboratory								
Computer		20	Day-to-Day evaluation during the practice.	Marks are evaluated based on average performance of student in day-to-day exercises and finalized for 20 marks						
Aided Engineering Drawing	40	20	Drawing examination	Two drawing examinations are conducted for 20 marks. 80% of better one and 20% of the other are added and finalized for 20 marks. Drawing examination-I: Shall be conducted just before I mid-term examinations. Drawing examination-II: Shall be conducted just before II mid-term examinations.						
			le to understand / learn							
Course			e students with various con is, polygons, cycloids and i	ncepts like dimensioning, construction of						
Objectives				anding of AutoCAD fundamentals.						
	3. To apply the knowledge of AutoCAD for the projections of points, lines a									
	solids 4. To kn		out sections and developme	ents of solids						
		1								
			course, the student will be							
				hods of engineering drawings						
Course		CO2 Sketch the solutions to the problems on projection of points, lines, planes and solids								
Outcomes										
	CO4 Understand and apply the knowledge of engineering drawing in modern									
	CA	D tool	s.							
	 INTRODUCTION TO CAD SOFTWARE Introduction: Importance of Computer Aided Drawing, software tool environment, drawing size and scale, main menu, tool bar and menus, co-ordinate system, drafting settings. Creation and Editing: Points, Lines, Poly lines, Polygons, Splines, circle, ellipse, text, move, copy, off-set, pan, mirror, rotate, trim, extend, break, chamfer, fillet, curves, block, layers, line representations, dimensioning and hatching. GEOMETRICAL CONSTRUCTIONS, AND CONIC SECTIONS Importance of Drawing, Drawing Instruments, Sheet layout, BIS Conventions, Types of lines, Lettering, and dimensioning methods. Geometrical Constructions: Regular Polygons. 									

 8. DEVELOPMENT OF SURFACES Lateral surfaces of solids such as Prisms, Pyramids, Cylinders and Cones (cut by a plane inclined to HP). 9. ISOMETRIC VIEWS AND PROJECTIONS	Course Content	 Conic Sections: Introduction, Construction of Ellipse, Parabola and Hyperbola using Eccentricity method and Rectangular/ Oblong methods, Rectangular hyperbola. 3. SPECIAL CURVES Construction of Cycloidal curves – Cycloid, Epi-cycloid and Hypo- cycloid. Involutes – Involutes of circle and polygons. 4. PROJECTIONS OF POINTS AND LINES Projections of Points: Principles of projections, Planes of projection, Points in four quadrants. Projections of Lines: Line inclined to both the principal planes (first angle projection only). 5. PROJECTIONS OF PLANES Projections of Planes: Plane (triangle, square, rectangle, pentagon, hexagon and circular) inclined to both the principal planes. 6. PROJECTIONS OF SOLIDS Projections of Solids: Solids such as Prisms, Pyramids, Cylinders and Cones inclined to both the principal plane. 7. SECTIONS OF SOLIDS Solids such as Prisms, Pyramids, Cylinders and Cones resting on their bases on HP.
plane inclined to HP).9. ISOMETRIC VIEWS AND PROJECTIONSIsometric views of planes and solids. Isometric scale, Isometric Projections of simple objects.10. ORTHOGRAPHIC PROJECTIONS Conversion of Pictorial views into Orthographic Views.Textbooks & 		8. DEVELOPMENT OF SURFACES
 9. ISOMETRIC VIEWS AND PROJECTIONS Isometric views of planes and solids. Isometric scale, Isometric Projections of simple objects. 10. ORTHOGRAPHIC PROJECTIONS Conversion of Pictorial views into Orthographic Views. Textbooks TEXTBOOKS: 1. N.D. Bhatt, "Engineering Drawing" Charotar Publishing House Pvt. Ltd, 53rd edition, 2014. 2. Prof. Sham Tickoo and Anurag, "AutoCAD 2013 for Engineers and Designers", Dreamtech Press India Pvt., 2013. Reference Books 1. K. Venugopal, "Engineering Drawing and Graphics + AutoCAD", New Age International Pvt. Ltd., 2007. 2. D.M. Kulkarni, A.P. Rastogi and A.K. Sarkar, "Engineering Graphics with Auto CAD", PHI Learning Private Limited, Revised Edition, August 2010.		
 simple objects. 10. ORTHOGRAPHIC PROJECTIONS Conversion of Pictorial views into Orthographic Views. TEXTBOOKS: N.D. Bhatt, "Engineering Drawing" Charotar Publishing House Pvt. Ltd, 53rd edition, 2014. Prof. Sham Tickoo and Anurag, "AutoCAD 2013 for Engineers and Designers", Dreamtech Press India Pvt., 2013. REFERENCES: K. Venugopal, "Engineering Drawing and Graphics + AutoCAD", New Age International Pvt. Ltd., 2007. D.M. Kulkarni, A.P. Rastogi and A.K. Sarkar, "Engineering Graphics with Auto CAD", PHI Learning Private Limited, Revised Edition, August 2010. 		9. ISOMETRIC VIEWS AND PROJECTIONS
10. ORTHOGRAPHIC PROJECTIONS Conversion of Pictorial views into Orthographic Views.Textbooks & A 		
Conversion of Pictorial views into Orthographic Views.Textbooks & ATEXTBOOKS: 1. N.D. Bhatt, "Engineering Drawing" Charotar Publishing House Pvt. Ltd, 53 rd edition, 2014.Reference BooksProf. Sham Tickoo and Anurag, "AutoCAD 2013 for Engineers and Designers", Dreamtech Press India Pvt., 2013.REFERENCES: 1. K. Venugopal, "Engineering Drawing and Graphics + AutoCAD", New Age International Pvt. Ltd., 2007.2. D.M. Kulkarni, A.P. Rastogi and A.K. Sarkar, "Engineering Graphics with Auto CAD", PHI Learning Private Limited, Revised Edition, August 2010.		
Textbooks & Reference BooksTEXTBOOKS: 1. N.D. Bhatt, "Engineering Drawing" Charotar Publishing House Pvt. Ltd, 53 rd edition, 2014. 2. Prof. Sham Tickoo and Anurag, "AutoCAD 2013 for Engineers and Designers", Dreamtech Press India Pvt., 2013. REFERENCES: 1. K. Venugopal, "Engineering Drawing and Graphics + AutoCAD", New Age International Pvt. Ltd., 2007. 2. D.M. Kulkarni, A.P. Rastogi and A.K. Sarkar, "Engineering Graphics with Auto CAD", PHI Learning Private Limited, Revised Edition, August 2010.		
 & 53rd edition, 2014. Prof. Sham Tickoo and Anurag, "AutoCAD 2013 for Engineers and Designers", Dreamtech Press India Pvt., 2013. REFERENCES: K. Venugopal, "Engineering Drawing and Graphics + AutoCAD", New Age International Pvt. Ltd., 2007. D.M. Kulkarni, A.P. Rastogi and A.K. Sarkar, "Engineering Graphics with Auto CAD", PHI Learning Private Limited, Revised Edition, August 2010. 		
 Reference Books 2. Prof. Sham Tickoo and Anurag, "AutoCAD 2013 for Engineers and Designers", Dreamtech Press India Pvt., 2013. REFERENCES: K. Venugopal, "Engineering Drawing and Graphics + AutoCAD", New Age International Pvt. Ltd., 2007. D.M. Kulkarni, A.P. Rastogi and A.K. Sarkar, "Engineering Graphics with Auto CAD", PHI Learning Private Limited, Revised Edition, August 2010. 		o o o
 Books Books 2. 1101. Shall Tickoo and Andrag, AutoCAD 2013 for Engineers and Designers", Dreamtech Press India Pvt., 2013. REFERENCES: K. Venugopal, "Engineering Drawing and Graphics + AutoCAD", New Age International Pvt. Ltd., 2007. D.M. Kulkarni, A.P. Rastogi and A.K. Sarkar, "Engineering Graphics with Auto CAD", PHI Learning Private Limited, Revised Edition, August 2010. 		
 <i>Designers</i>, Dreamtech Press India PVL, 2013. REFERENCES: K. Venugopal, "<i>Engineering Drawing and Graphics + AutoCAD</i>", New Age International Pvt. Ltd., 2007. D.M. Kulkarni, A.P. Rastogi and A.K. Sarkar, "<i>Engineering Graphics with Auto CAD</i>", PHI Learning Private Limited, Revised Edition, August 2010. 		• • •
 K. Venugopal, "Engineering Drawing and Graphics + AutoCAD", New Age International Pvt. Ltd., 2007. D.M. Kulkarni, A.P. Rastogi and A.K. Sarkar, "Engineering Graphics with Auto CAD", PHI Learning Private Limited, Revised Edition, August 2010. 	20000	-
 International Pvt. Ltd., 2007. 2. D.M. Kulkarni, A.P. Rastogi and A.K. Sarkar, <i>"Engineering Graphics with Auto CAD"</i>, PHI Learning Private Limited, Revised Edition, August 2010. 		
2. D.M. Kulkarni, A.P. Rastogi and A.K. Sarkar, " <i>Engineering Graphics with Auto CAD</i> ", PHI Learning Private Limited, Revised Edition, August 2010.		
Auto CAD", PHI Learning Private Limited, Revised Edition, August 2010.		
3. T. Jeyapoovan. "Engineering Drawing and Graphics Using AutoCAD"		3. T. Jeyapoovan, "Engineering Drawing and Graphics Using AutoCAD",
Vikas Publishing House Pvt. Ltd., 3 rd Edition, 2010.		
 4. P. Kannaiah, K. L. Narayana and K. Venkata Reddy, <u>"A Textbook on Engineering Drawing</u>", Radiant Publishing House, 2012. 		4. P. Kannaiah, K. L. Narayana and K. Venkata Reddy, "A Textbook on

20SH11P2 - ENGLISH LANGUAGE LABORATORY (Common to CE, ME & ECE)

Course Category:	Humanities and Social Science	Credits:	1
Course Type:	Practical	Lecture-Tutorial-Practical:	0-0-2
Pre-requisite:	Basic Level of LSRW skills	Sessional Evaluation: External Exam Evaluation: Total Marks:	40 60 100

	1								
	The n	nain objective is to prepare the students to improve their communicative ability in							
Course	Engli	sh with emphasis on LSRW skills and enable them to communicate effectively in							
Objectives	differ	ent socio- cultural and professional contexts.							
	CO1	These activities practiced in the laboratory are helpful in comprehending the							
Course		important language aspects which are useful for the real-life situations.							
Outcomes	CO2	These are also helpful in enhancing the language competency and communicative							
		level of students.							
		LIST OF ACTIVITIES							
		Listening Skills Listening for Identifying key terms, understanding concepts							
		Listening for specific information							
		Listening for global comprehension and summarizing							
	d) Listening to short audio texts and answering a series of questions.								
	2. Common Everyday Conversations:								
	(Asking and answering general questions on familiar topics such as home, family, work, studies and interests)								
Course	a) Expressions in various situations								
Content	b) Making requests and seeking permissions								
00110110	c)	c) Interrupting and apologizing							
	d) Role plays / Situational dialogues								
	3.	Communication at Work Place:							
	a)	e							
	b)								
	c) Greetings								
	d)	Taking leave							
		Debates & Group Discussions							
	a) Discussion in pairs/ small groups on specific topics								
	b) Short structured talks								
	c) Reporting/ summarizing								
		Presentations (Oral presentation, PPT & Poster presentation): Pre-planning							
	a)	Non- verbal communication							
		Formal oral presentations on topics from academic contexts							
	6.	Giving directions							

Textbooks & Reference	REFERENCES:
Books	1. Dr. D. Sudha Rani, "A Manual for English Language Laboratories", Pearson
	Publications, 1 st edition, 2009.
	2. https://www.talkenglish.com
	3. www.esl-lab.com
	4. www.englishmedialab.com
	5. www.englishinteractive.net

N.B.K.R. INSTITUTE OF SCIENCE & TECHNOLOGY :: VIDYANAGAR (AUTONOMOUS) CIVIL ENGINEERING SCHEME OF INSTRUCTION AND EVALUATION

(With effect from the batch admitted in the academic year 2020-2021)

I YEAR OF FOUR YEAR B.TECH. DEGREE COURSE – II SEMESTER

Evaluation						tion										
S.NO.	Course	Course Title	Contact Hours/ Week		s/	Credits	Sessional Test-I			Sessional Test-II			Total Sessional Marks (Max. 40)	Semester End Examination		Max.
	Code	THEORY		Т	Р		Test-I (2 hrs.)	Assignm ent-I	Max. Marks	Test-II (2 hrs.)	Assign ment-II	Max Marks		Durati on In Hours	Max Mar ks	Total Marks
1	20SH1201	Engineering Physics [#]	2	1	0	3	34	6	40	34	6	40	0.8(Better	3	60	100
2	20SH1202	Engineering Mathematics – II*	3	0	0	3	34	6	40	34	6	40	of two sessional tests)	3	60	100
3	20CE1201	Building Materials & Construction ^{Δ}	3	0	0	3	34	6	40	34	6	40	+ 0.2(Other)	3	60	100
4	20CE1202	Engineering Mechanics ^{Δ}	3	0	0	3	34	6	40	34	6	40		3	60	100
5	20EE1203	Elements of Electrical and Electronics Engineering	3	0	0	3	34	6	40	34	6	40		3	60	100
		PRACTICALS														
1	20CE12P1	Building Materials and Construction Lab^{Δ}	0	0	3	1.5	-	-	-	-	-	-	Day-to-day	3	60	100
2	20SH12P1	Engineering Physics Laboratory [#]	0	0	3	1.5	-	-	-	-	-	-	Evaluation and a test	3	60	100
3	20ME12P3	Engineering Workshop ^{\$}	0	0	3	1.5	-	-	-	-	-	-	(40 marks)	3	60	100
		MANDATORY COURSE								0.8(Better						
1	20MC1201	Universal Human Values	2	0	0	0	34	6	40	34	6	40	of two) + 0.2 other	3	60	100
		TOTAL		•	- MI	19		• Other the	•	•	•					

CE & ME; * Common to all; \$ Other than ME; Δ CE; ϕ CE, ME & ECE

20SH1201 - ENGINEERING PHYSICS

(Common to CE&ME)

Course Category:	Basic Science	Credits:	3
Course Type:	Theory	Lecture-Tutorial-Practical:	2-1-0
Pre-requisite:	Fundamental concepts of Physics	Sessional Evaluation: External Exam Evaluation: Total Marks:	40 60 100

		1
		To acquire knowledge of interference, diffraction and polarization of light.
	2.	
	3.	
	4.	Explain & provide the knowledge about semiconductors and their use in electronic devices.
Course	5	To gain knowledge about dielectrics & magnetic materials focusing on their
Objectives	5.	applications.
	6	To understand importance and role of ultrasonics and nanomaterials in Civil &
	0.	Mechanical engineering
Course	CO1	Understand the phenomena of wave optics and its principles
Outcomes	CO2	Understand & analyses different kinds of lasers and principles of optical fibers.
	CO3	Able to understand the basic concepts of quantum physics applicable to solids.
	CO4	To know the concepts of electron theory of solids and properties of semiconductor materials by projecting the view of energy bands.
	CO5	Understand the concept of polarization and also applications of dielectric magnetic materials in various disciplines.
	CO6	Basic idea about ultrasonics production & properties and nanomaterials with their uses in various fields of Science & Technology.
		UNIT-I
		E OPTICS
	Interfe	erence: Introduction – Superposition of waves – interference by division of wave
	front	(Young's double slit experiment) & by division of amplitude (Newton rings) -
	Diffra	ction: Introduction - Fraunh offer diffraction due to single slit, double slit-
	Diffra	ction grating – Polarization – Introduction – Representation of light – Double
	refrac	tion and positive & negative crystals – Nicol prism – Half and quarter wave plates.
Course		
Content		UNIT-II
		CRS & OPTICAL FIBERS
		s: Spontaneous & simulated emission - Population inversion - Types of Lasers:
		state lasers (Nd-YAG), Gas lasers (He–Ne) – Properties of laser beam:
		chromacity, coherence, directionality & brightness – Applications of lasers in
		e, engineering & medicine. al fibers: Introduction – Construction and working principle of optical fiber –
	Accep	at thers. Inforduction – Construction and working principle of optical fiber – ptance angle –Numerical Aperture – Types of optical fibers – Block diagram of I fiber communication system – Applications of optical fibers.
	-	· · · · ·

UNIT-III

PRINCIPLES OF QUANTUM MECHANICS

Black body radiation – Laws of explaining the energy distribution- Planks quantum theory of black body radiation – Stefan-Boltzmann, Wein's displacement & Rayleigh Jean's law - Photon & its properties - Wave and particle duality – de-Broglie hypothesis – Properties of matter waves – de-Broglie wave length – Heisenberg uncertainty principle – Schrodinger time independent wave equation – Physical significance of wave function - Particle in a one dimensional potential box.

UNIT-IV

ELECTRON THEORY AND SEMICONDUCTORS

Electron theory: Free electron theory (classical & quantum: postulates, success& drawbacks) - Fermi–Dirac distribution function & its temperature dependence – Kronig–Penny model (nonmathematical treatment) – Concept of band – Classification of solids into conductors , semiconductors & insulators.

Semiconductors: Intrinsic & extrinsic semiconductors (qualitative) – Fermi level in extrinsic semiconductors – Conductivity in semiconductors: Drift & diffusion – Einstein relation – Hall effect & its applications.

UNIT-V

DIELECTRIC AND MAGNETIC PROPERTIES

Dielectric Properties: Basic definitions – Electronic, ionic (quantitative) & orientation (qualitative) polarizations – Internal field in solid dielectrics – Clausius- Mossotti relation – Ferroelectricity.

Magnetic properties: Introduction – Basic definitions – Origin of magnetic moment – Classification in to dia, para, ferro, anti-ferro & ferri magnetic materials – Hysteresis – Soft & hard magnetic materials - Applications of magnetic materials.

UNIT VI

ULTRASONICS AND PHYSICS OF NANOMATERIALS

Ultrasonics: Introduction and properties of ultrasonics – Production by Piezo electric method – Detection of ultrasonics – Applications of ultrasonics.

Physics of Nanomaterials: Introduction – Significance of nanoscale – Types of nanomaterials – Properties of nanomaterials: physical, mechanical, magnetic and optical – Synthesis of nanomaterials: Top-down-Ball millings, bottom up – Chemical vapour deposition – Applications of nanomaterials.

Text Books & Reference Books	 TEXTBOOKS: 1. R K Gaur and S L Gupta, "Engineering Physics", Dhanpat Rai Publishing Co. Pvt. Ltd., 8th Edition, 2012. 2. P K Palanisamy, "Engineering Physics" SciTech Publications (India) Pvt. Ltd, Vol-I, 2015. 3. S Mani Naidu, "Engineering Physics", Pearson Education India, 2009. REFERENCE BOOKS:
	 K Thyagarajan, "Engineering Physics", McGraw Hill Education. S L Gupta and Sanjeev Gupta, "Unified Physics", (Mechanics and Waves & Oscillations), Vol-I, Jai Prakash Nath Publications, 2018.

ENGINEERING MATHEMATICS –II

(Common to all branches)

Course Category:	Basic Science	Credits:	3
Course Type:	Theory	Lecture-Tutorial-Practical:	3-0-0
Pre – requisite:	Intermediate Mathematics	Sessional Evaluation:	40
		External Evaluation:	60
		Total Marks:	100

Course	1. Tł	ne concepts of Double and triple integrals, Areas and Volumes					
Objectives		ne Gradient, Divergence and Curl operators, Solenoidal and Irrotational vectors.					
		ne basic concepts of Vector Integration.					
		ne determination of Fourier coefficients, Fourier series, Even and Odd Functions					
		d Change of intervals.					
		ne concepts of Fourier Transforms.					
	6. Co	oncepts of z-transform and its inverse trans form.					
Course	COI	Attains skills in analyzing the Double integrals and triple integrals also its					
Outcomes		Areas and Volumes.					
	CO2	Acquire knowledge in analyzing the Curl, Divergence and Gradient operators,					
		Solenoidal and Irrotational vectors with their applications.					
	CO3	Attains skills in analyzing the applications of Green's, Stokes's and Gauss-					
		divergence theorems.					
	CO4	Develop analytical skills in solving the problems involving Fourier Series.					
	CO5	Understand effectively Fourier Sine and Cosine integral, Fourier Transforms,					
		Fourier Sine and Cosine transforms.					
	CO6	Learn the concepts of Z- transform and its inverse transform. Student able to					
		apply z-transforms to solve difference equations.					
		UNIT - I					
	_	ble integral : –Evaluation of double integrals – Change the order of integration –					
	-	e of Variables – Area by double integration – triple integrals					
	(only i	in Cartesian form) – Volume by triple integral.					
		UNIT - II					
Course		• Differentiation: Scalar and vector point function – Del operator: Gradient,					
Content	Divergence, Curl – Solenoidal and Irrotational vectors – Scalar potential.						
		UNIT - III					
	Vector	• Integration: Line integral, circulation, work done – Surface integrals, flux –					
	Green'	s theorem in the plain (Without proof) - Stokes's theorem (Without proof) -					
	Volum	e integral, Gauss-divergence theorem (without proof).					
		UNIT - IV					
	1						

	Fourier Series: Fourier Series: Determination of Fourier coefficients for Fourier series of $f(x)$ in $(0, 2\pi)$ and $(-\pi, \pi)$ - Fourier series for an Even and Odd functions - Change of intervals.
	UNIT-V
	Fourier Transforms: Fourier Integral Theorem (Without proof)-Fourier Sine and Cosine integral - Fourier Transforms and its inverse transform - Fourier Sine and Cosine transforms. UNIT-VI
	Z-Transforms: Z-Transform of some standard functions, Properties of Z-Transforms, Shifting Properties, Initial value theorem and final value theorem, Inverse Z- Transform, Convolution theorem, Inversion by partial fractions and Applications to difference equations.
: Text Books & Reference Books	 TEXTBOOKS: B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi. 44th edition, 1965. B.V. Ramana, "Engineering Mathematics", Tata McGraw-Hill Education Pvt. Ltd, New Delhi, 1st editon,2017. REFERENCES: H.K. Dass, Er. Rajnish Verma, "Higher Engineering Mathematics", S. Chand Publications, New Delhi, 2014. N.P. Bali & M. Goyal, "Advanced Engineering Mathematics", Lakshmi Publishers, New Delhi. 1st edition, 2015. Erwin Kreyszig, "Advanced Engineering Mathematics" Wiley publications, India. 10th edition, 2010.

20CE1201-BUILDING MATERIALS AND CONSTRUCTION (Civil Engineering)

Course Category:	Professional Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3-0-0
		Sessional Evaluation :	40
Prerequisite:	None	End Exam. Evaluation:	60
		Total Marks:	100

1. To know the significance of various building materials used in construction
industry.
2. To explain the materials used in concrete and different types of mortars and
their applications.
3. To explain various types of masonry construction.
4. To explain various types of building components.
5. To explain types of roofs, roof coverings and temporary works used in
buildings.
6. To learn about types of wall finishes and thermal and acoustic insulating
materials in buildings.
CO1 Select suitable materials for various types of buildings.
CO2 Gain an in-depth knowledge on components of concrete and mortars.
CO3 Compare the various types of masonry and their construction practices.
CO4 Identify various types of building components and their construction techniques.
CO5 Select the appropriate flooring, roof and temporary work for a given building and illustrate their construction techniques.
CO6 Exhibit the knowledge of building finishes and special treatments for thermal and acoustic insulation materials.
UNIT – I
INTRODUCTION TO BUILDING MATERIALS Stone: Dressing of stones- artificial stones and applications; wood: classification of timber- characteristics of good timber- ply wood- types and uses; bricks: manufacturing process- testing of bricks; ceramic products: manufacturing process; glass: functions of glass in buildings; building materials for low cost housing- utilization of waste for alternative building materials- sustainable materials in construction- IS specifications. UNIT- II CEMENT CONCRETE AND MORTARS Constituents of Cement Concrete: Cement: Manufacturing process - types of cement - Portland cement- hydration of

cement- tests on cement- IS specifications.

Aggregate: Introduction - classification of aggregate – characteristics - IS specifications.

Water: Quality of mixing water.

Building Mortars: Introduction- classification (cement mortar, lime mortar, lime-cement mortar, special mortar) - characteristics of good mortar- grouting- guniting.

UNIT- III

MASONRY CONSTRUCTION

Stone masonry: Technical terms – joints; types: random (un-coarsed) rubble – coarsed rubble – dry rubble masonry – ashlar masonry; ashlar fine – chamfered fine; supervision.

Brick masonry: Technical terms; bonds in brick work: English bond – single & double Flemish bond; defects; comparison of brick masonry and stone masonry.

Cavity walls: Brick cavity walls- position of cavity at foundation, roof and opening levels.

UNIT- IV

BUILDING COMPONENTS

Introduction to Building Components: Types of buildings; components of buildings; types and uses of shallow and deep foundations.

Lintels and arches: Lintels: types- construction; arches: technical terms- types (brick arches, rough, axed stone arches, flat and semi-circular arches).

Doors: Location- technical terms – types – suitability.

Windows: Location – types – suitability – fixtures and fastenings.

Stairs and Stair cases: technical terms- requirements of good stair – classificationelevators and escalators.

UNIT- V

FLOORS, ROOFS AND TEMPORARY WORKS

Floors: Introduction- requirements of a good floor; types of floorings: cement concrete (regular and precast) - mosaic- tiled- marble- timber.

Roofs and Roof coverings: Technical terms- classification (pitched roofs and flat roofs) - advantages and disadvantages; roof coverings: A.C sheets and G.I sheets.

Temporary works: Form work: Introduction- stripping of formwork- timbering in trenches- types of scaffolding- shoring and underpinning.

UNIT-VI

WALL FINISHES AND SPECIAL TREATMENTS

Wall finishes: Plastering: objectives of plastering- requirements of good plastertools used in plastering; types of pointing.

	mat inst Acc sou	terials- ulation. Dustic (classif C onstru enclosu	fication uction: ure- ref	of th	ermal uction-	insulat	ing materistics	aterials s of aud	election - meth ible sou nd abso	nods ind- be	of the	rmal ur of
Textbooks & Referenc Books	e	200 2. Dr. Co. 3. T. 1 Co. Edi FERE 1. S.C 33^{r} 2. M. Tes	C Rangy 08. B.C.Pu <i>nstructu</i> D. Ahu <i>nstructu</i> ition, 20 NCES: C Rangy ^d Editic L. Gan	unmia, ion" La ja and Q ion Mat 012. wala, "I on, 2019 nbhir an	Er. Ash ikshmi G. S. Bi <i>terials</i> " Building D. nd Neha ity Con	nok Kur publica irdie, "A Dhanp g Const a Jamw trol" M	mar Jain tions, 1 A <i>Text I</i> at Rai J <i>ruction</i> al, "Bu IcGraw	n and D 1 th Edi Book of oublish " Char ilding a Hill Ed	Or. Arur tion, 20 <i>F Buildir</i> ing con otar Pul and Cor ducation	blishing n Kumar 019. ng Const npany, R olishing nstructic n, 2017. Standar	Jain, tructic evised House on Mat	"Build on and d 4 th e Pvt. I terials:	ing _td,
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POI		012
CO1	3	3	2	2	1	1	-	-	-	-	2	2	1
CO2	3	3	2	3	1	-	-	-	-	-	1	2	-
CO3	3	3	2	3	1	_	-	I	-	-	1	3	2
CO4	3	3	3	3	2	-	-	-	-	-	2	3	1
CO5	3	3	3	3	1	-	-	-	-	-	2	2	1
CO6	3	3	3	2	2	-	-	-	-	-	2	2	1

20CE1202 - ENGINEERING MECHANICS

(Civil Engineering)

Course category:	Engineering Science	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practical:	3-0-0
	Engineering Physics,	Sessional Evaluation :	40
Prerequisite:	Engineering	End Exam. Evaluation:	60
	Mathematics	Total Marks:	100

Course	1.	To analyse the system of forces acting in a plane in different conditions.
Objectives	2.	
	3.	To explain the properties of surfaces by calculating centroid, moment of inertia and other related concepts.
	4.	To evaluate motion characteristics of body subjected to given force.
	5.	To analyse the system of forces using D Alembert principle and Work-Energy equations.
	6.	To analyze the components of forces in trusses and learn about mechanical vibrations
Course Outcomes	CO1	Determine the components of forces in rectangular and non-rectangular coordinates.
	CO2	Determine the support reactions on structures and analyze systems that include frictional forces.
	CO3	Locate the centroid of an area, calculate the second moment and principal second moment of an area
	CO4	Calculate the motion characteristics of a body subjected to a given force system
	CO5	Determine the resultant forces using moment of momentum principle, D Alembert principle and Work-Energy equations.
	CO6	Determine resultant forces in trusses and frequency and amplitude for a given system.
	STAT	UNIT-I FICS : Introduction – Units and Dimensions – Laws of mechanics – Vectors –
Course Content	Vecto concu Equiv and F	rial representation of forces and moments –Vector operations – Coplanar and rrent forces –Resolution and composition of forces – Equilibrium of a particle – alent systems of forces –Principle of transmissibility – Single equivalent force ree body diagram – Types of supports and their reactions –Equilibrium of rigid s in two dimensions.

	UNIT – II
	FRICTION: Types of friction – Laws of friction – Limiting friction – Cone of limiting friction - Static and dynamic frictions – Motion of bodies – Wedge, Screw jack and differential jack.
	UNIT – III
	CENTROID AND CENTRE OF GRAVITY: Centroids of simple figures – Centroids of composite figures - Centre of gravity of bodies – Area moment of inertia - Parallel axis theorems and perpendicular axis theorems – Moment of inertia of composite figures.
	MASS MOMENT OF INERTIA: Moment of inertia of simple solids – Moment of inertia of composite masses (Simple problems only)
	UNIT – IV
	DYNAMICS-1 : Displacement – Velocity and acceleration and their relationship – Relative motion – Curvilinear motion – Newton's law of motion.
	UNIT – V
	DYNAMICS-2 : Basic terms – General principles in dynamics - Types of motion – instantaneous centre of rotation in plane motion (simple problems) - Work energy equation – D Alembert's Principle and its uses – kinetics of rigid body rotation.
	UNIT – VI
	ANALYSIS OF PLANE TRUSSES: Assumptions – rigid and non-rigid trusses – Simple truss, analysis by method of joints, method of sections and tension coefficient method.
	MECHANICAL VIBRATIONS: Basic terminology – Free and forced vibrations – resonance and its effects – degree of freedom – Derivation of frequency and amplitude of free vibrations without damping and single degree of freedom system (simple problems) – Types of pendulum – Use of simple and compound pendulum.
Textbooks & Reference books	 TEXTBOOKS: A. K. Tayal, "Engineering Mechanics" Umesh Publications, 14th edition, 2008. R.K. Bansal, "A Textbook of Engineering Mechanics" Laxmi Publications, 8th edition, 2015. S. Timoshenko, D.H. Young, J V Rao and Sukumar "Engineering Mechanics" McGraw Hill Education, revised 4th edition.

REFI	ERENCE BOOKS:
1.	J.L.Meriam, L.G. Kraige and J.N.Bolton, "Engineering Mechanics" Wiley
	Publishers, 2017.
2.	Irving. H. Shames, G. Krishna Mohana Rao, "Engineering Mechanics-Statics
	and Dynamics" Pearson Publishers, 4 th edition.
3.	P.B. Beer & E. R. Johnston, "Mechanics of Materials" McGraw Hill Series.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	3	2	1	-	-	1	2	2	2	3
CO2	3	2	2	2	1	1	1	1	2	2	2	2
CO3	3	3	2	3	1	1	2	1	2	2	1	3
CO4	3	2	2	2	1	1	1	1	2	2	1	2
CO5	3	2	1	2	1	1	1	1	2	2	2	3
CO6	3	2	2	2	1	1	1	1	2	2	1	2

20EE1203-ELEMENTS OF ELECTRICAL AND ELECTRONICS ENGINEERING (Civil Engineering) _____

Course Category:		Engineering Science	Credits:	3					
Course Type:		Theory	Lecture - Tutorial-Practical:	3-0-0					
Pre-requisite:		1. Basics of Mathematics	Sessional Evaluation:	40					
		2. Basics of Electricity	External Exam Evaluation:	60					
			Total Marks:	100					
	1	The basic concerns of DC since	•						
Course		 The basic concepts of DC circuits. The basic concepts of AC circuits 							
		 The basic concepts of AC circuits The operations of AC Generator and Induction motor. 							
Objectives		 The operations of AC Generator and induction motor. The construction and working principle of the transformers. 							
U		5. The fundamentals of electrical safety and wiring.							
	6	6. The transducers and electric welding.							
	CO1								
	CO2	Understand the fundamental concepts of AC circuits.							
Course	CO3	Know the operations of AC Generator and Induction motor.							
Outcomes	CO4	Acquire the knowledge about the transformers.							
	CO5	Understand the fundamentals of electrical safety and wiring system.							
	CO6	Understand about different transducers and methods of welding.							
			UNIT-I						
	Fundamentals of DC Circuits: Introduction to DC circuits, Active and passive								
		elements, Voltage - Current relations for resistor, Inductor and Capacitor, Kirchhoff's							
	laws-	laws-simple problems.							
	UNIT-II								
	Fundamentals of AC Circuits: Generation of sinusoidal voltage, Average and RMS								
Course		values, Form Factor and peak factors for sinusoidal waveforms, Analysis of R, L, C							
Content		circuits with sinusoidal source, j notation, Concept of Impedance, introduction to three							
	phase system and comparison between three phase and single phase system. UNIT-III								
	AC Generator: Working principle, Construction and applications of alternators								
		Induction motor: Classification of Induction motors, Working principle, Construction							
		and applications of capacitor start and capacitor start & run motors (descriptive only) UNIT-IV							
	Single Phase Transformers: Principle and operation of a transformer, Construction, EMF equation, Losses and efficiency of transformer, Three phase transformer								

	connections (descriptive only).					
	UNIT-V					
	Electrical Safety and Wiring: Importance of electrical safety, Introduction to					
	Personal protective equipment (PPE), Types of wiring, Wiring accessories, Staircase					
	and fluorescent lamp connections, Earthing, Pipe and plate earthing, Types of					
	conductors used in wiring.					
	UNIT-VI					
	Transducers: Resistance temperature detector (RTD), Thermocouple, Strain gauge,					
	Piezo electric transducer.					
	Electric welding: Introduction, resistance welding and arc welding techniques.					
	TEXT BOOKS:					
	1. Dash .S.S, Subramani. C and Vijayakumar.K, "Basic Electrical Engineering",					
	1 st edition, Vijay Nicole Imprints Pvt.Ltd, 2013.					
	2. R. Muthusubramanian and S. Salivahanan, <i>"Basic Electrical and Electronics Engineering"</i> 1 st edition, Tata McGraw Hill publications, 2009.					
Textbooks	3. Metha.V.K, Rohit Metha, <i>"Basic Electrical Engineering"</i> , 5 th edition, Chand. S					
1 extbooks	S. Metha. V.K. Kohnt Metha, <i>Basic Electrical Engineering</i> , 5 edition, Chand. S & Co, 2016.					
Reference	REFERENCE BOOKS:					
Books	1. Kothari .D.P and Nagrath.I.J, " <i>Basic Electrical Engineering</i> ", 2 nd edition, Tata					
	McGraw - Hill, 2009.					
	2. Bhattacharya. S.K, "Basic Electrical and Electronics Engineering", , Pearson					
	Education, 1 st edition Reprint, 2015.					
	3. A. Chakrabarti, M.L. Soni, P.V.Gupta, U.S. Bhatnagar and Dr. A Chakrabarti,					
	"A Text book on Power System Engineering", Dhanpath Rai & Company Pvt.					
	Ltd, 2009.					
	1. http://nptel.ac.in/courses.					
Е-	2. http://iete-elan.ac.in.					
Resources	3. http://freevideolectures.com/university/iitm.					

20CE12P1 – BUILDING MATERIALS & CONSTRUCTION LABORATORY

Course Category	Professional Core	Credits	1.5
Course Type	Practical	Lecture - Tutorial - Practical	0-0-3
		Sessional Evaluation	40
Prerequisite	None	Semester End Exam. Evaluation	60
		Total Marks	100

(Civil Engineering)

Course	To understand the basic building materials and elementary construction							
Objective (s)	practices.							
Course Outcomes	CO1	CO1 Understand the manufacturing and testing processes of vario types of bricks.						
	CO2	, , , , , , , , , , , , , , , , , , , ,						
	CO3							
	CO4							
	CO5							
	CO6	Repairing and strengthening of reinforced concrete elements using epoxy resin and fiber materials.						
		LIST OF EXPERIMENTS						
	1) a) Casting and testing of burnt bricks and fly ash bricks.							
	b) Preparation of concrete cover blocks.							
	2) Construction of 1 ¹ / ₂ brick wall using English bond.							
	3) Plastering and finishing of wall.							
	4) Application of wall-putty and painting a wall.							
Course	5) Preparation of base for flooring.							
Content	6) Application of base coat and laying of tile flooring.							
	7) Installation of plumbing and fixtures like tap, T-joint, elbow,							
	bend and threading.							
	8) Bending stirrups, binding steel reinforcement cage and placing							
	cover blocks (beam/column/slab).							
	9) Strengthening of reinforced concrete elements using fiber							
	materials.							
	10) Re	epairing of cracks in structural members using epoxy resin.						

EXPERIMENTS FOR DEMONSTRATION			
11) Construction of a brick arch.			
12) Identification of various types of aggregates, glass and tiles.			

20SH12P1 - ENGINEERING PHYSICS LABORATORY (Common to CE & ME)

Course Category:	Basic Science	Credits:	1.5
Course Type:	Practical	Lecture-Tutorial-Practical:	0-0-3
Pre-requisite:	Engineering Physics	Sessional Evaluation:	40
		External Exam Evaluation: Total Marks:	60 100

Course	To pro	vide student to learn about some important experimental techniques in physics								
Objectives	with kı	nowledge in theoretical aspects so that they can excel in that particular field.								
	CO1	These experiments in the laboratory are helpful in understanding important								
Course		concepts of physics through involvement in the experiments by appl								
Outcomes	<u> </u>	theoretical knowledge.								
	CO2	It helps to recognize where the ideas of the students agree with those accepted by physics and where they do not.								
	Minim	um of 8 experiments to be conducted out of the following :								
		and of a experiments to be conducted out of the following .								
		LIST OF EXPERIMENTS								
	1. Dete	1. Determination of rigidity modulus of wire material – Torsional pendulum.								
	2. Melde's experiment – Transverse & longitudinal modes.									
	3. Resonance in LCR circuit.									
Course	4. Magnetic field along the axis of a coil (Stewart – Gee's Method).									
Content	5. Study of characteristics of LED									
	6. Newton rings									
	7. Wedge method									
	8. Diffraction grating - Wavelength of given source.									
	9. Dispersive power of prism material using spectrometer.									
	10. P-N- junction diode characteristics.									
	11. Eva	aluation of Numerical Aperture of given optical fiber.								
	12. Energy gap of a P-N junction diode material.									
	13. Tra	ansistor characteristics.								
	14. Sol	lar cell characteristics.								
	15. Log	gic gates.								

20ME12P3- ENGINEERING WORKSHOP

Course Category	Engineering Science	Credits	1
Course type	Practical	Lecture- Tutorial-Practical	0-0-2
		Sessional Evaluation:	40
Prerequisite	No Prerequisite	External Exam Evaluation:	60
		Total Marks:	100

 To understand the usage of work shop tools and prepare the models in the trades such as carpentry, fitting, sheet metal & foundry. To understand the usage of wiring tools and to execute house wiring connections. To understand and demonstrate the usage of tools of welding, black smithy and machine tools. 						
CO1 Identify, Distinguish and Choose the tools of various trades (carpentry, fitting, sheet metal, foundry, wiring, welding, black smithy and machine tools).						
CO2 Demonstrate and Describe the usage of tools of various trades (carpentry, fitting, sheet metal, foundry, wiring, welding, black smithy and machine tools).						
CO3 Documenting the procedure adopted while preparing the model. LIST OF EXPERIMENTS						
LIST OF EATERIMENTS						
1. Carpentry: Half Lap, Mortise and Tenon and Bridle joint.						
2. Fitting: Square, V, half round and dovetail fittings						
3. Tin-Smithy: Tray, cylinder, hopper, cone						
4. House-wiring: One lamp controlled by one switch, Two lamps (bulbs) controlled						
by two switches independently, Stair - case connection, Two lamps controlled by						
one switch in series, Two lamps controlled by on switch in parallel and Water						
pump connected with single phase starter.						
5. Foundry: single-piece pattern and Two- piece pattern						
TRADES FOR DEMONSTRATION:						
6. Machine Tools						
7. Welding						
8. Black Smithy						
TEXTBOOKS:						
1. V. Ramesh Babu, "Engineering Workshop practice for JNTU", VRB Publishers						
Pvt. Ltd, 2009.						
 P. Kannaiah, K. L. Narayana, "Workshop Manual", SciTech Publishers, 2004. Jeyapoovan, Saravana Pandian, "Engineering Practices Lab Manual", Vikas 						
Publishers, 2007.						

(Common to All Branches)											
Course Categ	gory:	Mandatory	Credits:	0							
Course Type	:	Theory	Lecture - Tutorial-Practical:	2-0-0							
Pre – requisi	te:	SIP-Universal Human	Sessional Evaluation:	40							
		Values 1 (desirable)	External Evaluation:	60							
			Total Marks:	100							
G		ents undergoing this course and	1	1 (1 1 1							
Course	1. Development of a holistic perspective based on self-exploration about human being,										
Objectives:		mily, society and nature/exis									
			ng of the harmony in the human be	ing, family, society							
		nd nature/existence.									
	3. St	rengthening of self-reflection	n.								
	4. D	evelopment of commitment	and courage to act.								
	5. K	now about appropriate man	agement patterns with harmony.								
	After	completing the course, the s	tudent will be able to								
	CO1	Understand more about of nature);	themselves, and their surrounding	gs (family, society,							
Course	CO2	1	in life, and in handling problem man relationships and human natu								
Outcomes:	CO3	Develop as a socially and ecologically responsible engineers									
	CO4	Justify the need for universal human values and harmonious existence									
	CO5		Relate human values with human relationship and human society								
	CO6	CO6 Apply what they have learnt to their own self in different day-to-day									
	settings in real life, at least a beginning would be made in this direction.										
	UNIT-I Introduction to Value Education: Universal Human Values-I - Self-Exploration - content and process; 'Natural Acceptance' and Experiential Validation - Self- exploration - Continuous Happiness and Prosperity - Basic Human Aspirations - Current scenario - Method to fulfill the above human aspirations- Understanding and living in harmony at various levels. UNIT-II										
Course	Understanding Harmony in the Human Being - Harmony in Myself: Human being as a co-existence of the sentient 'I' and the material 'Body' - The needs, happiness and physical facility - The Body as an instrument of 'I' - The characteristics and activities of 'I' and harmony in 'I' - The harmony of I with the Body										
Content:			UNIT-III								
	Understanding Harmony in the Family and Society- Harmony in Human- Human Relationship: Values in human relationship; meaning of Justice; Trust and Respect; Difference between intention and competence; the other salient values in relationship - the harmony in the society: Resolution, Prosperity, fearlessness (trust) and co-existence										

20MC1201 - UNIVERSAL HUMAN VALUES (Common to All Branches)

as comprehensive Human Goals - Visualizing a universal harmonious order in society-Undivided Society, Universal Order- from family to world family.

UNIT-IV

Understanding Harmony in the Nature and Existence - Whole existence as Coexistence: The harmony in the Nature - Interconnectedness and mutual fulfillment among the four orders of nature - Recyclability and self-regulation in nature -Understanding Existence as Co-existence of mutually interacting units in all-pervasive space - Holistic perception of harmony at all levels of existence.

UNIT-V

Implications of the above Holistic Understanding of Harmony on Professional Ethics: Natural acceptance of human values - Definitiveness of Ethical Human Conduct - Basic for Humanistic Education - Humanistic Constitution and Humanistic Universal Order - Competence in professional ethics: Professional competence - People friendly and eco-friendly production systems - Appropriate technologies and management patterns for above production systems.

UNIT-VI

Case studies and Strategy: Case studies of typical holistic technologies, management models and production systems - Strategy for transition from the present state to Universal Human Order:

a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers

b. At the level of society: as mutually enriching institutions and organizations.

Text Books	TEXTBOOKS:
& Reference Books	 R R Gaur, R Asthana, G P Bagaria, "A Foundation Course in Human Values and Professional Ethics", 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1.
	REFERENCE BOOKS:
	 R R Gaur, R Asthana, G P Bagaria, "A Foundation Course in Human Values and Professional Ethics-Teachers' Manual" 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-53-2.
	2. A Nagaraj, "Jeevan Vidya Prakashan", Amarkantak "Jeevan Vidya: Ek Parichaya", 1999.
	 A.N. Tripathi, <i>"Human Values"</i>, New Age Intl. Publishers, New Delhi, 2004. Annie Leonard, <i>"The Story of Stuff (Book)"</i>. Free Press, Reprint edition, 2011.
	5. Mohandas Karamchand Gandhi, " <i>The Story of My Experiments with Truth</i> " Abhishek Publications, 1 st edition, 2020.
	6. E. F Schumacher, "Small is Beautiful: A Study of Economics as if People Mattered" RHUK publications; Latest edition, 1993.
	7. Cecile Andrews, "Small is Beautiful", New Society Publishers, 2006.
	 J C Kumarappa, "Economy of Permanence" Sarva Seva Sangh Prakashan, 2017. Pandit Sunderlal "Bharat Mein Angreji Raj", Publications Division, M/O Information & Broadcasting, Govt. of India, 2016.
	10. Dharampal, <i>"Rediscovering India"</i> 2004.
	11. Mohandas K. Gandhi, <i>"Hind Swaraj or Indian Home Rule"</i> International Printers, 1909.
	12. Abdul Kalam Azad Maulana, " <i>India Wins Freedom</i> " Orient Black Swan Publishers 1 st edition 1988.
	13. Romain Rolland, <i>"The Life of Vivekananda and the Universal Gospel"</i> Advaita Ashrama, India, 2 nd edition, 2010.
	14. Romain Rolland, "Gandhi", Srishti Publishers & Distributors, 2002.
E- Resources	 <u>https://aktu.ac.in/hvpe</u> <u>http://www.storyofstuff.com</u> <u>https://fdp-si.aicte-india.org/download.php#1</u>

N.B.K.R. INSTITUTE OF SCIENCE &TECHNOLOGY:: VIDYANAGAR (AUTONOMOUS)

CIVIL ENGINEERING

SCHEME OF INSTRUCTION AND EVALUATION

(With effect from the batch admitted in the academic year 2020-2021) **II YEAR OF FOUR YEAR B.TECH. DEGREE COURSE – I SEMESTER**

							Evaluation									
S.NO.	Course Code	Course Title	Contact Hours/ Week		Cred its	Sessional Test-I		Sessional Test-II		Total Sessional Marks (Max. 40)	Seme End Exar		Max. Total Marks			
		THEORY	L	Т	Р		Test-I (2 hrs.)	Assign ment-I	Max. Marks	Test-II (2 hrs.)	Assign ment-II	Max Marks		Duration In Hours	Max. Marks	
1	20SH2101	Engineering Mathematics-III	3	0	0	3	34	6	40	34	6	40	0.8(Better of two	3	60	100
2	20CE2101	Strength of materials	2	1	0	3	34	6	40	34	6	40	sessional tests)	3	60	100
3	20CE2102	Surveying	3	0	0	3	34	6	40	34	6	40	+	3	60	100
4	20CE2103	Geotechnical Engg I	2	1	0	3	34	6	40	34	6	40	0.2(Other)	3	60	100
5	20CE2104	Engg. Geology	3	0	0	3	34	6	40	34	6	40		3	60	100
		PRACTICALS														
1	20CE21P1	Surveying Lab	0	0	3	1.5	-	-	-	-	-	-	Day-to-day	3	60	100
2	20CE21P2	Engineering Geology Lab	0	0	3	1.5	-	-	-	-	-	-	Evaluation and a test	3	60	100
3.	20CE21P3	Strength of material Lab	0	0	3	1.5	-	-	-	-	-	-	(40 marks)	3	60	100
		SKILL ORIENT	ED C	OUI	RSE											
1	20SC2101	Basic computing skills	0	1	2	2	34	6	40	34	6	40	0.8(Better of two) + 0.2(Other)	3	60	100
TOTAL 21.5																

20CE2101 - STRENGTH OF MATERIALS (Civil Engineering)

Course Category	Professional Core	Credits	3
Course Type	Theory	Lecture - Tutorial -Practical	2 -1 -0
		Sessional Evaluation	40
Pre-requisite	Engineering Mechanics	Semester End Exam Evaluation	60
	wieenames	Total Marks	100

Course	1.	To understand the behavior of ductile and brittle materials under uni-										
Objectives	2.											
		stresses and strains and understand theories of failures.										
	3.	To construct shear force and bending moment diagrams of beams under										
		various loads and study the relationships among shear force, bending										
		moment and rate of loading.										
	4.	To apply the concept of theory of simple bending for calculating										
		flexural and shear stresses.										
	5.	5										
	6. To implement the concept of theory of pure torsion for calculating											
	stresses and understand the mechanical behavior of spring.											
Course	CO1											
Outcomes	loading.											
	CO2	Calculate the principal stresses and strains by analytical methods and										
	~ ~ ~ ~	also by Mohr's circle method.										
	CO3	Construct shear force and bending moment diagrams for various types										
	of beams under different types of loading.											
	CO4	5										
	~~~	across the cross-section due to shear force and bending moment.										
	CO5	Calculate hoop and longitudinal stresses and strains in thin and thick cylinders.										
	CO6	Calculate shear stress due to pure torsion and understand the mechanical behavior of spring.										
Course Content	UNIT – I SIMPLE STRESSES&STRAINS: Properties of materials - Ductile and brittle; Concept of stress; Types of stress; Types of strain - Normal strain, shear strain and volumetric strain; Stress-Strain curves - Ductile (mild steel, HYSD bars), brittle (Concrete); Hooke's law; Poisson's ratio; Volumetric strain- Derivation of expression for volumetric strain of rectangular bar and cylindrical bar subjected to axial loading; Relation between Young's modulus, shear modulus and bulk modulus; Analysis of prismatic bars subjected to axial loading- Uniform cross sections, varying sections and uniform tapering – circular, rectangular bars. Compound bars- Analysis of bars of composite sections. Factor of safety – Endurance limit. Introduction to thermal stresses – Analysis of thermal stresses – Expression for											

thermal stresses and strains in simple bars.

#### $\mathbf{UNIT} - \mathbf{II}$

**PRINCIPAL STRESSES:** Introduction to compound stresses; Methods of analysis – Application of analytical methods for the analysis of members subjected to direct stress in one plane, in two mutually perpendicular planes, subjected to simple shear stress alone and direct stresses in two mutually perpendicular planes accompanied by simple shear stress.

**INTRODUCTION TO GRAPHICAL METHOD**– Mohr's Circle-Application of graphical method for the above cases.

**INTRODUCTION TO THEORIES OF FAILURE** (No derivations).

#### UNIT –III

SHEAR FORCE AND BENDING MOMENT IN BEAMS: Concept of shear force and bending moment – Relation between shear force, bending moment and rate of loading at a section of beam; shear force and bending moment diagrams for simply supported and cantilever beams subjected to point loads, uniformly distributed load, uniformly varying loads, couple and their combinations; Concept of point of contra flexure; shear force and bending moment diagrams of an overhanging beam subjected to point loads, uniformly distributed load, uniformly beam subjected to point loads, uniformly distributed load, uniformly beam subjected to point loads, uniformly distributed load, uniformly beam subjected to point loads, uniformly distributed load, uniformly varying loads, couple and their combinations.

#### UNIT –IV

**FLEXURAL AND SHEAR STRESSES IN BEAMS**: Concept of theory of simple bending; Assumptions made in simple bending – Derivation of pure bending (simple bending) equation. Introduction to shear stress – Derivation of equation for general shear stress; Shear stress distribution diagrams for rectangular, circular, I-section and T-sections; Bending stresses in unsymmetrical sections – I-section and T- sections;

Shear centre – Introduction - Derivation of expression for shear centre of Isection and Channel section.

#### UNIT –V

**CYLINDERS:** Introduction – Types of cylinders - thin cylinders - Expressions for hoop and longitudinal stresses - Efficiency of joints; Thick cylinders – Introduction - Lame's theorems – Assumptions – Derivation of expressions (internal and external pressure); Compound cylinders – Introduction – Distribution of stresses (internal and external pressure).

#### UNIT – VI

**TORSION OF CIRCULAR SHAFTS**: Theory of pure torsion - Assumptions made in pure torsion equation - Derivation of pure torsion expression for solid and hollow circular shafts; Transmission of power in solid circular shafts.

**SPRINGS:** Introduction –Types of springs – Expression for deflection of close and open coiled helical springs under axial loading; Concept of springs in series and parallel; Carriage/leaf springs - Introduction- Expression for deflection.

Textbooks	TEXTBOOKS:								
& Reference books	<ol> <li>S. Ramamrutham and R. Narayanan, <i>Strength of Materials</i>, Dhanpat Rai publishing house, 20th edition, 2020.</li> <li>R.K. Bansal, <i>A Textbook of Strength of Materials</i>, Laxmi Publications, 6st edition, 2019.</li> <li>Dr. H.J. Shah and S. B. Junnarkar, <i>Mechanics of Structures Vol-I</i>, Charotor Publishing house, 32ndedition, 2016.</li> </ol>								
	REFERENCE BOOKS:								
	<ol> <li>Timoshenko S, Strength of Materials Part 1 Elementary Theory and Problems, D. Van Nostrand Company Incorporated, 3rd edition, 2002.</li> <li>Vazirani and Ratwani, Analysis of structures Vol-I, Khanna Publishers, 17th edition, 2015.</li> <li>B.C. Punmia, SMTS-I, Strength of Materials, Laxmi Publications, 10th edition, 2019.</li> </ol>								

<b>CO-PO Mapping:</b> 3-Hig	h Mapping, 2-Moderate	Mapping, 1-Low	Mapping,Not Mapping
		, 11 apping, 1 20	inapping, itor inapping

	<b>PO1</b>	PO2	PO3	<b>PO4</b>	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	<b>PO10</b>	<b>PO11</b>	PO12
<b>CO1</b>	3	3	2	2	1	1	-	-	-	-	2	2
CO2	3	3	2	3	1	-	-	-	-	-	1	2
CO3	3	3	2	3	1	-	-	-	-	-	1	3
<b>CO4</b>	3	3	3	3	2	-	-	-	-	-	2	3
<b>CO5</b>	3	3	3	3	1	-	I	-	-	-	2	2
<b>CO6</b>	3	3	3	2	2	-	-	-	-	-	2	2

# 20CE2102 –SURVEYING

Course Category	Professional Core	Credits	3			
Course Type	ypeTheoryLecture - Tutorial - Practical					
		Sessional Evaluation	40			
Prerequisite	Mathematics	Semester End Exam. Evaluation	60			
		Total Marks	100			

Course Objectives	2. 3. 4.	To apply knowledge of mathematics, science and engineering for use of measurement techniques and basic equipment used in land surveying. To perform the operation of automatic level and recording observations, reduce levels, interpolation and plotting of contours. To outline various methods of angular measurements and perform traverse computations. To analyze the basics of curve setting and various methods of computing areas and volumes. To apply the principles, usage of total station and GPS in surveying. To apply the knowledge of surveying for setting-out works.
Course Outcomes	CO1	Outline chain and plane table surveying principles to record observations and make necessary calculations.
	CO2	
		and prepare contour maps using levelling data.
	CO3	Calculate azimuths, latitudes and departures, error of closure; adjust
		latitudes and departures and determine coordinates for a closed traverse
		using a prismatic compass and theodolite.
	CO4	Calculate the data required to set out horizontal and vertical curves.
		Calculate areas and volumes from survey data using mathematical
		principles.
	CO5	Operate a total station to measure distance, angles, and to calculate
		differences in elevation. Make GPS measurements and relate them to
		conventional surveying.
	CO6	Carryout setting-out for laying pipeline and tunneling.

	YINTE Y
Course Content	UNIT – I BASICS OF SURVEYING: Definition, principles, purpose of surveying, basic measurements – linear and angular - chain surveying - principle, methods and applications, pacing, ranging, chaining, selection of survey stations and lines, well-conditioned triangle, field book entries, scales-types and uses, plan and map – comparison, cross staff survey, plane table survey - principle, methods and errors. UNIT – II LEVELLING – Definition, principles, methods and classification of levelling, equipment and types of level instruments, recording observations and reduction of levels, calculation of gradient and plotting longitudinal and cross sections. CONTOURING – Contour interval, characteristics, uses; methods of locating contours, interpolation of contours.
	UNIT – III ANGULAR MEASUREMENTS: Compass surveying - bearings, meridians, directions, included angles, local attraction, dip and deflection, Theodolite surveying - measurements of horizontal and vertical angles, deflection angles. Traversing – methods, types, computations and checks for traverse. Tacheometry - principle, methods and determination of tacheometric constants.
	UNIT – IV CURVES: Types of curves, elements, methods of setting out of horizontal and vertical curves (only simple curves for examination). AREAS and VOLUMES: Area calculation- plotting of survey work, methods of area and volume computations, minor instruments.
	UNIT –V MODERN FIELD SURVEY SYSTEMS: Principle of electronic distance measurement, modulation, types of EDM instruments, distomat, Total Station – Parts of a total Station ,accessories, advantages and applications, field Procedure for total station survey, Errors in Total Station Survey, Global Positioning Systems-Segments, GPS measurements, errors and biases, Surveying with GPS, Co-ordinate transformation, accuracy considerations.
	<b>UNIT – VI</b> <b>CONSTRUCTION SURVEYS:</b> Introduction-staking out buildings-pipelines and sewers-highways-culverts. Bridge surveys-determining the length of bridge-locating centre's of piers- surface surveys and tunnel alignment- underground surveys-connection of surface and underground surveys-levelling in tunnels.
Textbooks and reference books:	<ol> <li>TEXTBOOKS:</li> <li>N. N. Basak, <i>Surveying and leveling</i>, McGraw Hill Education (India) Pvt. Ltd, 2nd edition, 2014.</li> <li>Dr. K.R. Arora <i>Surveying Vol-I, II and III</i>, Standard Book House, 17th edition, 2019.</li> <li>B. C. Punmia, Ashok K Jain and Arun K Jain, <i>Surveying Vol.I</i>, Laxmi Publications, 17th edition, 2018.</li> </ol>

## **REFERENCE BOOKS:**

- 1. C. Venkatramaiah, *Text Book of Surveying*, Universities Press, revised edition, 2011.
- 2. T. P. Kanetkar and S. V. Kulkarni, *Surveying and Levelling*, Pune Vidyarthi Griha Prakashan publishers, 2010.
- 3. A. M. Chandra, *Plane Surveying*, New Age International Ltd. Publishers, 3rdEdition, 2018.

CO-PO Mapping: 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, --Not Mapping

	PO 1	<b>PO 2</b>	<b>PO 3</b>	<b>PO 4</b>	PO 5	<b>PO 6</b>	<b>PO7</b>	<b>PO 8</b>	PO 9	PO 10	PO 11	PO 12
CO1	3	2	-	2	1	-	-	-	2	2	1	1
CO2	3	3	-	2	2	1	-	-	1	2	2	1
CO3	3	3	-	2	1	-	-	-	1	1	1	2
<b>CO4</b>	3	3	1	2	1	1	-	-	1	2	2	2
CO5	3	3	-	2	3	-	1	1	1	2	3	2
CO6	3	3	1	2	3	1	1	1	3	2	3	2

# <u> 19CE3103 – GEOTECHNICAL ENGINEERING-I</u>

Course Category	Professional Core	Credits	3
<b>Course Type</b>	Theory	Lecture - Tutorial - Practical	2-1-0
	Engineering Geology,	Sessional Evaluation	40
Prerequisite	Engineering Mechanics	Semester End Exam. Evaluation	60
	and Fluid Mechanics	Total Marks	100

Correct	1. To study the physical properties of call and their relations. 7	Гс										
Course Objectives	1. To study the physical properties of soil and their relations. T demonstrate the plasticity characteristics of the soil and classification of											
Objectives	soil by different systems.	01										
	2. To study the compaction characteristics of the soils. To understand the	he										
	stress distribution in soils due to external loads.	ne										
	<ol> <li>To illustrate the concept of total stress and effective stress and to stu the hydraulic properties of soils</li> </ol>											
	4. To study flownets under different hydraulic structures											
	5. To describe the deformation characteristics of soil.											
	6. To study the strength characteristics of soil under load.											
Course	Determine basic soil properties and classify the soil as per relevant	IS										
Outcomes	CO1 codes.											
	Determine OMC and MDD for Light and Heavy compaction. Calcula	ite										
	CO2 vertical stresses at any point in the soil for various types of loadings.											
	Evaluate effective stress under different flow conditions and plot stress	ss										
	CO3 distribution diagrams. Determine the permeability of soils.											
	CO4 Sketch flownets under different hydraulic structures and compute flo	W										
	parameters.											
	Understand the basics of soil consolidation and be able to deriv	ve										
	CO5 Terzaghi's 1D equation. Be able to calculate consolidation stresses ar	nd										
	settlements.											
	Evaluate Mohr-Coulomb failure criteria for shear strength and calcula											
	CO6 the shear parameters from different types of tests and under different	nt										
	drainage conditions.											
	UNIT - I											
	PHYSICAL PROPERTIES OF SOILS: Introduction -Soil as a 3-phase											
	system –Fundamental relationships by volume and weight - Index propertie											
	of soils – Sieve analysis – Sedimentation analysis – Atterberg limits ar	na										
	density index. IDENTIFICATION AND CLASSIFICATION OF SOILS: Tests for fie	14										
	identification and classification of soils – Textural classification, Unified so											
	classification and Indian Standard classification systems.	Л										
Course	sussification and motuli standard classification systems.											
Content	UNIT - II											
	<b>COMPACTION OF SOIL:</b> Introduction, theory of compaction, laborator	***										
	determination of optimum moisture content and maximum dry density	•										
		-										
	Compaction in field, compaction specifications and field control.	1										
	STRESS DISTRIBUTION IN SOILS: Boussinesq's equation – Vertic											
	stress due to line load, strip load, and uniformly loaded circular area											
	Newmark's chart – Westergard's approach – Pressure bulb concept	—										

	Approvimate methods
	Approximate methods.
	UNIT - III EFFECTIVE STRESS PRINCIPLE: Introduction offective stress
	<b>EFFECTIVE STRESS PRINCIPLE:</b> Introduction - effective stress
	principle, nature of effective stress, effect of water table – Fluctuations of
	effective stress, effective stress in soils saturated by capillary action, seepage
	pressure and quick sand condition.
	<b>PERMEABILITY OF SOIL:</b> Introduction - Darcy's law, validity of Darcy's
	law – Determination of coefficient of permeability - constant head, falling
	head method – pumping-in test, pumping - out test – Permeability aspects -
	permeability of stratified soils, factors affecting permeability of soil.
	UNIT - IV
	SEEPAGE ANALYSIS: Introduction, Laplace equation, characteristics of
	flow nets, uses of flow nets - Determination of discharge, total head, pressure
	head, uplift pressure, hydraulic gradient and critical hydraulic gradient, types
	of piping failure, prevention of piping failure – Flow net in earth dams with
	and without horizontal filters.
	UNIT - V
	CONSOLIDATION OF SOIL: Introduction, comparison between
	compaction and consolidation, initial, primary & secondary consolidation,
	spring analogy for primary consolidation, consolidation test results, basic
	definitions - Terzaghi's theory of consolidation, coefficient of consolidation -
	square root of time method and logarithm of time method - preconsolidation
	pressure - final settlement of soil deposits - consolidation settlement - one-
	dimensional method, secondary consolidation.
	UNIT - VI
	SHEAR STRENGTH: Mohr-Coulomb theory, types of shear test - direct
	shear test, triaxial compression tests, UU, CU and CD tests, relation between
	major and minor principal stresses, unconfined compression test, vane shear
	test, skemptons pore pressure parameters.
	TEXTBOOKS:
Textbooks	1. A.S. Rao & Gopal Ranjan, <i>Basic and applied soil mechanics</i> , New Age
and	International publishers, 3 rd edition, 2016.
Reference Books	2. K.R. Arora, <i>Soil Mechanics and Foundation Engineering</i> , Standard publisher's distributions, 6 th edition, 2017.
DUUKS	3. B.C. Punmia, A. K. Jain & A. K. Jain, <i>Soil Mechanics and Foundation</i>
	<i>Engineering</i> , Laksmi publications, 17 th edition, 2017.
	<b>REFERENCE BOOKS:</b>
	1. B. M. Das, <i>Principles of Geotechnical Engineering</i> , Cengage learning,
	9 th edition, 2017.
	2. V.N.S. Murthy, Soil Mechanics and Foundation Engineering, CBS
	Publishers, 4 th edition, 2018.
	3. C. Venkatramaiah, <i>Geotechnical Engineering</i> , New Age International
	Private Limited, 5 th edition, 2017.

	<b>PO1</b>	PO2	PO3	<b>PO4</b>	<b>PO5</b>	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	<b>PO10</b>	PO11	PO12
CO1	3	3	-	1	1	-	-	-	-	-	1	2
CO2	2	3	-	2	2	-	-	-	1	1	1	2
<b>CO3</b>	2	2	1	1	1	-	-	-	-	-	1	1
<b>CO4</b>	3	2	1	2	-	-	-	-	-	-	1	1
CO5	3	2	1	2	1	-	-	-	1	-	1	2
<b>CO6</b>	3	2	1	2	1	-	-	-	1	-	1	2

**CO-PO Mapping:** 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

# 20CE2104 - ENGINEERING GEOLOGY

Course Category	Professional Core	Credits	3
Course Type	Theory	Lecture - Tutorial - Practical	3-0-0
Prerequisite	None	Sessional Evaluation	40
		Semester End Exam. Evaluation	60
		Total Marks	100

r	r	
Course	1.	To describe the basic concepts of geology and mineralogy.
Objectives	2.	To identify and describe physical properties of various rock types
		through basic concepts of petrology.
	3.	To classify various landforms of the earth through he concepts of
		geomorphology.
	4.	To contrast the basic concepts of structural geology, different
		geological structures and core logging to estimate rock quality.
	5.	To understand the general geological hazards and their mitigation.
	6.	
		civil engineering structures.
Course	CO1	Relate the importance of geology in civil engineering and identify
Outcomes	001	various minerals.
0		
	CO2	Recognize various types of rocks and their properties.
	CO3	Classify surface geological process and landforms of earth surface.
	CO4	Identify various geological structures to rate the quality of rock mass.
	CO5	Summarize the different geological hazards.
	CO6	Apply the geological concepts for suitable site selection of major civil engineering structures.
		UNIT - I
	INTR	<b>CODUCTION</b> : Branches of geology useful to Civil Engineering, Scope
	of ge	ological studies in GSI and NIRM, Role of engineering geologist in
	plann	ing, design and construction of civil engineering structural features.
	MIN	ERALOGY: Definition, Origin and Physical properties of minerals and
Course	mega	scopic identification of common rock forming, economic and clay
Content	miner	als.
		UNIT - II
	PETH	ROLOGY AND PROPERTIES OF ROCKS: Definition, origin (Rock
	cycle	, textures, structures and classification of igneous, sedimentary and
	metar	norphic rocks; Physical identification of acidic igneous rocks –Granite,
	Rhyo	lite; Basic igneous rocks –Gabbro, Dolerite and Basalt; Physical
	identi	fication of sedimentary rocks -Conglomerate, Breccia, Sandstone,
	•	

Mudstone and Shale, Limestone; Physical identification of metamorphic rocks –Gneiss, Schist, Slate, Marble and Quartzite.

Properties of rocks–Density, unit weight and porosity.

## UNIT - III

**PHYSICAL GEOLOGY:** Factors causing weathering, erosion and denudation; Soil as product of weathering and engineering consideration, its profile and types in India; Geomorphologic (landforms) features of various geological agents such as water falls, Gorges, River meanderings, Superficial deposits, alluvium, glacial deposits, laterite (engineering aspects), desert landforms, loess, residual deposits of clay with flints, solifluction deposits, mudflows, coastal deposits.

## UNIT - IV

**BASICS OF STRUCTURAL GEOLOGY:** Concept of rock deformation and plate tectonics; Geological Structural elements such as Dip and Strike; Fold-classification and nomenclature, Criteria for their recognition in the field. Faults - Classification, nomenclature and their recognition in the field; Types of joints, unconformity.

**Strength index measurements of rocks**: Rock Mass Rating (RMR) and Rock Quality Designation (RQD), Core logging, Calculation of true thickness and vertical thickness of bed rock.

## UNIT - V

## **GEOLOGICAL HAZARDS**:

Rock instability and slope movement, Concept of sliding blocks, Different controlling factors, Instability in vertical rock structures and measures to prevent collapse,Types of landslide and their prevention.

**Ground water:** Factors controlling water bearing capacity of rock – Pervious and impervious rocks and lowering of water table.

**Earthquake:** Magnitude and intensity of an earthquake, Seismic zones in India and its Importance in civil engineering.

## UNIT - VI

**GEOLOGICAL INVESTIGATION FOR DAMS, RESERVOIRS AND TUNNELS:** Required geological consideration for selecting dam (geological profile from catchment area to dam site, topography, slope, drainage system.), reservoir and tunnel site; Failure of Reservoir; Favorable & unfavorable conditions in different types of rocks in presence of various structural features, precautions to be taken to counteract unsuitable conditions for dams, reservoirs and tunnels. Two case studies on failure of dams due to ignorance of geological aspects.

	TEXTBOOKS:
Textbooks and Reference books	<ol> <li>ParbinSingh, Engineering and General Geology, S K Kataria&amp; Sons, 2013.</li> <li>P.C.Varghese, Engineering Geology for Civil Engineers, PHI Learning Private Ltd., 2012.</li> <li>SubinoyGangopadhyay, Engineering Geology, Oxford University Press, 2013.</li> </ol>
	<b>REFERENCE BOOKS:</b>
	<ol> <li>K.M.Bangar, Principles of Engineering Geology, Standard Publishers, 2020.</li> <li>N. W. Gokhale, A Manual of problems in structural geology, CBS Publishers, 2018.</li> <li>Dimitri P. Krynine and William R. Judd, Principles of Engineering Geology and Geotechnics, CBS Publishers and Distributers Private Ltd., 2018.</li> </ol>

**CO-PO Mapping:** 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

	<b>PO1</b>	<b>PO2</b>	<b>PO3</b>	<b>PO4</b>	<b>PO5</b>	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	<b>PO10</b>	PO11	<b>PO12</b>
CO1	1	2	-	-	-	1	-	-	-	-	-	1
CO2	-	-	-	-	-	-	1	-	2	-	-	-
<b>CO3</b>	2	-	-	2	-	2	-	-	-	-	-	-
<b>CO4</b>	-	2	-	-	-	-	-	-	-	-	1	1
CO5	-	-	-	1	-	-	3	-	-	-	-	2
<b>CO6</b>	-	-	-	2	-	-	-	1	2	1	-	-

# 20CE21P1 - SURVEYING LABORATORY

Course Category	Program core	Credits	1.5
Course Type	Laboratory	Lecture - Tutorial - Practical	0 - 0 - 3
Prerequisite	Surveying	Sessional Evaluation	40
		Semester End Exam Evaluation	60
		Total Marks	100

Course	To obta	in knowledge of various basic and advanced surveying equipment and								
Objective	their field applications.									
Course	CO1	Apply geometric and trigonometric principles for basic surveying								
Outcomes		calculations.								
	CO2	Measure elevations of points using auto level.								
	CO3	Measure elevations using Theodolite along with chain/tape and also carry out tacheometric surveying.								
	CO4	Construct a simple curve in field with survey instruments.								
	CO5	Demonstrate the application of total station instrument in basic engineering works.								
	CO6	Comprehend the use of advanced surveying instruments.								
Course Content	Demon compass EXER Determ EXER a) b) EXER a) P s	<ul> <li>CISE -1</li> <li>stration on conventional equipment such as chain, ranging rod, s, cross staff, Dumpy level etc.</li> <li>CISE -2</li> <li>ination of elevations of given points using auto level.</li> <li>CISE-3</li> <li>Determination of difference in elevation between two points using auto level.</li> <li>Locating a bench mark by fly levelling using auto level.</li> <li>CISE -4</li> <li>Plotting profile of given road section by obtaining longitudinal and cross sections using auto level.</li> <li>Plotting a contour map for the given area using auto level.</li> </ul>								

EXERCISE -5
Measurement of horizontal and vertical angles using theodolite
EXERCISE -6
Measurement of elevation and gradient between points by using tacheometry.
EXERCISE -7
Set out a simple curve by one theodolite method.
EXERCISE -8
Introduction and setting up of total station.
EXERCISE -9
a) Measurement of distance and direction using total station.
b) Measurement of area of given field using total station.
c) Measurement of height of an object in REM using total station.
EXERCISE -10
Setting out work using total station
DEMONSTRATION:
Introduction to advanced surveying instruments like hand held G.P.S, optical theodolite and electronic theodolite.

CO-PO Mapping: 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO7	PO 8	PO 9	PO 10	PO 11	PO 12
<b>CO1</b>	3	1	1	2	2	1	-	1	-	3	2	2
CO2	3	3	2	2	2	1	-	2	2	1	1	1
CO3	3	2	2	3	2	1	-	1	2	2	2	2
<b>CO4</b>	3	3	2	2	2	-	-	1	1	2	2	2
<b>CO5</b>	3	3	2	3	3	1	2	1	2	3	3	3
<b>CO6</b>	2	2	2	2	3	_	1	1	2	1	3	2

## 20CE21P2 - ENGINEERING GEOLOGY LABORATORY

		(CIVII	Engineering)							
<b>Course Categ</b>	gory	Professional Core	Credits	1.5						
<b>Course Type</b>		Laboratory	Lecture - Tutorial - Practical	0-0-3						
Prerequisite		Engineering	Sessional Evaluation	40						
		Geology	Semester End Exam Evaluation	60						
			Total Marks	100						
Course	To u	nderstand various geological aspects of minerals, rocks and landforms for								
<b>Objective</b> (s)	their	application in engineer	ring projects.							
Course Outcomes	C01	Identify the minerals	s using basic geologic classification syst	ems.						
Outcomes	CO2	-	ing basic geologic classification systems	5.						
	CO3	_	us landforms of the earth surface.							
	CO4	Calculate the element	nts of structural geology and thickness of	f rock						
		strata.								
	CO5	Study the structural elements of surface and subsurface strata.								
	CO6	Interpret various type	es of topographical and geological maps	5.						
Course Content	2 3 4 5 6 7 7	<ul> <li>Study of physical pr</li> <li>Identification of mir</li> <li>Identification of Roo</li> <li>Study of Dipping be</li> <li>Study of true dip, ap</li> <li>Three-point problem</li> <li>Study of geological <ol> <li>Horizont</li> <li>Dipping</li> <li>Dipping</li> <li>Folded b</li> <li>Folded b</li> <li>Faulted t</li> <li>Study of geological</li> </ol> </li> </ul>	herals cks eds and their thickness oparent dip and strike direction of beds on or Borehole problem maps of al beds beds beds beds with dyke eds beds h unconformity ion of outcrop models							
L	9	. Handheld GPS – De	emonstration.							

## (Civil Engineering)

# CO-PO Mapping: 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

	PO1	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	PO8	PO9	<b>PO10</b>	PO11	PO12
<b>CO1</b>	1	2	-	-	-	-	-	-	-	-	-	-
CO2	-	2	-	-	-	-	1	-	2	-	-	-
<b>CO3</b>	2	-	-	2	-	2	-	-	-	-	-	-
<b>CO4</b>	-	2	-	-	-	-	-	-	-	-	1	1
CO5	_	2	_	-	2	-	-	_	-	-	1	1
<b>CO6</b>	-	-	_	2	-	-	-	1	2	1	-	-

# **20CE21P3 - STRENGTH OF MATERIALS LABORATORY**

Course Category	Professional Core	Credits	1.5
Course Type	Laboratory	Lecture - Tutorial - Practical	0 - 0 - 3
Prerequisite	Strength of Materials	Sessional Evaluation	40
		Semester End Exam Evaluation	60
		Total Marks	100

Course Objectives		termine the characteristics of various materials and their behaviour used ldings and infrastructure.				
Course Outcomes	CO1	Determine the elastic modulus and flexural rigidity of various types of beams.				
	CO2	Evaluate the stiffness property of the spring.				
	CO3	Determine the strength and elastic modulus of various materials used in buildings and infrastructure.				
	CO4	Evaluate the hardness property of steel, copper and brass.				
	CO5	Compute the rigidity modulus of mild steel.				
	CO6	Evaluate the impact strength of mild steel.				
		LIST OF EXPERIMENTS				
	1.	Deflection test on fixed beam				
	2. Deflection test on simply supported beam					
	3.	Deflection test on over hanging beam				
Course	4.	Deflection test on close-coiled helical springs				
Content	5.	Tension test on mild steel bar				
	6.	a) Rockwell hardness test				
		b) Brinell hardness test				
	7.	Tension test on HYSD bar				
	8.	Torsion test				
	9.	Compression test on wood				
	10	). a) Direct shear test on mild steel bar				
		b) Charpy impact test				
		c) Izod impact test				

	<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	PO9	PO10	PO11	PO12
<b>CO1</b>	3	2	-	1	-	-	-	1	1	-	1	1
CO2	3	2	-	1	-	-	-	1	1	-	1	1
CO3	3	3	-	2	-	-	-	2	2	1	2	3
<b>CO4</b>	3	2	-	1	-	-	-	1	1	-	1	1
CO5	3	2	-	1	-	-	-	1	1	-	1	1
<b>CO6</b>	3	2	-	1	-	-	-	1	1	-	1	1

**CO-PO Mapping:** 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

# 20CE21SC - BASIC COMPUTING SKILLS

(Civil Engineering)										
<b>Course Category</b>	Skill oriented course	Credits	2							
Course Type	Theory and practical	Lecture - Tutorial - Practical	0-1-2							
		Sessional Evaluation	40							
Duonoquisito	None	Semester End Exam.	60							
Prerequisite	INOILE	Evaluation	00							
		Total Marks	100							

Course	To un	derstand the basic MS-Office (word, excel, power point) & Topographic								
<b>Objective</b> (s)	plottii	ng using appropriate software								
	CO1	Prepare professional documents using word.								
	CO2	Modify and formatting excel work sheet.								
Course	CO3	Perform mathematical calculations using excel.								
Outcomes	CO4	Calculate linear regression using excel template.								
	CO5	cquainted with user interface, map types, worksheet of software								
	CO6	Prepare 3D maps, contour maps and saving, exporting and printing								
		LIST OF EXPERIMENTS								
	1.	Creating professional documents using Word								
	2.	Management and archival of documents								
		Working with an Excel worksheet								
		Modifying and formatting a worksheet								
	5.	Performing calculations using Excel								
		a. Simple addition/subtraction/multiplication/division								
		b. Finding minimum and maximum values								
		c. Using Excel formula to compute partial correlation matrix								
		d. Calculate Frequency Distribution in Excel								
		e. Descriptive Statistics Using Excel								
		f. Normal Distribution Using Excel								
C		g. Compute Correlation Matrix								
Course		h. Compute partial correlation matrix								
Content	6	i. Calculating Simple Linear Regression - Excel Template								
	6. 7	Developing a workbook and printing workbook contents using Excel Presenting data using charts (Bar/column/scatter charts) using Excel								
		Creating and managing presentation using Power Point								
		Topographic plotting using appropriate software(QGIS/Surfer)								
	).	a. Introduction, User Interface, Map Types, Worksheet								
		b. Gridding, Advanced Gridding								
		c. 3D View								
		d. Contour Maps								
		e. 3D Surface Maps								
		f. Combining Maps								
		g. Map Properties								
		h. Saving, Exporting and Printing								
		$C_{i}$ $\Gamma_{i}$ $C_{i}$ $C_{i}$ $C_{i}$ $C_{i}$								

	<b>PO1</b>	PO2	PO3	<b>PO4</b>	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	<b>PO10</b>	<b>PO11</b>	<b>PO12</b>
<b>CO1</b>	1	-	-	-	2	1	1	-	2	-	1	-
CO2	2	-	1	1	3	-	-	-	2	-	2	2
CO3	1	-	1	-	3	-	-	-	2	-	1	-
<b>CO4</b>	2	-	-	-	3	1	-	-	3	-	2	-
CO5	1	-	-	-	2	-	-	-	2	-	1	-
<b>CO6</b>	2	1	1	-	3	1	2	-	2	-	3	2

**CO-PO Mapping:** 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, -- Not Mapping

## NBKR INSTITUTE OF SCIENCE &TECHNOLOGY:: VIDYANAGAR (AUTONOMOUS) CIVIL ENGINEERING SCHEME OF INSTRUCTION AND EVALUATION

(With effect from the batch admitted in the academic year 2020-2021) **II YEAR OF FOUR YEAR B.TECH. DEGREE COURSE – II SEMESTER** 

		Course Title		Contact Hours/ Week			Evaluation									
S.No.	Course Code					Cred- its	Sessional Test-I			Sessional Test-II			Total Sessional Marks (Max. 40)		Semester End Examination	
	code	THEORY	L	Т	Р		Test- I (2 hrs.)	Assignment- I	Max. Marks	Test- II (2 hrs.)	Assignment- II	Max. Marks	0.8(Better of two	Duration in Hours	Max. Marks	Total Marks
1	20CE2201	Fluid Mechanics	2	1	0	3	34	6	40	34	6	40	sessional	3	60	100
2	20CE2202	Structural Analysis	2	1	0	3	34	6	40	34	6	40	tests)	3	60	100
3	20CE2203	Geo. Tech. Engg - II	2	1	0	3	34	6	40	34	6	40	+	3	60	100
4	20CE2204	Transportation Engineering	3	0	0	3	34	6	40	34	6	40	0.2(Other)	3	60	100
5	20SH2201	Economics & Accountancy	3	0	0	3	34	6	40	34	6	40		3	60	100
		PRACTICALS														
1	20CE22P1	Fluid mechanics Lab	0	0	3	1.5	-	-	-	-	-	-	Day-to-day	3	60	100
2	20CE22P2	Geo. Tech Lab	0	0	3	1.5	-	-	-	-	-	-	Evaluation	3	60	100
3.	20CE22P3	Transportation Engg. Lab	0	0	3	1.5	-	-	-	-	-	-	and a test (40 marks)	3	60	100
		SKILL ORIENTED COUR	RSE													
1	20CE22SC	3D Modeling	0	1	2	2	34	6	40	34	6	40	0.8 (Better of two ) + 0.2(Other)	3	60	100
		MANDATORY														
1	20MC2101	Environmental Studies	2	0	0	0	34	6	40	34	6	40	0.8(Better of two) + 0.2(Other)	3	60	100
		TOTAL				21.5										

# 20CE2201 - FLUID MECHANICS

Course	Professional Core	Credits	3
Category			
Course Type	Theory	Lecture - Tutorial - Practical	2-1-0
Prerequisite	Engineering	Sessional Evaluation	40
	Mathematics, Engineering	Semester End Exam. Evaluation	60
	Physics.	Total Marks	100

Course	1.	To familiarize with various fluid properties and measurement of							
Objectives		pressure using manometers.							
	2.	To understand the concepts of pressure acting on submerged and							
		floating bodies.							
	3. To study the concepts of fluid motion.								
	4.	To imbibe the basic concepts of fluid dynamics and its applications.							
	5.	To know various energy losses in pipes which influencing the							
		efficiency of a pipe network.							
	6.	To understand the flow of fluid in pipes and in between two parallel							
		plates.							
Course	CO1	Determine the fluid properties, and fluid pressure in various conditions							
Outcomes		using manometers.							
	CO2								
		surfaces in floating and submerged conditions.							
	CO3	Determine the velocity and acceleration components of a fluid flow							
		relation between shear function and velocity potential.							
	CO4								
	CO5	Compute the losses and efficiency of pipe networks.							
	CO6	Analyze and apply the laminar and turbulent flow conditions for flow							
		through pipes.							
Course									
Content	DEEI	UNIT - I							
Content		NITIONS& BASIC CONCEPTS: Definition of fluid & solid; fluid							
		rties – density, specific weight, specific gravity, specific volume;							
		sity – kinematic and dynamic viscosity, Newton's law of viscosity,							
		ion of viscosity with temperature; concepts of - compressibility, bulk							
	modu	lus, surface tension, capillarity, vapour pressure and cavitation.							
	PRES	SSURE MEASUREMENT: Fluid pressure - fluid pressure at a point;							
		l's law; pressure variation in a fluid at a rest; types of fluid pressure –							
		ute, gauge, atmospheric & vacuum pressure; measurement of pressure –							
		meters, mechanical gauges; simple manometers- piezometer, U-tube							
		meter, single column manometer, differential manometers – U-tube							

differential manometer, inverted U-tube differential manometer.

## $\mathbf{UNIT}-\mathbf{II}$

**FLUID STATICS:** Total pressure and centre of pressure on – vertical plane surface, horizontal plane surface, inclined plane surface, curved plane surface; buoyancy, centre of buoyancy, meta-centre, meta-centric height equation, conditions of equilibrium of a floating & submerged bodies.

## UNIT – III

**FLUID KINEMATICS:** Methods of describing fluid motion; types of fluid flow; description of the flow patterns – streamline, stream tube, path line, streak line; basic principles of fluid flow- conservation of energy & momentum; continuity equation in Cartesian coordinates; velocity and acceleration – local & convective acceleration; velocity potential function and stream function, equipotential line, relationship between velocity potential function and stream function.

#### $\mathbf{UNIT} - \mathbf{IV}$

**FLUID DYNAMICS:** Equations of motion- Euler's equation of motion, Bernoulli's equation – assumptions, applications; impulse momentum equation; forces excreted by a flowing fluid on a pipe bend.

**ORIFICES, MOUTHPIECES, NOTCHES & WEIRS:** Types of orifice and mouthpiece; hydraulic coefficients; classification of notches & weirs; discharge over rectangular and triangular notches.

#### $\mathbf{UNIT} - \mathbf{V}$

**ANALYSIS OF PIPE FLOW:** Reynolds experiment on pipe flow, loss of energy due to friction – Darcy-Weisbach equation; minor losses; hydraulic gradient line and total energy line; flow through syphon; pipes in series& parallel; equivalent pipe; branched pipes; water hammer in pipes – gradual closure of valve, sudden closure of valve in rigid and elastic pipes, control measures.

#### **UNIT VI**

**LAMINAR & TURBULENT FLUID FLOW IN PIPES:** Flow of incompressible fluid through circular pipe and between two rigid parallel plates – velocity distribution, ratio of maximum to average velocity, drop of pressure, shear stress distributions for given length of pipe. Coefficient of friction in terms of shear stress, shear stress in turbulent flow, Prandtl's mixing length theory.

#### **TEXTBOOKS:**

Textbooks and

- Reference<br/>books1. Dr. P.N. Modi, Dr. S.M. Seth, Hydraulics and Fluid Mechanics<br/>Including Hydraulics Machine, Standard Book House, 21stEdition,<br/>2017.
  - 2. R.K. Bansal, A Textbook of Fluid Mechanics and Hydraulic Machines,

	Laxmi Publications, 10 th Edition, 2019.
	3. A. K. Jain Fluid Mechanics including Hydraulic Machines, Khanna
	Publications, 2016.
REI	FERENCE BOOKS:
	1. Frank M White, <i>Fluid Mechanics in SI Units</i> , McGraw Hill Education India Private Limited, 8 th Edition, 2017.
	<ol> <li>Yunus A. Cengel, Dr. John M. Cimbala, <i>Fluid Mechanics:</i> <i>Fundamentals and Applications</i>, McGraw-Hill Education India Private Limited, 4thEdition, 2018.</li> </ol>
	<ol> <li>Okiishi, Hubesh and Rothmayer, <i>Fluid Mechanics</i>, Munson Johnwiley Publications, 7thEdition, 2017.</li> </ol>

CO-PO Mapping: 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

	<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	PO9	<b>PO10</b>	PO11	PO12
CO1	3	2	-	1	1	-	-	-	1	-	2	2
CO2	3	1	-	2	1	-	-	-	1	1	2	2
CO3	3	2	-	3	1	-	-	-	2	-	2	2
<b>CO4</b>	3	2	1	2	1	-	-	-	2	1	2	2
CO5	3	3	3	3	2	-	-	-	-	1	3	2
<b>CO6</b>	3	2	2	2	2	-	-	-	2	-	2	2

# 20CE2202 - STRUCTURAL ANALYSIS

Course Category	Professional Core	Credits	3
Course Type	Theory	Lecture - Tutorial - Practical	2-1-0
Prerequisite	Engineering	Sessional Evaluation	40
	Mechanics and Strength of	Semester End Exam Evaluation	60
	Materials	Total Marks	100

Course	1. T	o apply the various methods for calculating slope and deflection of							
Objectives		eams under point and uniformly distributed loads.							
		o calculate the crippling load of columns for different end conditions							
	subjected to axial load and moments and estimate stresses in sections								
		subjected to direct load and bending moment.							
		ropped cantilever and fixed beams under various loading conditions							
	-	cluding the effect of sinking of supports.							
		o analyze and draw the shear force and bending moment diagrams of							
		ontinuous beams using Clapeyron's theorem of three moments.							
	5. T	o understand the concept of energy theorems and calculate the slope and							
	de	eflection of beams and trusses.							
	6. To	o calculate the support reactions, shear force, and bending moment of							
	de	eterminate structures using influence line diagram method.							
Course	CO1	Determine the slope and deflection of determinate beams under various							
Outcomes	CO1	loading conditions.							
	000	Analyze the columns subjected to different loading conditions and also							
	CO2	calculate the stresses subjected to direct load and bending moment.							
	<u> </u>	Calculate and draw shear force diagram and bending moment diagram							
	CO3	for propped cantilever and fixed beams.							
	CO4	Calculate and draw shear force diagram and bending moment diagram							
	C04	for continuous beams using Clapeyron's theorem.							
		Apply the energy theorems for determining slope and deflection of							
	CO5	beams and trusses.							
	CO6	Analyze determinate beams subjected to moving loads using influence line diagram method.							
		UNIT – I							
	SLOPE AND DEFLECTION OF STATICALLY DETERMINATE								
Course	<b>BEAMS:</b> Relationship between curvature, slope and deflection (Differential								
Course	equation for elastic line of a beam) –Slope and deflection of cantilevers and								
Content	simply	y supported beams by double integration method, Macaulay's method,							
	mome	ent area method and conjugate beam method for point loads, uniformly							
	distrib	outed loads and combination of these loads.							

## UNIT – II

**COLUMNS:** Introduction – Unsupported and effective lengths of columns – Slenderness ratio – Types of columns – Types of failure of columns – Crippling load - Assumptions made in Euler's theory – Expressions for Euler's crippling load of columns for various end conditions - limitations of Euler's theory.

**DIRECT AND BENDING STRESSES:** Stresses under the combined action of direct loading and bending moment – Core of a section – Circular and rectangular (solid and hollow).

### UNIT – III

### ANALYSIS OF STATICALLY INDETERMINATE BEAMS:

**PROPPED CANTILEVER BEAMS:** Analysis of propped cantilevers for point loads and uniformly distributed loads– Shear force and bending moment diagrams.

**FIXED BEAMS**: Analysis of fixed beams for point loads, uniformly distributed loads, uniformly varying load, shear force and bending moment diagrams– Effect of sinking of supports.

## $\mathbf{UNIT} - \mathbf{IV}$

**ANALYSIS OF CONTINUOUS BEAMS**: Introduction – Clapeyron's theorem of three moments – Analysis of continuous beams with constant moment of inertia with one or both ends fixed – Continuous beam with overhang – Effect of sinking of supports – Shear force and bending moment diagrams.

#### UNIT – V

**ENERGY THEOREMS**: Strain energy due to axial load, bending moment and shear force – Castigliano's first theorem for beams – Castigliano's second theorem for indeterminate trusses.

#### UNIT – VI

**INFLUENCE LINES:** Influence lines for reactions, shear force and bending moment for determinate structures – Maximum shear force and bending moment for single, two and multipoint loads – UDL longer than span - UDL shorter than span and EUDL.

Textbooks and Reference books	<ul> <li><b>TEXTBOOKS:</b></li> <li>1. T.S. Thandavamoorthy, <i>Structural Analysis</i>, Oxford University Press, 1st edition, 2011.</li> <li>2. R. Vaidyanathan, Dr. P. Perumal, <i>Structural Analysis</i>, Laxmi Publications, 3rd (Revised) edition, 2019.</li> <li>3. R.K. Bansal, <i>A Text Book of Strength of Materials</i>, Laxmi Publications, 6th edition, 2019.</li> </ul>
	<ul> <li>REFERENCE BOOKS:</li> <li>1. G.S. Pandit, S.P. Gupta, R. Gupta, <i>Theory of Structures</i>, Vol.I, McGraw Hill Publications.</li> <li>2. C.K.Wang, <i>Intermediate Structural Analysis</i>, McGraw Hill Education, Indian edition, 2017.</li> <li>3. V. N. Vazirani and M. M. Ratwani, <i>Analysis of Structures Vol. I &amp; II</i>, Khanna Publishers, 17th edition, 2016.</li> </ul>

CO-PO Mapping: 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

	<b>PO1</b>	PO2	PO3	<b>PO4</b>	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	<b>PO10</b>	<b>PO11</b>	<b>PO12</b>
<b>CO1</b>	2	-	-	-	-	-	-	1	-	-	-	1
CO2	2	2	-	1	-	-	-	1	-	-	1	1
CO3	2	2	-	1	-	-	-	1	-	-	1	1
<b>CO4</b>	2	2	-	1	-	-	-	1	-	-	1	1
CO5	3	-	-	-	-	-	-	1	-	-	-	1
<b>CO6</b>	2	2	_	1	-	-	-	1	-	-	1	1

# <u>20CE2203 – GEOTECHNICAL ENGINEERING – II</u>

Course Category	Professional Core	Credits	3
Course Type	Theory	Lecture - Tutorial - Practical	2 - 1 - 0
Prerequisite	Geotechnical	Sessional Evaluation	40
	Engineering – I	Semester End Exam Evaluation	60
		Total Marks	100

	1	
Course Objectives	2. 3.	investigation reports. To study the bearing capacity of shallow foundations. To understand the design of pile foundation
Course	CO1	Analyze infinite and finite slopes.
Outcomes	CO2	Calculate earth pressure in various soils under different types of loading using analytical and graphical methods. Analyze stability of retaining walls.
	CO3	Understand the various methods of site exploration and write site investigation reports.
	CO4	Evaluate bearing capacity of shallow foundations.
	CO5	Compute pile load capacities of individual piles and design of pile groups
	CO6	Outline the basic concepts of caisson and well foundation.
	analys Tailor	<b>UNIT – I</b> <b>BILITY OF SLOPES:</b> Stability analysis of infinite slopes – Stability sis of finite slopes – Swedish circle method – Friction circle method – r's stability number and use of charts – Bishop's method - Improving ity of slopes.
Course Content	earth – Ran Rebha EAR Stabil retain	UNIT – II TH PRESSURES: Theories of lateral earth pressure – Active and passive pressures in cohesion less and cohesive soils (with and without surcharge) hkine's and Coulomb's earth pressure theories. Graphical methods due to ann and Culmann. TH RETAINING STRUCTURES: Types of retaining structures – ity consideration of gravity and cantilever retaining walls – Drainage in ing walls – Joints in retaining walls UNIT – III INVESTIGATIONS AND SUB-SOIL EXPLORATION: Site naissance – Depth of exploration – Lateral extent of exploration – Test pits

	<ul> <li>Auger borings – Wash borings – Soil sampling – Split – spoon sampler –</li> <li>Penetration tests – Geophysical methods – Seismic refraction and electrical resistivity methods – Sub soil investigation reports.</li> </ul>					
	UNIT – IV					
	<b>BEARING CAPACITY OF SHALLOW FOUNDATIONS :</b> Types of foundations – Depth of foundation – Terzaghi's bearing capacity equation – Bearing capacity of square, circular, rectangular and continuous footings – Meyerhof's theory – Skempton's method – Brinch Hansen's method – Effect of ground water table on bearing capacity – Bearing capacity from building codes - Types of settlements – Tolerable settlements – Settlement analysis.					
	<b>UNIT – V</b> <b>PILE FOUNDATIONS:</b> Classification of piles – Pile driving – Load carrying capacity of piles – Dynamic formulae – Static formulae – pile load tests – In situ penetration tests – Group action of piles – Negative skin friction.					
	UNIT – VI					
	<b>UNIT – VI</b> <b>CAISSONS</b> : Introduction – types of caissons – design and construction aspects of caissons – component parts of pneumatic caisson – Merits and demerits of pneumatic and floating caisson.					
	<b>WELL FOUNDATIONS:</b> Introduction – Different shapes of wells – Components of wells – Functions - depth of well foundation – forces acting on a well foundation – construction and sinking of wells – Tilts and shifts.					
	TEXTBOOKS:					
Textbooks and References	<ol> <li>A.S. Rao &amp; Gopal Ranjan, <i>Basic and applied soil mechanics</i>, New Age International Publishers, 3rd edition, 2016.</li> <li>K. R. Arora, <i>Soil Mechanics and Foundation Engineering</i>, Standard Book House, 7th edition, 2018.</li> </ol>					
	3. B.C. Punmia, A. K. Jain & A. K. Jain, <i>Soil Mechanics and Foundation Engineering</i> , Laksmi publications, 17 th edition, 2017.					
	DEFEDENCE DOOKS.					
	<b>REFERENCE BOOKS:</b> 1. B. M. Das, <i>Principles of Geotechnical Engineering</i> , Cengage					
	learning, 9 th edition, 2017.					
	2. V.N.S. Murthy, Soil Mechanics and Foundation Engineering, CBS					
	Publishers, 4 th edition, 2018.					
	3. C. Venkatramaiah, <i>Geotechnical Engineering</i> , New Age International Private Limited, 5 th edition, 2017.					
CO-PO Ma	pping: 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping,Not Mapping					

	<b>PO1</b>	PO2	PO3	<b>PO4</b>	<b>PO5</b>	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10	PO11	PO12
CO1	3	3	2	3	2	1	2	-	-	-	2	2
CO2	2	1	2	2	2	1	1	-	1	-	1	2
CO3	2	-	1	2	2	-	-	-	-	-	2	2
<b>CO4</b>	3	3	3	2	3	-	-	-	-	-	2	2
CO5	3	3	3	2	3	-	-	-	_	_	2	2
<b>CO6</b>	2	3	2	2	3	2	-	-	-	2	2	3

# 20CE2204- TRANSPORTATION ENGINEERING (Civil Engineering)

Course Cate	gory	Professional Core	Credits	3					
Course Type		Theory	Lecture - Tutorial - Practical	2-1-0					
Prerequisite		None	Sessional Evaluation	40					
			Semester End Exam. Evaluation	60					
			Total Marks	100					
Course	1	. To demonstrate the	importance of transportation engineering	ng along					
Objectives		with the basics of highway alignment.							
		2. To analyze various highway geometrical elements.							
	3.	3. To outline the properties of bitumen and aggregate in pavement							
	Δ	construction.	avements and rigid pavements						
		<ul><li>To design flexible pavements and rigid pavements.</li><li>To summarize methods of construction and maintenance of pavements.</li></ul>							
6		=							
		devices.							
Course	CO1	Outline the scope and functions of transportation engineering along							
Outcomes		with the concepts of highway alignment.							
	CO2	Analyze and relate highway geometric elements such as super							
	CO2	elevation, sight distances, horizontal alignment and vertical curves. Perform tests on bitumen and aggregate for assessing their properties							
	CO3		bility as highway construction material						
	CO4		ements and rigid pavements						
			truction and maintenance procedures of	f bituminous					
	CO5	and cement concrete	pavements.						
	CO6	Perform different typ of traffic control dev	pes of Traffic studies and understand di	fferent types					
			UNIT - I						
	HIGHWAY ENGINEERING: Importance of transportation, Modes of								
	transportation, Characteristics of road transport, Classification of roads,								
	Highway alignment – Basic requirements – Controlling factors – Master plan								
	and its phasing, problems on saturation system concept.								
Course	UNIT - II								
Content	GEOMETRIC DESIGN: Highway cross sectional elements - camber, width								
	of pavement, kerbs, road margins, formation width, right of way, Sight								
	distance – types, PIEV theory, factors affecting sight distance, design of sight								
	distance, Pavement surface characteristics, Horizontal alignment - design								
	speed, super elevation, extra widening, Curves - types of curves, elements of curves, length of transition curve, Gradient, Vertical curves – Types of summit curves, length of summit curve - problems - Types of valley curves,								
	length of valley curves –problems.								
	шет	IWAV MATEDIAL	UNIT - III S: Aggregates and bitumen Desirabl	a proportion					
			S: Aggregates and bitumen – Desirabl						
tests on aggregate- crushing test, impact test, angularity number test, index test, elongation index test, specific gravity and water absorption									
		-	n bitumen- specific gravity test, ductility test, softening point test,						
	rests	on onumen- specific	gravity test, ductinity test, softening	g point test,					

	penetration test, flash and fire point test, types of bitumen, desirable properties				
	of bituminous mix – Marshall method of bituminous mix design				
	UNIT - IV				
	<b>DESIGN OF FLEXIBLE PAVEMENTS</b> : Types of pavements - components and their functions, Comparison of flexible and rigid pavements, Design of flexible pavements – design factors, group index method and IRC method based on CBR value.				
	<b>DESIGN OF RIGID PAVEMENTS:</b> Material for rigid pavement and their requirements, Design of rigid pavements -westergaard's stress equations and problems, critical combination of stresses, types of joints – problems on spacing of joints, joint filler materials, joint sealer materials.				
	UNIT - V				
	CONSTRUCTION OF PAVEMENTS: Construction and maintenance of Bituminous pavements – types of bituminous construction, interface treatment Bituminous surface dressing - seal coat, tack coat, prime coat, built-up spray grout- Premix methods, Bituminous macadam- penetration macadam bituminous concrete, sheet asphalt, mastic asphalt, Cement concrete pavements - dry lean concrete, paving quality concrete - Construction procedure, tie bars and dowel bars, methods of construction – continuous bay method and alternate bay method. UNIT - VI TRAFFIC ENGINEERING: Road user and vehicular characteristics, Traffic studies - volume, speed, origin and destination, parking & accident studies (uses, field procedure and presentation of data only), PCU values, types of traffic signs, road markings, traffic signals, signal indications – signal face and				
Textbooks and Reference Books	<ul> <li>types of traffic signal systems.</li> <li><b>TEXTBOOKS:</b> <ol> <li>S.K. Khanna and C.E.GJusto &amp; Veeraraghavulu, "Highway Engineering", Nemchand &amp;bros, 10th edition, 2018.</li> <li>Dr. L.R Kadiyali, "Principles and Practice of Highway Engineering" Khanna publishers, 7th edition, 2019.</li> <li>C.Venkatramaiah, "Transportation Engineering Vol. I", Universities Press (India) Private Ltd, 1st edition, 2016.</li> </ol></li></ul>				
	<ul> <li>REFERENCE BOOKS:</li> <li>1. Dr. L.R Kadiyali, "Traffic engineering and Transport planning", Khanna publishers, 9th edition, 2017.</li> <li>2. Guidelines for the Design of flexible pavements, IRC:37-2001.</li> <li>3. Guidelines for the Design of rigid pavements for highways, IRC:58- 1988.</li> </ul>				

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	2	1	1	1	2	3	1	-	1	2	1	-
CO2	3	2	2	3	2	-	1	-	2	2	1	1
CO3	1	3	-	1	1	-	-	-	1	2	1	2
<b>CO4</b>	3	1	2	2	1	-	1	2	2	2	2	2
CO5	1	-	2	2	3	-	1	-	1	1	2	1
<b>CO6</b>	2	3	2	1	2	_	1	2	_	3	2	1

**CO-PO Mapping:** 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

# 20CE22P1 - FLUID MECHANICS LABORATORY

Course Category	Professional Core	Credits	1.5
Course Type	Laboratory	Lecture - Tutorial - Practical	0-0-3
Prerequisite	Fluid Mechanics	Sessional Evaluation	40
		Semester End Exam. Evaluation	60
		Total Marks	100

Course Objective(s)		npart knowledge of evaluating various flow measuring devices and alic machines.											
Course	CO1	Calibration of orifice and mouthpiece.											
Outcomes	CO2	Determination of efficiency of notches, venturimeter and orifice meter.											
	CO3	Evaluate the major and minor losses in pipe network.											
	CO4	Evaluate the performance characteristics of pump.											
	CO5	1											
	CO6												
Course Content		LIST OF EXPERIMENTS PERIMENTS ON CALIBRATION OF a. Orifice b. Mouth piece c. Notch d. Venturimeter e. Orifice meter f. Bend meter g. Friction loss through a pipe h. Gate valve i. Bend loss j. Sudden contraction k. Sudden Expansion l. Open channel EXPERIMENTS ON PERFORMANCE CHARACTERISTICS OF A. Turbines b. Pumps											

	PO1	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10	PO11	PO12
CO1	3	2	1	2	2	-	-	-	1	2	1	1
CO2	3	3	2	2	1	-	-	-	1	3	1	2
CO3	3	3	1	1	1	-	-	-	1	2	2	1
CO4	3	2	1	2	2	2	-	-	1	2	2	1
CO5	3	3	2	2	1	2	-	-	1	3	1	2
CO6	3	2	1	2	2	-	-	-	1	2	1	1

**CO-PO Mapping:** 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

# 20CE22P2 – GEOTECHNICAL ENGINEERING LABORATORY

Course Cate	egory	Professional Core	Credits	1.5							
Course Typ	e	Practical	Lecture - Tutorial - Practical	0 - 0 - 3							
Prerequisite	9	Geo technical	Sessional Evaluation	40							
		engineering-I	Semester End Exam Evaluation	60							
			Total Marks	100							
Course Objectives	To det	termine the engineerir	ng properties of soil in the field and lab	ooratory							
Course	CO1	Determine index	properties of soils and classify them.								
Outcomes	CO2	CO2 Determine the compaction characteristics.									
	CO3										
	CO4		lifornia Bearing Ratio value.								
	CO5 CO6		ear parameters of the soil. ibution of soil particles by sedimentati	on process							
	00		LIST OF EXPERIMENTS	on process.							
	1.	-									
	1.	(b) Grain Size Distribution by Sieve Analysis.									
	2	<ol> <li>(a) Determination of Liquid Limit &amp; Plastic Limit.</li> </ol>									
	(b) Determination of Shrinkage Limit.										
	3. (a) In-Situ density by core cutter method.										
	5.	(b) In-Situ density by Sand replacement method.									
Course	4.										
Content	5.	• •									
	6.	Direct Shear test									
	7.										
			rmeability by Falling Head method.								
	8	Triaxial shear test (U									
			efficient of consolidation.								
		. Hydrometer Analysi									
		EMONSTRATION									
		Plate Load cone App	naratus								
	2.		paratus								
CO DO Ma			Inderate Manning 1-Low Manning	NT-4 Manualina							

CO-PO Mapping: 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

	<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	PO8	PO9	<b>PO10</b>	<b>PO11</b>	<b>PO12</b>
<b>CO1</b>	3	3	2	2	1	-	-	-	1	1	1	1
CO2	3	3	2	2	1	-	-	-	1	1	1	1
CO3	3	3	2	2	1	-	-	-	1	1	1	1
<b>CO4</b>	3	3	2	2	1	-	-	-	1	1	1	1
CO5	3	3	2	2	1	_	_	_	1	1	1	1
<b>CO6</b>	3	3	2	2	1	-	-	-	1	1	1	1

# 20CE22P3 – TRANSPORTATIONENGINEERING LABORATORY

Course Cate	gory	Professional Core	Credits	1.5								
Course Type		Laboratory	Lecture - Tutorial - Practical	0 - 0 - 3								
Prerequisite		Transportation	Sessional Evaluation	40								
		Engineering	Semester End Exam Evaluation	60								
			Total Marks	100								
Course Objectives	1. 2.	construction works.	y of bitumen and its suitability ocedure of aggregate and to judge its naterial.									
Course	CO1	Determine water absorp	otion percentage of road aggregates.									
Outcomes	CO2	Evaluate the toughness highway construction.	s property of the aggregate and its	suitability for								
	CO3											
	CO4	4 Determine temperature suspect ability of paving grade bitumen.										
	CO5	Determine penetration	value of bitumen.									
	CO6	Assess the quality of bi	tumen and bituminous mix.									
Course Content	1. 2. 3. 4. 5. 6. 7.	<b>TS ON AGGREGATES</b> Specific Gravity and W Aggregate Impact Test Elongation Index Test Flakiness Index Test Angularity Number Te	est									

13. Viscosity test
14. Demonstration on Marshall method of mix design

**CO-PO Mapping:** 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	1	2	2	2	-	-	2	1	2	2	2
CO2	2	3	1	1	2	2	-	-	2	1	3	2
CO3	2	2	1	1	2	-	-	1	1	1	1	1
<b>CO4</b>	2	1	2	2	2	-	-	2	1	2	2	2
CO5	2	3	1	1	2	2	_	_	2	1	3	2
CO6	2	2	1	1	2	-	-	1	1	1	1	1

## 20CE22SC -3D MODELLING

	(ervir Eligi		
Course Category	Skill oriented course	Credits	2
Course Type	Theory and practical	Lecture - Tutorial - Practical	1-0-2
		Sessional Evaluation	40
Prerequisite	None	Semester End Exam. Evaluation	60
		Total Marks	100

Course Objective(s)	1.	To introduce the 3D modelling, navigating and 3D view commands in AUTOCAD.							
Objective(s)		To make use of Extrude, Press pull, Revolve and Sweep Commands. To develop editing and visualizing solids by using various							
	4.	operational commands. To illustrate the User Coordinate system and originating 2D layout							
		from 3D drawings. To explain about various tools of making basic surfaces. To study about creation and saving renderings and to produce Walkthrough videos.							
	CO1	Know about 3D modelling, navigating and 3D view commands in AUTOCAD							
	CO2 Be aware of Extrude, Press pull, Revolve and Sweep Commands.								
Course Outcomes	CO3	D3 Demonstrate about editing and visualizing the solids							
Outcomes	CO4	Acknowledge the User Coordinate system							
	CO5	Comprehend the making of basic surfaces using tools.							
	CO6	Generating the walk through videos.							
		LIST OF EXPERIMENTS							
	1.	Introduction to 3D solid modelling, navigating to workspace and 3D view							
		Commands.							
	2.	Extrude, Press pull, Revolve and Sweep Commands.							
Course	3.	Editing and visualizing solids using Boolean operation, fillet, chamfer,							
Content		extrude, taper, move face, 3D Array.							
	4.	Understanding the UCS (User Coordinate system) and creating 2D layout from 3D drawings.							
	5.	Making basic surfaces using Patch, Fillet, Offset and surface blend tool							
	6.	Creating, saving renderings and making walkthrough video.							

**CO-PO Mapping:** 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - - Not Mapping

	<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10	PO11	PO12
CO1	1	-	-	-	2	1	1	-	2	-	1	-
CO2	2	-	1	1	3	-	-	-	2	-	2	2
CO3	1	-	1	-	3	-	-	-	2	-	1	-
CO4	2	-	-	-	3	1	-	-	3	-	2	-
CO5	1	-	-	-	2	-	-	-	2	-	1	-
CO6	2	1	1	-	3	1	2	-	2	-	3	2

#### N.B.K.R. INSTITUTE OF SCIENCE & TECHNOLOGY:: VIDYANAGAR

#### (AUTONOMOUS)

#### CIVIL ENGINEERING SCHEME OF INSTRUCTION AND EVALUATION

(With effect from the batch admitted in the academic year 2020-2021)

#### III YEAR OF FOUR YEAR B.TECH. DEGREE COURSE - I SEMESTER

											Eval	uation				
S.N O	Course	Course Title THEORY		Contact Hours/ Week		Credi	Sessional Test-I				Sessional Test-II			Seme Ene Examin	d	Max. Total
	Code			T P		Test-I (2 hrs.)	Assign ment-I	Max. Marks	Test-II (2 hrs.)	Assign ment-II	Max. Marks	0.8(Better	Durati on In Hours	Max Mar ks	Mark s	
1	20CE3101	Elemental Design of RC structures	2	1	0	3	34	6	40	34	6	40	of two sessional	3	60	100
2	20CE3102	Concrete Technology	3	0	0	3	34	6	40	34	6	40	tests)	3	60	100
3	20CE3103	Steel Structural design 2 1 0		0	3	34	6	40	34	6	40	+	3	60	100	
		<b>OPEN ELECTIVE COU</b>	RSI	E / J	OB	<b>ORIEN</b> '	TED COU	JRSE					0.2(Other)			
4	20XX3101	Open Elective Course /Job Oriented Course *	3	0	0	3	34	6	40	34	6	40		3	60	100
5	20CE31EX	Professional Elective-I	3	0	0	3	34	6	40	34	6	40		3	60	100
		PRACTICALS											•			
1	20CE31P1	Concrete Technology Laboratory	0	0	3	1.5	-	-	-	-	-	-	Day-to-day	3	60	100
2	20CE31P2	CACED Lab	0	0	3	1.5	-	-	-	-	-	-	Evaluation	3	60	100
		SKILL ADVANCEDCO	URS	SE /	SOI	FT SKIL	L COUR	SE					and a test (40 marks)			
1	20CE31SC	Revit Architecture	0	0	4	2	-	-	-	-	-	-	· /	3	60	100
		MANDATORY COURS	Е										0.8(Better			
1	20MC3103	Advanced Aptitude and Reasoning Skills	2	0	0	0	34	6	40	34	6	40	of two) + 0.2(Other)	3	60	100
		INTERNSHIP:														
1	20CE31IS	Summer Internship (Community Service Projects)	0	0	0	1.5	-	-	-	-	-	-	40 marks	-	60	100
		TOTAL				21.5										
1	20xx31xx	Honors/Minor Course	Honors/Minor Course 4 0 0 4 The hours distribution can be 3-0-2 or 3-1-0 also													
Profess	ional Elective-I:	20CE31E1: Hydraulics & Hydraulic Machineries 20CE31E2: Ground Water Hydrology 20CE31E3: Traffic Engg. & Management 20CE31E4: Adv. Foundation Engg.														

 Professional Elective-I:
 20CE31E1: Hydraulics & Hydraulic Machineries
 20CE31E2: Ground Water Hydrology
 20CE31E3: Traffic Engg. & Management
 20CE31E4: Adv. Foundation Engg.

 * Any one of the open electives (III-I/III-II/IV-I) during the four year UG Programme may be taken by the students under MOOCs.
 20CE31E3: Traffic Engg. & Management
 20CE31E4: Adv. Foundation Engg.

# 20CE3101- ELEMENTAL DEISGN OF RC STRUCTURES

Course Category	Professional Core	Credits	3
Course Type	Theory	Lecture – Tutorial –Practical	2-1-0
Prerequisite	Strength of	Sessional Evaluation	40
	Materials	Semester End Exam. Evaluation	60
		Total Marks	100

Course Outcomes	CO1	Understand the design principles of reinforced concrete members and design singly reinforced, doubly reinforced and flanged beams for flexure.
	CO2	Design RC beams for shear, torsion and bond.
	CO3	Carry out design and detailing of different types of slabs and continuous beams.
	CO4	Carry out design and detailing of stair case and columns for various loading conditions.
	CO5	Carry out design and detailing of different types of isolated footings under axial load and Analyze reinforced concrete members for serviceability conditions.
	CO6	Analyze slabs using yield line theory.
		UNIT – I
Course Content	concr	<b>GN PRINCIPLES:</b> Basic design principles – Stress Strain curves of ete and steel – Characteristic strengths and loads – Partial safety factors – block – Various limit states.
	streng	<b>GN FOR FLEXURE:</b> Limit state of collapse in flexure – Ultimate flexural gth – Balanced, under and over – Reinforced sections – Design of singly and y reinforced rectangular beams – Design of flanged beams.
		UNIT – II
		<b>GN FOR SHEAR, TORSION AND BOND</b> : Shear-Truss analogy – n of beams for shear and torsion – Anchorage and development length.
		UNIT – III
	DESI	GN OF SLABS AND BEAMS: Design of one way and two way slabs –
	Desig	n of continuous beams and slabs.
		UNIT – IV

	<ul> <li>DESIGN OF COMPRESSION MEMBERS: Columns – Reduction factors – Axially loaded, eccentrically loaded columns – Uni-axial moment.</li> <li>DESIGN OF STAIRCASE: Types of staircase – Specifications – Design of doglegged stair case.</li> </ul>
	UNIT – V DESIGN OF FOUNDATIONS: Types of footings– Design of isolated (Square,
	Rectangular and Circular) footings subjected to axial load.
	<b>LIMIT STATES OF SERVICEABILITY:</b> Deflection (short and long term) – Cracking.
	UNIT – VI
	<b>YIELD LINE THEORY:</b> Introduction – Behavior of slab up to failure – Assumptions – Guidelines for predicting yield line pattern – Yield criterion – Methods of analysis and basic principles – Virtual work – Equilibrium method – Corner levers – Circular slabs.
	TEXTBOOKS:
Textbooks and	1. Dr. B. C. Punmia, Ashok Kumar Jain, Arun Kumar Jain, <i>RCC Designs</i> ( <i>Reinforced Concrete structures</i> ), Laxmi Publications, 10 th edition, 2019.
Reference books	<ol> <li>N. Krishna Raju, R. N. Pranesh, <i>Reinforced Concrete Design: IS: 456-2000 Principles and Practice</i>, New Age International (P) Ltd. Publishers, 1stedition, 2018.</li> </ol>
	3. Unni Krishna Pillai and Devdas Menon, <i>Reinforced Concrete Design</i> , Tata McGraw-Hill Educational Private Ltd., 3 rd edition, 2017.
	<b>REFERENCE BOOKS</b> :
	<ol> <li>S. N. Sinha, <i>Reinforced Concrete Design</i>, Tata McGraw-Hill Educational Private Ltd., 3rdedition, 2017.</li> </ol>
	<ol> <li>Dr. Ramchandra, <i>Reinforced Concrete Structures (Limit State Design)</i>, Raj sons Publications Pvt. Ltd, 3rdedition, 2014.</li> </ol>
	3. S. R. Karve & V. L. Shah, <i>Limit State Theory and Design of Reinforced Concrete</i> , Structures Publications, 8 th edition, 2014.

IMP: At the end of the course work, complete analysis and design of a RC building must be explained to the students using appropriate software. This should be followed by an exercise.

	P01	P02	P03	P04	P05	P06	707	804	60d	P010	P011	P012	PS01	PSO2	PSO3
CO1	3	1	3	2	2	2	-	2	-	-	-	2	2	-	1
CO2	3	1	3	2	2	2	-	1	-	-	-	2	2	-	1
CO3	3	2	3	2	2	2	-	2	-	-	-	3	2	-	1
<b>CO4</b>	3	1	3	2	2	2	-	2	-	-	-	3	2	-	1
CO5	3	1	3	1	2	2	-	2	-	-	-	2	2	-	1
CO6	3	1	2	1	1	2	-	3	-	-	-	2	1	-	1

**CO-PO Mapping:** 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

# 20CE3102 – CONCRETE TECHNOLOGY

Course Category	Professional Core	Credits:	3
Course Type	Theory	Lecture - Tutorial - Practical	3 - 0 - 0
Prerequisite	Building Materials &	Sessional Evaluation	40
	Construction	Semester End Exam	60
		Evaluation	
		Total Marks	100

Course	CO1	Identify various types of cements and admixtures.
Outcomes	CO2	Determine the properties of aggregates used in concrete.
	CO3	Identify the properties of concrete in the fresh state and Methods of curing.
	CO4	Perform destructive and non-destructive tests on concrete.
	CO5	Understand the durability requirements of concrete.
	CO6	Design the concrete mix using various codes and apply various special concretes for their specific applications.
Course Content	proper harder setting pozzo cemen ADM Accel corros admix CON aggreg conten Therm	UNIT-I ENT: Introduction – Chemical composition of cement – Physical rties of cement – Types of cement: Ordinary portland cement – Rapid ning cement – Sulphate resisting cement – Portland slag cement – Quick g cement – Super sulphated cement – Low heat cement – Portland lana cement – Air entraining cement– Coloured cement – High alumina nt – Masonry cement – Expansive cement – Oil well cement. IXTURES: Introduction – Classification: Plasticizers – Super plasticizers – erators – Retarders – Waterproofing admixtures – Colouring admixtures – sion inhibiting admixtures – Air entraining agents – Pozzolanic (mineral) tures: Fly-ash – Silica fume. UNIT – II CRETE AGGREGATES: Introduction – Classification: Heavy weight gates – Normal weight aggregates –Mechanical properties – Moisture nt and its effects – Deleterious substances – Alkali-aggregate reaction – nal properties – Grading curves and grading requirements – Gap-graded gate – Maximum aggregate size – Use of 'Plums' – Handling of aggregates.
	FRES	<b>UNIT – III</b> <b>SH CONCRETE:</b> Introduction – Workability – Factors affecting

	workability – Measurement of workability – Comparison of workability tests – Segregation – Bleeding – Mixing of concrete – Concrete mixers – Vibration of concrete – Types of vibrators – Ready mixed concrete – Pumped concrete –Pre- packed concrete and Vacuum processed concrete. <b>CURING OF CONCRETE:</b> Introduction – Curing conditions – Methods of curing – Influence of temperature – Steam curing at atmospheric pressure – High pressure steam curing.
	<b>UNIT – IV</b> <b>HARDENED CONCRETE:</b> Introduction – Water/Cement ratio –Duff Abram's law – Gel/ Space ratio – Griffith's hypothesis – Maturity concept of concrete – Factors affecting strength- Nature of strength of concrete – Strength in tension and compression – Relation between compression and tensile strengths – Testing of hardened concrete – Compression tests – Tension tests – Flexure tests – Cylinder splitting tension tests – Non-destructive testing methods: Rebound hammer test – Ultrasonic pulse velocity test.
	UNIT – V ELASTICITY, SHRINKAGE AND CREEP: Modulus of elasticity – Types – Factors affecting modulus of elasticity –Poisson's ratio – Mechanism of shrinkage – Factors affecting shrinkage – Types of shrinkage: Plastic shrinkage – Drying shrinkage – Autogeneous shrinkage – Carbonation shrinkage – Creep of concrete – Factors affecting creep – Relation between creep and time – Nature of creep – Effect of creep. DURABILITY: Introduction – Factors affecting durability – Permeability – Chemical attack of Concrete – Efflorescence – Thermal properties of concrete – Resistance of concrete to fire. UNIT – VI
	CONCRETE MIX DESIGN: Introduction – Objectives of mix design – Basic considerations – Factors influencing the choice of mix proportions – Design of concrete mixes by IS 10262 :2019 & ACI methods. SPECIAL CONCRETES: Light weight concrete – Cellular concrete – No-fines concrete – High density concrete – Fibre reinforced concrete –Polymer concrete – Self compacting concrete.
Text and Reference books	<ul> <li><b>TEXT BOOKS:</b></li> <li>1. M.S. Shetty, <i>Concrete Technology Theory and Practice</i>, S. Chand &amp; Company Ltd., 8th Revised Edition, 2019.</li> <li>2. Dr. R. P. Rethaliya, <i>Concrete Technology</i>, Charotar Publishing House, 2nd Edition, 2018.</li> <li>3. V. N. Vazirani and S. P. Ratwani, <i>Concrete Technology</i>, Khanna Publishers, 6th Edition, 2016.</li> </ul>
	<b>REFERENCE BOOKS:</b> <ol> <li>A. M. Neville, J. J. Brooks, <i>Concrete Technology</i>, Pearson. 2nd Edition, 2019, Concrete Manual by U.S. Bureau of Reclamation.</li> </ol>

2. P. Kumar Mehta, Paulo J.M. Monteiro, Concrete: Microstructure,
Properties, and Materials, McGraw Hill Education, 4 th edition, 2017.
3. M. L. Gambhir, Concrete Technology Theory and Practice, McGraw Hill
Education, 5 th edition, 2017.

CO-PO Mapping: 3-High mapping, 2-Moderate mapping, 1-Low mapping, - Not mapping

	P01	P02	PO3	P04	P05	P06	P07	PO8	P09	PO10	P011	P012	PS01	PSO2	PSO3
CO1	1	-	-	-	1	-	-	1	-	-	1	1	-	2	1
CO2	1	1	-	-	-	-	-	1	-	-	1	1	-	1	1
<b>CO3</b>	1	1	1	-	-	-	-	-	-	-	-	1	-	1	1
<b>CO4</b>	2	1	1	2	-	-	-	-	-	-	-	2	-	1	2
CO5	1	1	-	-	-	-	1	-	-	-	-	1	-	2	-
<b>CO6</b>	3	3	-	1	_	-	-	-	-	-	1	2	1	3	3

#### 20CE3103-STEEL STRUCTURAL DESIGN

Course Category	Professional Core	Credits	3
Course Type	Theory	Lecture - Tutorial - Practical	2 - 1 - 0
Prerequisite	Strength of Materials,	Sessional Evaluation	40
	Structural Analysis	Semester End Exam Evaluation	60
		Total Marks	100

Course	CO1 Compare types of connection and select the suitable connection.							
Outcomes	CO2 Design steel tension members with lugs and splices.							
	CO3 Design steel laced and battened compression members.							
	D4 Design laterally supported beams and their connections.							
	CO5 Design simple laterally unsupported beams and gantry girders.							
	CO6 Design various types of bases and grillage foundation.							
	UNIT – I							
	<b>INTRODUCTION:</b> Properties of sections – Types of loads – Permissible stresses in tension, compression and shear as per IS code.							
Course Content	<b>BOLTED CONNECTIONS:</b> Types of bolted joints – Modes of failure of bolted joints – Strength and efficiency of bolted joints – Strength of lap and butt joints – Design of Bolted joints – Design of bracket connections (beam to column and beam to beam connections).							
	<b>WELDED CONNECTIONS:</b> Types of welded joints – Strength of fillet and butt welds – Design of welded joints – Design of bracket connections (beam to column and beam to beam connections).							
	UNIT – II							
	<b>DESIGN OF TENSION MEMBERS:</b> Design of tension members – Lug angles – Tension splice.							
	UNIT – III							
	<b>DESIGN OF COMPRESSION MEMBERS:</b> Design of compression members – Single and built-up columns – Design of lacing and battens – Design of eccentrically loaded columns.							
	UNIT – IV							

	LATERALLY SUPPORTED BEAMS: Design of simple beams – Design of
	built-up beams- Curtailment of flange plates – Connection of flange plate with
	flange of beam.
	UNIT – V
	<b>LATERALLY UNSUPPORTED BEAMS:</b> Permissible bending compressive stress – Effective length of compression flange – Design of simple beams – Design of Gantry Girders.
	UNIT – VI
	DESIGN OF COLUMN BASES: Slab base – Gusseted base – Bases subjected
	to moment – Grillage foundation.
Text books	TEXTBOOKS:
and	1. S.K. Duggal, Design of Steel Structures, McGraw-Hill education
References	publishers, 2 nd edition, 2017.
	2. S.S. Bhavikatti, <i>Design of Steel Structures</i> , I K International Publishing
	house, 4 th edition, 2014.
	3. N. Subramanian, <i>Design of Steel Structures</i> , Oxford University press, 2 nd edition, 2018.
	<b>REFERENCE BOOKS:</b>
	1. M.R. Shiyekar, Limit State Design in Structural Steel, PHI Learning
	publishers, 3 rd edition, 2016.
	2. Dr. V. L. Shah & Dr. S. R. Karve, Limit State Design of Steel
	Structures, Jain Book Agency, 3 rd edition, 2012.
	3. P. Dayaratnam, <i>Design of Steel Structures</i> , S Chand Publishers, 3 rd edition, 2012.

**CO-PO Mapping:** 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

	P01	P02	P03	P04	P05	904	707	PO8	60d	P010	P011	P012	PSO1	PSO2	PSO3
CO1	2	1	1	1	-	-	-	-	-	-	-	2	-	-	-
CO2	3	-	2	-	1	-	-	1	-	-	-	2	1	1	-
CO3	3	1	2	-	1	-	-	1	-	-	-	3	1	1	-
<b>CO4</b>	3	1	2	-	1	-	-	1	-	-	-	2	1	1	-
CO5	3	1	2	-	1	-	-	1	-	-	-	1	1	1	-
CO6	3	-	2	-	1	-	-	1	I	-	I	2	1	-	-

#### 20CE31E1 - HYDRAULICS AND HYDRAULIC MACHINERIES

Course	Professional Elective	Credits	3
Category			
Course Type	Theory	Lecture - Tutorial - Practical	2-1-0
Prerequisite	Engineering	Sessional Evaluation	40
	Mathematics- I &II, Fluid Mechanics.	Semester End Exam. Evaluation	60
	i futu meenames.	Total Marks	100

Course	CO1	Apply the concepts of modeling and similitude for a given flow condition.										
Outcomes	CO2	Illustrate the fundamental characteristics of the boundary layer and compute the lift and drag forces.										
	CO3											
	CO4											
	CO5											
		plates and also determine the efficiency of turbine and draft-tube.										
	CO6Compute the losses in centrifugal pump and examine the importa											
		characteristic curves, cavitation and lift.										
Course		UNIT – I										
Content		ENSIONAL ANALYSIS, HYDRAULIC SIMILITUDE & MODEL										
	dimer – type	<b>TING</b> : Derived quantities; dimensional homogeneity; methods of asional analysis – Rayleigh's method, Buckingham's Pie-theorem; similitude es and similarities; types of forces acting in moving fluid; dimensionless er; model laws.										
	UNIT – II											
	<b>BOUNDARY LAYER THEORY:</b> Definitions – types of boundary layer; boundary layer theory, types of boundary layer thickness; drag force on a flat plate due to boundary layer; separation of boundary layer- effects and prevention.											
		UNIT – III										
	OPE	N CHANNEL FLOW – I: Types of flow in channel; geometric properties of										
	chann	el section; velocity distribution in a channel section; uniform flow in										
	chann	channels – Chezy's formula, Ganguillet-Kutter formula, Bazin's formula,										
		Manning's formula; most economical channel section; specific energy & critical										
	-	, critical flow and its computation – rectangular channel section; nination of mean velocity of flow in channel.										
		UNIT – IV										

	<b>OPEN CHANNEL FLOW – II:</b> Gradually varied flow: dynamic equation of gradually varied flow; classification of channel bottom slopes and surface profiles; characteristics of surface profiles; hydraulic jump – assumptions, hydraulic jump in rectangular channel, types and application of hydraulic jump.
	UNIT – V IMPACT OF JETS: Forces exerted by a jet on a vertical plate, inclined plate and curved plate - stationary and moving.
	<b>HYDRAULIC TURBINES:</b> Turbines – classification of turbines; definitions of heads and efficiencies of a turbine; Pelton wheel, Francis turbine, Kaplan turbine – velocity triangles, work done& efficiency; draft tube- classification, functions of draft tube; specific speed – derivation, significance, unit quantities and its uses; performance characteristics curves of hydraulic turbines; selection of turbines.
	UNIT – VI CENTRIFUGAL PUMPS : Components of centrifugal pump; work done by impeller of the centrifugal pump; head of the pump – suction head, delivery head, static head; losses and efficiency of centrifugal pump – manometric, mechanical and overall efficiencies; minimum speed for a centrifugal pump; multistage centrifugal pump – parallel, series; expression for specific speed of a centrifugal pump; unit quantities; priming of a centrifugal pump; characteristic curves of centrifugal pump; cavitation; maximum suction lift, Net Positive Suction Head (NPSH).
Textbooks and Reference books	<ul> <li>TEXTBOOKS:</li> <li>1. Dr. P.N. Modi, Dr. S.M. Seth, <i>Hydraulics and Fluid Mechanics Including Hydraulics Machines</i>, Standard Book House, 21stedition, 2017.</li> <li>2. R.K. Bansal, A <i>Textbook of Fluid Mechanics and Hydraulic Machines</i>, Laxmi Publications, 10thedition, 2018.</li> <li>3. K Subramanya, <i>Flow in Open Channels</i>, Tata McGraw-Hill Educational Private Ltd., 5thedition, 2019.</li> <li>REFERENCE BOOKS:</li> <li>1. Madan Mohan Das, <i>Open Channel Flow</i>, PHI Publications, 3rdedition, 2009.</li> </ul>
	<ol> <li>Ven Te Chow, <i>Open-Channel Hydraulics</i>, The Blackburn Press, 7thedition, 2009.</li> <li>Terry W Sturm, <i>Open Channel Hydraulics</i>, Tata McGraw-Hill Educational Private Ltd., 2ndedition.</li> </ol>

**CO-PO Mapping:** 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

	P01	P02	P03	P04	PO5	P06	P07	PO8	P09	P010	P011	P012	PS01	PSO2	PSO3
CO 1	3	3	3	3	2	-	-	-	1	-	1	2	-	3	2
CO 2	3	2	2	2	1	-	-	-	1	-	2	2	-	1	-
<b>CO 3</b>	3	3	3	3	-	-	1	-	1	-	3	2	-	2	1
<b>CO 4</b>	3	2	1	2	1	-	-	-	1	-	2	2	-	1	-
CO 5	3	3	3	3	2	1	-	-	2	-	2	2	-	1	-
CO 6	3	2	3	3	1	2	-	-	2	-	3	2	-	1	1

# 20CE31E2 – GROUNDWATER HYDROLOGY

# (Civil Engineering)

Course Category	Professional Elective	Credits	3
Course Type	Theory	Lecture - Tutorial - Practical	3 - 0- 0
Prerequisite	Fluid Mechanics	Sessional Evaluation	40
		Semester End Exam Evaluation	60
		Total Marks	100

Course Outcomes	CO1	Understand the nature of groundwater and its role in the water cycle.
	CO2	Apply the concept of Darcy's law for estimating discharge and understand their characteristics and classifications.
	CO3	Demonstrate the technology of water wells and groundwater monitoring.
	CO4	Explain the technology of investigating the surface and subsurface water.
	CO5	Understand the importance of artificial recharge and employ the artificial ground water recharge techniques and identify the saline water intrusion locations.
	CO6	Determine the characteristics of the aquifers with the help of modeling techniques.
	Groun	<b>ODUCTION:</b> Ground water utilization and historical background – d water in hydrologic cycle - Ground water budget and ground water level ations and environmental influence – Literature – Data-Internet resources.
Course Content	of gro colum classif its dete	UNIT – II URRENCE AND MOVEMENT OF GROUND WATER: Origin & age bund water – Rock properties affecting groundwater – Groundwater n, zones of aeration & saturation, aquifers and their characteristics and fication –Groundwater basins & springs – Darcy's Law – Permeability & ermination –Dupuit's assumptions – Heterogeneity & anisotropy – Ground flow rates & flow directions – General flow equations through porous
	ADVA	UNIT – III ANCED WELL HYDRAULICS: Steady and unsteady uniform radial

flow to a well in a confined, unconfined and leaky aquifer – Well flow near aquifer boundaries for special conditions, partially penetrating, horizontal wells & multiple well systems – well completion – Development protection – Rehabilitation – Testing for yield.
UNIT – IV SURFACE AND SUB-SURFACE INVESTIGATION OF WATER: Geological – Geophysical Exploration – Remote Sensing – Electric Resistivity – Seismic refraction based methods for surface investigation of ground water – Test drilling & ground water level measurement – Sub-surface ground water investigation through geophysical – Resistivity – Spontaneous Potential – Radiation – Temperature – Caliper – Fluid Conductivity – Fluid Velocity – Miscellaneous Logging.
UNIT – V ARTIFICIAL GROUND WATER RECHARGE: Concept and methods of artificial ground water recharge – Recharge mounds and induced recharge – Waste water recharge for reuse – Water spreading. SALINE WATER INTRUSION IN AQUIFERS: Ghyben-Herzberg relation between fresh & saline waters – Shape & structure of the fresh and saline water interface – Upcoming of saline water – Fresh-saline water relations on oceanic islands – Seawater intrusion in karst terrains – Saline water intrusion control.
UNIT – VI MODELING AND MANAGEMENT OF GROUND WATER: Ground water modeling through porous media analog, electric analog and digital computer models – Ground water basin management concept – Hydrologic equilibrium equation. Ground water basin investigations – Data collection & field work – Dynamic equilibrium in natural aquifers – Management potential & safe yield of aquifers, stream– Aquifer interaction.

Textbooks	TEXTBOOKS:
and References	<ol> <li>David K. Todd, Larry W. Mays, <i>Groundwater Hydrology</i>, Wiley India Pvt. Ltd., 3rd edition, 2011.</li> </ol>
	<ol> <li>H. M. Raghunath, <i>Groundwater</i>, New age publishers, 3rd edition, 2007.</li> <li>R. N. Saxena and D.C. Gupta, <i>Elements of Hydrology and Groundwater</i>, PHI Learning, 3rd edition, 2017.</li> </ol>

#### **REFERENCE BOOKS:**

- 1. K. Subramanya, *Engineering Hydrology*, Tata McGraw Hill Publishing Company, 4th edition, 2019.
- 2. K. Karanth, *Groundwater Assessment, Development and Management*, McGraw Hill Education, 2nd edition, 2017.
- 3. Bhagu R. Chahar, *Groundwater Hydrology*, McGraw Hill Education, 1st edition, 2017.

**CO-PO Mapping:** 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

	P01	P02	P03	PO4	PO5	PO6	P07	PO8	P09	P010	P011	P012	PS01	PSO2	PSO3
CO 1	2	-	-	-	1	-	1	-	-	-	-	1	-	1	-
CO 2	3	-	-	1	1	-	1	-	-	-	-	1	1	2	1
<b>CO 3</b>	3	2	-	-	1	-	1	-	-	-	1	2	1	-	1
<b>CO 4</b>	2	2	-	1	1	-	1	-	-	-	1	1	-	1	-
CO 5	3	-	-	2	1	-	1	-	-	-	2	-	-	2	2
CO 6	2	-	-	1	1	-	1	-	-	-	1	-	1	1	1

# 20CE31E3-TRAFFIC ENGINEERING AND MANAGEMENT

Course Category	Professional Elective	Credits	3
Course Type	Theory	Lecture - Tutorial - Practical	3 - 0 - 0
Prerequisite	Transportation	Sessional Evaluation	40
	Engineering	Semester End Exam Evaluation	60
		Total Marks	100

CO1	Apply methods of traffic forecast in transport planning.								
CO2 Understand the design of rotary intersection.									
CO3	Understand the different types environmental degradation due to vehicular traffic								
CO4	Apply the road safety concepts in different stages of highway planning.								
CO5	Understand different regulations and methods for effective traffic management.								
CO6 Understand different types of road markings and concepts of street furniture									
foreca metho	<b>UNIT – I</b> <b>FFIC FORECAST:</b> Function of traffic engineering – Need for traffic ast– Limitations of traffic forecasting – Types of traffic – Different ods of traffic forecasting – Forecast based on past trends cud extrapolation – asts and mathematical models – Period of forecasting.								
– Fact Level Guide Capac	UNIT – II ARY INTERSECTIONS: Design hourly volume, passenger car unit (PCU) fors affecting PCU values – Highway capacity – Factors affecting capacity – of service and types – Rotary intersection – Advantages and disadvantages. dines for selecting a rotary type of intersection – Rotary design elements – eity of rotary intersection problems. UNIT –III FFIC AND ENVIRONMENT: Effects of traffic on environment, noise ion, air pollution, vibration, visual intrusion and degrading the aesthetics.								
	CO3 CO4 CO5 CO6 TRAI foreca metho Foreca Foreca Evel Guide Capac TRAI								

#### UNIT –IV

**ACCIDENT STUDIES:** Causes of road accidents – Highway design and road safety – Road safety in various stages of highway system – Road safety incorporated at planning stage – Collection of accident data – Standard accident representing forms.

#### $\mathbf{UNIT} - \mathbf{V}$

**TRAFFIC MANAGEMENT**: Traffic management measures – Restrictions of turning movements – One way streets – Tidal flow operation– Closing side streets– Exclusive bus lanes.

**TRAFFIC REGULATIONS:** Basic principles of regulation, regulation of speed, vehicles, driver, mixed traffic, parking regulations and enforcement of regulations.

#### $\mathbf{UNIT} - \mathbf{VI}$

**ROAD MARKINGS:** Introduction – Classification of road markings – Line markings – Centre line, transverse markings, arrow markings, facility markings, directional markings, object markings – Road studs.

**TRAFFIC CONTROL AND SAFETY:** Traffic control aids and street furniture – Speed breakers – Rumble strips – Guard rails.

**TRAFFIC FLOW:** Traffic stream parameters– Space headway and time head way – Line occupancy – Density – Lane capacity– Types of traffic capacity.

Textbooks and References	<ol> <li>TEXTBOOKS:         <ol> <li>Khanna, S.K. Justo C.E.G &amp; Veeraraghavulu, "Highway Engineering" Nem chand&amp;bros, 10th edition, 2018.</li> <li>C. Venkatramaiah "Transportation Engineering Vol I" Universities Press (India) Private Ltd, 1st edition, 2016.</li> <li>Dr. L.R. Kadiyali, "Traffic engineering and Transport planning" Khanna publishers, 9th edition, 2017.</li> </ol> </li> </ol>
	<b>REFERENCE BOOKS:</b>
	<ol> <li>Dr. L.R. Kadiyali, "Principles and Practice of Highway Engineering" Khanna publishers, 7th edition, 2019.</li> <li>Vazirani and Chandola "Transportation Engineering, Vol. I" Khanna publishers, 5th edition, 1998.</li> </ol>

CO-PO Mapping: 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

	101	P02	P03	P04	P05	P06	P07	PO8	909	P010	P011	P012	PSO1	PSO2	PSO3
<b>CO1</b>	1	-	2	1	1	1	1	1	1	2	1	1	1	1	2
CO2	1	-	2	2	2	-	-	1	1	3	1	1	1	-	2
CO3	2	-	1	2	1	2	-	1	2	3	1	1	-	-	1
CO4	2	2	3	2	2	1	1	1	2	3	1	1	2	1	1
CO5	3	-	-	1	2	1	-	1	2	2	2	1	-	-	-
CO6	1	-	1	2	2	1	1	3	3	2	1	1	-	1	-

# **20CE31E4- ADVANCED FOUNDATION ENGINEERING**

Course Category	Professional Elective	Credits	3
Course Type	Theory	Lecture-Tutorial-Practical	3-0-0
Prerequisite	Geotechnical	Sessional Evaluation	40
	Engineering-II	External Evaluation	60
		Total Marks	100

Course	CO1	Estimate the pressure distribution for bulk heads.							
Outcomes	CO2 Design anchored bulk head.								
	CO3	Design various components of bracing.							
	CO4	Design of mat foundations by conventional method.							
	CO5	Evaluate design parameters for dynamic loading.							
	CO6	Outline the design of foundation on problematic soils							
Course Content	UNIT – I BULKHEADS: Uses of sheet piling walls – Common types of sheet pil – Common sheet pile sections – Cantilever sheet piling walls in cohesion – cantilever sheet piling walls in cohesive soils (Approximate analysis on UNIT – II ANCHORED BULKHEADS: Anchored bulkhead design by free earth method – Anchored bulkhead design by fixed earth support method – M reducing lateral pressure – Types of anchorage. UNIT – III BRACED EXCAVATIONS: Braced cut – Apparent pressure diagrams in both sands and clays – Types of bracing systems – Design of components of bracing – Bottom heave of cuts in soft clays – Piping : cuts in sands.								
		<b>UNIT – IV</b> <b>FOUNDATIONS:</b> Allowable bearing pressure for mat foundations – antional design of mat foundations – Modulus of sub-grade reaction.							
	UNIT – V SOIL DYNAMICS AND MACHINE FOUNDATIONS: Introduction - Fundamentals of vibration – Fundamentals of soil dynamics - Machine Foundation –Special features - Vibration Analysis - Elastic Half-Space Theory -								

	Mass-Spring-Dashpot Model - Foundations for reciprocating machines and impact machines - Vibration isolation and control- Construction aspects of machine foundations UNIT – VI EXPANSIVE SOILS: Identification and characteristics of Expansive soils, Free swell index and swell potential, Swell pressure – Factors –Test, Effect of swelling on building foundations, Fundamental design in expansive soil – CNS layer,
Textbooks & References	<ul> <li>Under reamed pile and other concepts, Problems.</li> <li><b>TEXTBOOKS:</b> <ol> <li>K.R. Arora, <i>Soil Mechanics and Foundation Engineering</i>, Standard publishers distributions, 6th edition, 2017.</li> <li>A.S. Rao &amp; Gopal Ranjan, <i>Basic and applied soil mechanics</i>, New Age International publishers, 3rd edition, 2016.</li> <li>Swami saran, <i>Soil Dynamics and Machine Foundations</i>, Galgotia Publications Private Limited, 2nd edition, 1999.</li> </ol> </li> </ul>
	<ul> <li>REFERENCE BOOKS:</li> <li>1. B. M. Das, <i>Principles of Geotechnical Engineering</i>, Cengage learning, 8th edition, 2017.</li> <li>2. B.C. Punmia, A. K. Jain &amp; A. K. Jain, <i>Soil Mechanics and Foundation Engineering</i>, Laxmi publications, 17th edition, 2018.</li> <li>3. C. Venkatramaiah, <i>Geotechnical Engineering</i>, New Age International Private Limited, 4th edition, 2010.</li> </ul>

**CO-PO Mapping:** 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

	P01	P02	P03	P04	P05	P06	P07	804	60d	P010	P011	P012	PS01	PSO2	PSO3
<b>CO1</b>	3	-	2	1	-	1	-	1	-	1	1	1	-	2	2
CO2	2	-	3	2	1	1	-	1	-	1	1	1	-	2	2
<b>CO3</b>	2	-	2	1	-	1	-	1	-	1	1	1	-	2	2
CO4	2	-	3	2	1	1	-	1	-	1	1	1	-	2	2
CO5	3	2	2	2	2	1	-	1	-	1	1	1	-	3	2
<b>CO6</b>	2	-	2	2	1	1	1	1	-	1	1	1	-	3	2

#### 20CE31P1 -CONCRETE TECHNOLOGY LABORATORY

Course Category	Professional Core	Credits	1.5
<b>Course Type</b>	Practical	Lecture - Tutorial - Practical	0 - 0 - 3
Prerequisite	Building Materials and	Sessional Evaluation	40
	Construction	Semester End Exam	60
		Evaluation	
		Total Marks	100

O1 Evaluate the physical properties of cement.									
CO2 Determine the physical properties of fine aggregates.									
O3 Determine the physical properties of Coarse aggregates.									
O4 Evaluate the fresh properties of concrete.									
O5 Evaluate the hardened properties of concrete.									
O6 Assess the physical and mechanical properties of bricks.									
LIST OF EXPERIMENTS									
ESTS ON CEMENT									
1. a) Determination of Fineness by dry sieving									
b) Determination of Specific gravity									
2. Determination of Normal consistency, initial & final setting times									
3. Determination of Compressive Strength									
TESTS ON AGGREGATES									
4. a) Determination of Specific gravity and water absorption of coarse									
aggregate.									
b) Determination of Bulk density									
5. Sieve analysis of coarse and fine aggregates									
6. a) Bulking of sand by volume method									
b) Bulking of sand by weight method									
ESTS ON CONCRETE									
7. Workability of fresh concrete by slump test									
8. Workability of fresh concrete by compaction factor test									
9. Workability of fresh concrete by Vee-Bee test									
10. Workability of fresh mortar by flow table test									
C C C T	<ul> <li>CO2 Determine the physical properties of fine aggregates.</li> <li>CO3 Determine the physical properties of Coarse aggregates.</li> <li>CO4 Evaluate the fresh properties of concrete.</li> <li>CO5 Evaluate the hardened properties of concrete.</li> <li>CO6 Assess the physical and mechanical properties of bricks.</li> <li><b>LIST OF EXPERIMENTS</b></li> <li><b>TESTS ON CEMENT</b> <ol> <li>a) Determination of Fineness by dry sieving</li> <li>b) Determination of Specific gravity</li> <li>Determination of Normal consistency, initial &amp; final setting times</li> <li>Determination of Compressive Strength</li> </ol> </li> <li><b>TESTS ON AGGREGATES</b> <ol> <li>a) Determination of Specific gravity and water absorption of coarse aggregate.</li> <li>b) Determination of Sulk density</li> <li>Sieve analysis of coarse and fine aggregates</li> <li>a) Bulking of sand by volume method</li> <li>b) Bulking of sand by weight method</li> </ol> </li> <li><b>TESTS ON CONCRETE</b> <ol> <li>Workability of fresh concrete by slump test</li> <li>Workability of fresh concrete by compaction factor test</li> <li>Workability of fresh concrete by Vee-Bee test</li> </ol> </li> </ul>								

# 11. Determination of Compressive strength **TESTS ON BRICKS** 12. a) Determination of Compressive strength b) Determination of Water absorption c) Determination of Efflorescence

CO-PO Mapping: 3-High Mapping, 2-Moderate Mapping	, 1-Low Mapping, - Not Mapping
---------------------------------------------------	--------------------------------

	P01	P02	P03	P04	P05	P06	707	PO8	P09	PO10	P011	P012	PSO1	PSO2	PSO3
CO1	3	2	2	1	-	-	-	-	-	-	2	2	-	2	1
CO2	3	2	2	1	-	-	-	-	-	-	2	2	-	1	1
<b>CO3</b>	3	2	2	1	-	-	-	-	-	-	2	2	-	1	1
<b>CO4</b>	3	2	2	1	-	-	-	-	-	-	2	2	-	1	1
<b>CO5</b>	3	2	2	1	-	-	-	-	-	-	2	2	-	1	1
<b>CO6</b>	3	2	2	1	-	-	-	-	-	-	2	2	-	1	1

# 20CE31P2 - COMPUTER AIDED CIVIL ENGINEERING DRAWING LABORATORY

(Civil	Engine	eering)
--------	--------	---------

Course Category	Professional Core	Credits	1.5
Course Type	Practical	Lecture - Tutorial - Practical	0-0-3
Prerequisite	Building Materials and	Sessional Evaluation	40
	Construction	Semester End Exam Evaluation	60
		Total Marks	100

Course	CO1 Prepare the detail drawings of doors and windows											
Outcomes	CO2 Prepare detail drawings of single stored residential building an components.											
		CO3 Prepare detail drawings of multi stored residential building and its components.										
		CO4 Prepare detail drawings of layouts and detailing of beams, columns, footings and slabs.										
	CO5	Develop 3D model of a residential building										
	CO6	Prepare detail drawing of surplus weir.										
		List of Experiments										
	1. Pa	neled and flush doors - Glazed windows										
		eel roof truss- king post truss										
	_	ueen post truss.										
		eparation of plan, section and elevation of single storied residential hildings with flat roof										
Course Content		reparation of plan, section and elevation of multi storied residential and a section with flat roof.										
	6. Pr	eparation of plan, section and elevation of Commercial buildings.										
	7. Gi	rade beam layout and RCC beam detailing.										
	8. Fl	oor slab reinforcement detailing.										
	9. Co	plumn layout and RCC column details.										
	10. Fo	oundation layout and RCC foundation detailing.										
	11. 3E	O Modelling of residential building by AutoCAD										
	12. Su	ırplus weir										

	PO1	P02	PO3	P04	PO5	90d	PO7	PO8	60d	PO10	P011	P012	PSO1	PSO2	PSO3
CO1	1	-	1	-	-	1	-	-	-	1	1	-	3	-	2
CO2	2	-	1	-	2	2	1	1	-	1	3	-	3	-	2
CO3	2	-	1	-	3	2	1	1	-	1	3	1	3	-	2
CO4	1	-	1	-	3	2	1	-	-	1	3	3	3	-	2
CO5	1	-	1	-	3	2	1	-	-	1	3	2	3	-	2
CO6	1	-	1	-	2	1	1	-	-	1	1	-	2	-	1

**CO-PO Mapping:** 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

# 20CE31SC – REVIT ARCHITECTURE

Course Category	Skill oriented course	Credits	2
Course Type	Practical	Lecture – Tutorial –Practical	0-0-4
Prerequisite	None	Sessional Evaluation	40
		Semester End Exam. Evaluation	60
		Total Marks	100

Course	CO1	Know edit tools, modify tools and site elements.
Outcomes	CO2	Use materials, section sets and can manage family categories.
	CO3	Structure, manage sheets and design options.
	CO4	Check the model for interfaces
	CO5	Transfer project standards and edit object style.
	CO6	Apply render and massing tools
		List of Experiments
	1.	Creating the Walls
Course	2.	Creating the Curtain elements
Content	3.	Working with Elevation and Section Views
	4.	Placing of Dimensions, Doors, Windows and Components
	5.	Creating the Roofs and ceilings
	6.	Creating the Floors
	7.	Creating the Architectural columns
	8.	Placing of Railings, Rams and Stair by components
	9.	Creating the Openings
	10	. Giving Annotation, sheets, model text and Model lines
	11	. Exploring Walkthrough Tools & Import & Exporting Files, Camera
	12	. Rendering, Massing & site Tools

Textbooks	REFERENCES:
and	https://bimscape.com/beginners-guide-to-revit-architecture/
Reference	https://www.youtube.com/c/CADinblack
books	

	P01	P02	P03	P04	P05	906	P07	PO8	60d	P010	P011	P012	PSO1	PSO2	PSO3
CO1	3	1	3	1	3	1	-	1	2	3	3	3	3	-	2
CO2	2	1	3	1	3	1	-	1	2	3	3	3	3	-	2
CO3	3	1	3	1	3	1	-	1	2	3	3	3	3	-	2
CO4	3	1	3	1	3	1	-	1	2	3	3	3	3	-	2
CO5	2	1	3	1	3	1	-	1	2	3	3	3	3	-	2
<b>CO6</b>	1	1	3	1	3	1	-	1	2	3	3	3	2	-	1

**CO-PO Mapping:** 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

#### N.B.K.R. INSTITUTE OF SCIENCE & TECHNOLOGY:: VIDYANAGAR

#### (AUTONOMOUS)

#### **CIVIL ENGINEERING**

SCHEME OF INSTRUCTION AND EVALUATION

(With effect from the batch admitted in the academic year 2020-2021)

## III YEAR OF FOUR YEAR B.TECH. DEGREE COURSE - II SEMESTER

											Ev	aluation				
S.N O Course Code		Course Title		Contact Hours/ Week		Credi ts		Sessional Test-I	1		Sessional Test-II		Total Sessional Marks (Max. 40)	Semester End Examination		Max. Total Mark
		THEORY	L	Т	Р		Test-I (2 hrs.)	Assign ment-I	Max. Marks	Test-II (2 hrs.)	Assign ment-II	Max. Marks		Duration In Hours	Max. Marks	s
1	20CE3201	Quantity Surveying and Valuation	2	1	0	3	34	6	40	34	6	40	0.8(Better of two	3	60	100
2	20CE3202	RS & GIS	3	0	0	3	34	6	40	34	6	40	sessional	3	60	100
3	20CE3203	Environmental Engg.	3	0	0	3	34	6	40	34	6	40	tests)	3	60	100
4.	20CE32EX	<b>Professional Elective-II</b>	3	0	0	3	34	6	40	34	6	40	+	3	60	100
		<b>OPEN ELECTIVE COU</b>	RSE	/ J(	)B (	<b>)RIENT</b>	'ED ELE(	CTIVE					0.2(Other)			
5	20XX3201	Open Elective Course/Job Oriented Course	3	0	0	3	34	6	40	34	6	40		3	60	100
		PRACTICALS														
1	20CE32P1	EE Laboratory	0	0	3	1.5	-	-	-	-	-	-		3	60	100
2	20CE32P2	RS & GIS Lab	0	0	3	1.5	-	-	-	-	-	-	Day-to-day	3	60	100
3	20CE32P3	STAAD lab	0	0	3	1.5	-	-	-	-	-	-	Evaluation and	3	60	100
		SKILL ADVANCED CO	URS	SE / \$	SOF	T SKIL	L COURS	SE					a test (40 marks)			
1	20CE32SC	Advanced Communication Skills	0	0	4	2	-	-	-	-	-	-		3	60	100
		MANDATORY COURSE	NDATORY COURSE							0.8(Better of two sessional						
1	20ME32MC	Entrepreneurship	2	0	0	0	34	6	40	34	6	40	tests) + 0.2(Other	3	60	100
		TOTAL				21.5										
1	20xx32xx	Honors/Minor Course	4	0	0	4	The hour	rs distribu	tion can be	- 3-0-2 or 3	3-1-0 also					
		Industrial/Research: Inter	nshi	p (N	land	atory) 2	months du	ring sumr	ner vacatio	n						
Indust	rial/Research:	Internship (Mandatory) 2 months	dur:	ing s	umm	er vacatio	on (to be eva	aluated dur	ing VII sem	ester)						

 $\frac{1}{1000}$  means  $\frac{1}{1000}$  means  $\frac{1}{1000}$  summer vacation (to be evaluated during VII semester)

**Professional Elective-II:** 20CE32E1

20CE32E2

: Hydrology & WRE20CE32E3 : Finite Element Analysis: Urban Transportation Planning20CE32E4 : Advanced Reinforced Concrete Design

# 20CE3201- QUANTITY SURVEYING AND VALUATION

Course Category	Professional Core	Credits	3
Course Type	Theory	Lecture - Tutorial - Practical	2 - 1 - 0
Prerequisite	Building Materials	Sessional Evaluation	40
	and Construction	Semester End Exam Evaluation	60
		Total Marks	100

Course	CO1	Prepare approximate and detailed estimates of simple buildings and road								
Outcomes		works.								
	CO2	Gain thorough knowledge of specifications of various materials and items								
		of building construction.								
	CO3	Perform rate analysis for earthwork, various types of masonry, and								
	<u> </u>	flooring.								
	CO4	Perform the rate analysis for roofing, plastering, pointing, woodworks								
	C05	simple buildings, and road works.								
	CO5	Evaluate contracts and tenders in construction practices.								
	CO6	Calculate the value of tangible assets. UNIT – I								
		ON11 - 1								
	INTR	ODUCTION: General items of work in buildings – Standard units –								
	Princi	ples of working out quantities for detailed and abstract estimates –								
	Appro	eximate and detailed estimates of simple buildings and road works.								
		UNIT – II								
	SPEC	CIFICATIONS: Types – Standard specifications for different materials and								
	items	of building construction- Sand - Lime - Cement - Kankar - Mortars -								
Course		work for foundations – Foundation concrete – Reinforced concrete – Brick								
Content	work	- Stone masonry -Mosaic Flooring - R.C.C. roof and G.I. sheet roof -								
Content	Plaste	ring – Pointing – Painting and wood works.								
		UNIT – III								
	RATI	E ANALYSIS-I:								
	Ea	rthwork for foundations and basement of buildings.								
	M	ortars: Lime mortar (1:1.5) and Cement Mortar (1:4).								
	Fo	bundation Concrete: Lime concrete (1:2:4) and Cement Concrete (1:5:10).								
	Re	einforced Concrete: Lintels, Slabs, Beams, and Columns (1:2:4).								
	Br	ickwork: Constructed with first-class bricks with L.M. (1:1.5) and								

a) With	Cuddapah or Shahabad slabs.
b) Mosa	ic flooring.
	UNIT – IV
RATE ANA	LYSIS-II:
Roofing:	a) R.C.C. roof 10cm thick, two courses of flat tiles to top.
	b) A.C. corrugated sheet roofing on steel purlins.
Plastering :	a) With L.M. (1:1.5) 2 coats (20mm thick)
	b) C.M. (1:4) 12mm thick.
Pointing:	a) With C.M. (1:3) flush pointing to R.R. Masonry.
D	b) C.M. (1:3) for brick masonry.
Painting:	a) Whitewashing and colour washing of walls: 2 coats.
<b>XX</b>	b) Painting iron and woodwork: 3 coats.
Road work:	Panelled doors and windows.
KUau WUIK.	W.B.M. road with bituminous carpet 20mm thick.
	UNIT –V
	<b>TS:</b> Essential requirements of a valid contract - Forms of contracts– Contract document – Conditions of contracts– Contracts– Contracts – Specifications – Important condition bitration of tenders.
procedure -	
procedure -	UNIT – VI

Textbooks and	TEXTBOOKS:
References	1. B.N. Dutta, Estimating and Costing in Civil Engineering, UBS Publishers'
	Distributors Ltd publications, 28 th revised Edition, 2016.
	2. G.S.Birdie, A Textbook of Estimating and Costing in Civil Engineering,
	Dhanpat Rai Publishing Company Private Limited, 6 th Edition, 2014.
	3. M.Chakraborti, Estimation, costing, specifications and valuation in civil
	engineering, Published by M. Chakraborthi, 29th revised Edition, 2006
	REFERENCE BOOKS:
	1. D. D. Kohli, Ar. R. C. Kohli, A Text book of Estimating and Costing
	(Civil), S. Chand Publications, 13th edition, 2013.
	2. R. Ambalavanan, Estimation and Costing in Civil Construction, Ane
	Books Pvt. Ltd, 2021.
	3. A.K. Upadhyay, Civil Estimating and Costing, S.K.Kataria & Sons,
	Revised Edition, 2014.

**CO-PO Mapping:** 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

	P01	P02	PO3	P04	PO5	906	707	PO8	PO9	PO10	P011	P012	PSO 1	PSO 2	PSO 3
<b>CO1</b>	1	-	-	-	-	1	-	1	-	1	1	-	1	-	2
CO2	1	-	-	-	-	2	-	-	-	2	-	1	-	-	-
<b>CO3</b>	2	-	-	-	-	2	-	1	-	-	1	-	1	-	2
<b>CO4</b>	2	-	-	-	-	2	-	1	-	-	1	-	1	1	2
CO5	-	-	-	-	-	3	-	1	2	3	2	1	-	1	2
<b>CO6</b>	2	-	-	-	-	3	-	2	-	2	2	2	-	-	2

## 20CE3202 - REMOTE SENSING & GIS

Course Category	Professional Core	Credits	3
Course Type	Theory	Lecture - Tutorial - Practical	3 - 0 - 0
Prerequisite	None	Sectional Evaluation	40
		Semester End Exam Evaluation	60
		Total Marks	100

Course	CO1	Understand various terminologies and interaction of EMR with atmosphere								
Outcomes	001	and earth's surface.								
	CO2 Explain the different technical aspects of a remote sensing network									
	special emphasis on Indian remote sensing technology.         CO3       Compare different types of data obtained from a remote sensing netw with tools specifically designed for the purpose.         CO4       Understand various corrections applied to the data collected and techniq of image classification.									
	CO5	Apply remote sensing in earth resources management.								
	CO6	Demonstrate the basic concepts of Geographical Information System.								
		UNIT – I								
	FUNI	DAMENTAL CONCEPTS OF REMOTE SENSING: Definition of								
	Remo	te Sensing; History of Remote Sensing and Indian Space Program; Remote								
	Sensir	ng Process; Source of energy - Concept of energy, Electromagnetic								
	radiati	ion, Electromagnetic Spectrum; Interaction of electromagnetic radiation with								
	atmos	phere, Vegetation, soil and water - Absorption, Scattering, Refraction,								
	Reflec	ction; Spectral Reflectance Curve; Atmospheric windows; Advantages and								
	Limita	ations of Remote Sensing.								
Course		UNIT – II								
Content	REM	OTE SENSING SYSTEM: Introduction; Types of Remote Sensing -								
		fication Based on Platform, Energy Source, Imaging Media, Regions of								
		omagnetic Spectrum, Number of Bands; Characteristics of Images; Orbital								
		cteristics of Satellite; Remote Sensing Satellites; Definitions – Swath, Nadir,								
		$\mathbf{c}$								
	path, row, Orbital calendar. SENSOR CHARACTERISTICS: Resolutions- Spatial Resolution, Spect									
		ution, Radiometric Resolution, Temporal Resolution.								
	Keson	ation, Radiometric Resolution, Temporal Resolution.								

### UNIT – III

**VISUAL IMAGE INTERPRETATION:** Introduction; Information Extraction by Human and Computer; Remote Sensing Data Products; Image Interpretation; Elements of Visual Image Interpretation -Location, Size, Shape, Shadow, Tone, Colour, Texture, Pattern, Height and Depth, Site, Situation and Association; Interpretation Keys.

### UNIT – IV

**DIGITAL IMAGE PROCESSING:** Introduction; Categorization of Image Processing; Image Processing Systems; Data Formats of Digital Image; Preprocessing - Radiometric Correction of Remotely Sensed Data, Geometric Correction of Remotely Sensed Data, Miscellaneous Pre-processing; Image Enhancement - Image Reduction, Image Magnification, Colour Compositing, Transect Extraction, Contrast Enhancement; Filtering; Image Classification -Information Class and Spectral Class - Supervised Versus Unsupervised Classification; Decision Rules for Supervised Classification; Decision Rules for Unsupervised Classification; Accuracy Assessment.

### UNIT – V

**APPLICATIONS OF REMOTE SENSING FOR EARTH RESOURCES MANAGEMENT:** Agriculture – crop production forecasting, agricultural drought assessment, precision farming; Forestry – Type and density mapping, forest cover change, forest status in India; Land cover/Land use mapping – Wastelands, Urban sprawl; Water Resources; Coastal Zone Management – Coastal zone ecosystem, Coastal regulation zone, integrated coastal zone management.

### UNIT - VI

### **GEOGRAPHICAL INFORMATION SYSTEM:**

Definition of GIS; Key components of GIS; Functions of GIS, Application areas of GIS, Advantages of GIS – Advantages over traditional map, mapping software, Conventional DBMS, Analysis-modeling-Presentation and decision making; Functional Requirements of GIS; Limitations of GIS; Spatial data models – raster data model, vector data model.

Textbooks	TEXTBOOKS:
and	1. B. Bhatta, <i>Remote sensing and GIS</i> , Oxford University Press, 3 rd edition,
References	2021.
	2. George Joseph and C. Jeganathan, Fundamentals of remote sensing,
	Universities Press, 3 nd Edition, 2018.
	3. Tsurg Charg, Introduction to Geographic information system, Tata
	McGraw-Hill Education Private Limited. 2 nd edition, 2014.
	<b>REFERENCES:</b>
	1. John R. Jensen, Remote sensing of the environment- An earth resources
	perspective, Pearson Education, 2ndedition, 2014.
	2. Peter A Burragh and Rachael McDonnnell, Principals of Geo physical
	Information system, Oxford Publications 2 nd edition, 2004.
	3. A. Kumar, Basics of remote sensing & GIS, Laxmi publications, 3 rd
	edition, 2009.

**CO-PO Mapping:** 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

	P01	P02	PO3	P04	P05	P06	P07	PO8	60d	P010	P011	P012	PSO1	PSO2	PSO3
CO 1	1	-	-	1	-	-	1	-	-	-	-	1	-	1	-
CO 2	1	-	-	-	-	1	1	-	-	-	-	1	-	-	-
CO 3	2	-	-	-	1	-	1	-	-	-	-	-	2	1	2
<b>CO 4</b>	2	-	-	1	1	-	1	-	-	-	-	-	2	-	1
CO 5	1	-	-	1	1	-	1	-	-	-	-	-	-	2	3
CO 6	1	-	-	2	1	1	2	-	-	-	1	1	1	1	2

## 20CE3203 – ENVIRONMENTAL ENGINEERING

Course Category	Professional Core	Credits:	3
Course Type	Theory	Lecture - Tutorial - Practical	3 - 0 - 0
Prerequisite	Engineering Chemistry	Sessional Evaluation	40
	and Fluid Mechanics	Semester End Exam	60
		Evaluation	
		Total Marks	100

Course Outcomes	CO1	Identify the sources of water and wastewater and determine the quality. Forecast the population for water demand and estimate the wastewater flows.												
	CO2	2 Identify the intake structures; Analyze and design pipe network system.												
	CO3	Design circular sewers; Select materials and appurtenances for sewers.												
	CO4	Understand the methods of water treatment												
	CO5	Understand conventional wastewater treatment methods.												
	CO6	Understand the sludge treatment methods; Select proper effluent disposal method and design a septic tank.												
		UNIT I												
Course Content	SOUR	CES, QUALITY AND QUANTITY PERSPECTIVES OF WATER												
	AND	WASTEWATER: Sources, Characteristics - physical, chemical and												
	biologie	cal, water demands – types and factors affecting water demand, fluctuations												
	in rate	of water demand, design period, population forecasting methods, estimation												
	of dry v	weather flow and wet weather flow.												
		UNIT II												
	COLL	ECTION AND CONVEYANCE OF WATER: Intakes, types of Intakes,												
	factors	governing selection of location for intakes.												
	DISTR	IBUTION SYSTEM: Requirements of a good distribution system, methods												
	of dist	ribution, systems of supply of water, Distribution reservoirs, layout of												

distribution system, design and analysis of pipe networks of distribution system – Hardy cross method.

### **UNIT III**

**HYDRAULIC DESIGN OF SEWERS:** Hydraulic formulae for design of circular sewers, minimum and maximum velocity of flow in sewers.

**SEWER MATERIALS AND APPURTENANCES:** Factors affecting the selection of material, materials for sewers, shapes of sewers, valves and joints, sewer appurtenances.

### UNIT IV

**WATER TREATMENT METHODS:** General layout of water treatment plant, Aeration, Sedimentation, Sedimentation aided with Coagulation, Filtration – Rapid sand filters, Disinfection – methods, Chlorination – types and forms, Membrane processes, Ion exchange process.

### UNIT V

**CONVENTIONAL WASTEWATER TREATMENT:** General layout of wastewater treatment plant, **Primary treatment of sewage:** Screening, Grit Chambers, Sedimentation, Sedimentation aided with coagulation.

**SECONDARY TREATMENT OF WASTEWATER:** Activated sludge process, Trickling filters, Oxidation Pond.

### UNIT VI

**SLUDGE MANAGEMENT:** Sludge - Types, Sludge treatment – Thickening, Stabilization/Digestion, Conditioning, Dewatering – Drying/Incineration, Sludge disposal methods.

**EFFLUENT DISPOSAL:** Methods – Dilution, Marine disposal, Land disposal, Self-purification of water bodies, Oxygen Sag Curve, Sewage Sickness.

Design of septic tank, Septic tank effluent disposal methods.

Textbooks and TEXTBOOKS:

References	1. S.K. Garg, <i>Water supply engineering – Environmental Engineering I</i> ), Khanna Publishers, 33 rd edition, 2019.
	2. B.C. Punmia, <i>Wastewater engineering</i> – <i>environmental engineering II</i> , laxmi publications, $2^{nd}$ edition, 2016.
	3. S.K. Garg, <i>Sewage Disposal and Air Pollution Engineering</i> – Environmental Engineering (Vol.II), Khanna Publishers, 37 th edition, 2019.
	<b>REFERENCES:</b>
	1. Metcalf & Eddy, Inc., <i>Waste water Engineering Treatment and Reuse</i> , McGraw Hill education, 4 ^{rth} edition, 2017.
	2. Ruth F. Weiner and Robin A. Matthews, <i>Environmental Engineering</i> , Butterworth- Heineman. Publishers, 4th edition 2003.
	3. B.C. Punmia, <i>Water supply engineering - Environmental engineering I</i> , laxmi publications, $2^{nd}$ edition, 2016.

CO-PO Mapping: 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

	P01	P02	PO3	P04	PO5	P06	P07	PO8	P09	P010	P011	P012	PS01	PSO2	PSO3
CO1	2	2	-	1	-	-	1	2	1	2	-	1	-	1	2
CO2	2	2	2	1	-	-	-	1	2	1	1	1	1	1	-
CO3	2	2	2	-	-	1	1	1	1	1	-	1	-	1	-
CO4	1	1	1	2	3	2	2	2	2	2	-	1	-	1	-
CO5	1	1	1	2	3	2	2	2	2	2	-	1	-	1	-
CO6	2	1	2	2	1	2	2	3	1	1	-	1	-	1	-

### 20CE32E1 – HYDROLOGY & WATER RESOURCES ENGINEERING

Course Category	Professional Elective	Credits	3
Course Type	Theory	Lecture - Tutorial - Practical	3-0-0
Prerequisite	Fluid Mechanics	Sessional Evaluation	40
		Semester End Exam Evaluation	60
		Total Marks	100

Course Outcomes	CO1	Understand the theories and principles governing the hydrologic processes.								
	CO2 Determine the loss due to evapotranspiration and infiltration.									
	CO3	Determine the runoff due to precipitation and develop runoff hydrographs.								
	CO4	Assess and analyze floods and flood control measures.								
	CO5	Determine aquifer parameters and yield of wells.								
	CO6	Explain the basic concepts of irrigation engineering.								
Course Content	hydrol PREC gauge of rain Maxin Precip ABST Evapo of eva Evapo evapo	UNIT – I CODUCTION: Definition and scope; Hydrologic cycle; Sources of logical data. CIPITATION: Forms of precipitation; Measurement of precipitation; Rain network; Preparation and presentation of rainfall data; Mean precipitation nfall data; Depth-Area-Duration relationship; Frequency of point rainfall num Intensity/Depth-Duration-Frequency relationship; Probable maximum bitation (PMP). UNIT – II CRACTIONS FROM PRECIPITATION: Evaporation process; primeters; Empirical evaporation equations; Analytical methods - estimation poration and transpiration. POTRANSPIRATION: Measurement of evapotranspiration; paranspiration equations – Potential evapotranspiration and Actual transpiration; Infiltration; Factors affecting infiltration; Infiltration indices. UNIT – III DFF: Runoff characteristics; Factors affecting runoff – Catchment								

**HYDROGRAPHS:** Components of hydrograph; Base flow separation; unit hydrograph – Derivation of unit hydrograph – Unit hydrograph of different durations – Uses and limitations of unit hydrograph – Duration of the unit hydrograph; S-curve hydrograph; Instantaneous unit hydrograph.

### $\mathbf{UNIT} - \mathbf{IV}$

**FLOODS:** Introduction– Rational method– Empirical formulae – Unit hydrograph method; Flood frequency studies – Gumbel's method – Log-Pearson type III distribution; Partial duration series; Regional flood; Frequency analysis; Data for frequency studies; Design flood – Design storm – Risk, reliability and safety factor; Flood routing-channel routing; Flood control – Classification of methods for flood control or management; Flood control reservoir; Channel improvement; Floodways.

### $\mathbf{UNIT} - \mathbf{V}$

**GROUNDWATER:** Introduction – Forms of subsurface water; Saturated formation; Aquifer properties; Geologic formations as aquifers; Equation of motion; Wells – Steady flow into a well – Open wells; Unsteady flow in a confined aquifer; Well loss – Specific capacity; Sea-water intrusion – Recharge.

#### UNIT – VI

**IRRIGATION:** Necessity and importance – Principal crops and crop seasons – Types – Methods of application – Soil-water – Plant relationship – Soil moisture constants – Consumptive use – Estimation of consumptive use – Crop water requirement – Duty and delta – Factors affecting duty – Depth and frequency of irrigation – Irrigation efficiencies – Water logging and causes – Standards of quality for irrigation water – Crop rotation.

### **TEXTBOOKS:**

Textbooks and References

1.	K. Subramanya,	Engineering	Hydrology,	Tata	McGraw-Hill	Education
	Pvt. Ltd, 5 th edition	on, 2017.				

- 2. P. Jayarami Reddy, *Engineering Hydrology*, Laxmi Publications Pvt. Ltd., 3rd edition, 2016.
- 3. P.N. Modi, *Irrigation water resources and water power engineering*, Standard Book House publication, 11th Edition, 2019.

### **REFERENCES:**

- 1. K.N. Duggal and J.P. Soni, *Elements of water resources engineering*, New Age International Publishers, 2nd edition, 2005.
- 2. G.L. Asawa, *Irrigation Engineering*, New Age International Publishers, 2nd edition, 2000.

3. S.K. Garg, Irrigation	Engineering	and	Hydraulic	Structures,	Khanna
Publishers, 36 th edition,	2020.				

	P01	P02	P03	P04	PO5	P06	P07	PO8	P09	P010	P011	P012	PS01	PSO2	PSO3
CO 1	2	-	-	2	-	-	1	-	-	-	-	1	-	-	-
CO 2	3	2	-	1	1	-	1	-	1	-	-	1	-	1	1
<b>CO 3</b>	2	-	-	2	1	-	1	-	1	-	-	2	1	3	2
<b>CO 4</b>	2	-	-	1	1	-	1	-	-	-	-	1	1	3	2
CO 5	2	2	-	1	-	-	1	-	1	-	-	1	1	-	1
CO 6	3	-	1	-	-	2	-	-	1	-	1	1	-	1	-

CO-PO Mapping: 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

### **20CE32E2 - URBAN TRANSPORTATION PLANNING**

Course Category	Professional Elective	Credits	3
Course Type	Theory	Lecture - Tutorial - Practical	3 - 0 - 0
Prerequisite	Transportation Engineering	Sessional Evaluation	40
		Semester End Exam	60
		Evaluation	
		Total Marks	100

Course Outcomes	1 1 1								
	CO2 Able to conduct transportation surveys which are essential in urban transportation planning.								
	CO3	CO3 Apply the basic concepts, factors affecting Trip generation and also use multiple linear regression analysis in Trip generation calculations.							
	CO4	Understand different methods of trip distribution.							
	CO5	Understand the concept of model spilt analysis.							
	CO6	CO6 Perform evaluation of transportation plans and also prepare transportation plan for a small town.							
Course Content	<b>UNIT – I</b> <b>TRANSPORT PLANNING PROCESS:</b> Scope of the Subject – Interdependence of the land use and traffic – Systems approach to transport planning –stages in transport planning – Survey and analysis of existing conditions – Forecast analysis of future conditions and plan synthesis – Evaluation – Programme adoption and implementation – Continuing study – Citizen participation – Difficulties in the transport planning process.								
	UNIT – II TRANSPORTATION SURVEY: Introduction – Definition of the study area Zoning – Type of Surveys – Home interview surveys – Commercial vehic surveys – Taxi surveys –Roadside interview surveys –Postcard questionnaire Registration number plate surveys – tags on vehicles – Public transport survey Inventory of transport facilities – Inventory of land use and economic activities								
	<b>UNIT – III</b> <b>TRIP GENERATION:</b> Introduction and definitions – Trip purpose – Factors								

	governing Trip generation and Trip attraction rates – Multiple linear regression analysis – Category analysis – Trip based and activity based approach.						
	<b>UNIT – IV</b> <b>TRIP DISTRIBUTION:</b> Introduction, Methods of trip distribution – Growt factor methods - Uniform (Constant) factor method – Average factor method Synthetic methods – Gravity model.						
	UNIT – V TRAFFIC ASSIGNMENT: Purpose of traffic assignment – General principles – assignment techniques – All-or-nothing assignment (free assignment or desire assignment) – Multiple route assignment – Capacity restraint assignment – Diversion curves. MODAL SPLIT: Introduction – Factors affecting model split –Modal split in the transport planning process.						
	UNIT – VI EVALUATION: Need for Evaluation – Several plans to be formulated – Testing – Considerations in evaluation – Economic evaluation. VEHICLE OPERATING COSTS: Theory of Vehicle operating cost (VOC) – Component, factors affecting VOC. TRANSPORT PLANNING FOR SMALL AND MEDIUM SIZED CITIES: Introduction – Difficulties in transport planning for small and medium cities – Quick response techniques.						
Textbooks and References	<ul> <li>TEXTBOOKS:</li> <li>1. Khanna, S.K. Justo C.E.G &amp; Veeraraghavulu, "Highway Engineering" Nem chand &amp; bros, 10th edition, 2018.</li> <li>2. Dr. L.R.Kadiyali, "Principles and Practice of Highway Engineering" Khanna publishers, 7th edition, 2019.</li> <li>3. C. Venkatramaiah "Transportation Engineering Vol I" Universities Press (India) Private Ltd, 1st edition, 2016.</li> </ul>						
	<ul> <li>REFERENCE BOOKS:</li> <li>1. Dr.LR Kadiyali "Traffic engineering and Transport planning" Khanna publishers, 9th edition, 2017.</li> <li>2. Vazirani and Chandola "Transportation Engineering" Vol. I" Khanna publishers, 5th edition, 1998.</li> <li>3. A. K. Jain, "Urban Transport Planning and Management", APH Publishing corporation, 2009.</li> </ul>						

	P01	P02	P03	P04	P05	P06	707	PO8	909	P010	P011	P012	IOSd	PSO2	PSO3
<b>CO1</b>	1	-	2	1	1	1	1	1	1	2	1	1	-	-	2
CO2	1	-	2	2	2	-	-	1	1	3	1	1	-	-	2
CO3	2	-	1	2	1	2	-	1	2	3	1	1	-	-	1
<b>CO4</b>	2	2	3	2	2	1	1	1	2	3	1	1	-	-	2
CO5	3	-	-	1	2	1	-	1	2	2	2	1	-	-	2
<b>CO6</b>	1	-	1	2	2	1	1	3	3	2	1	1	-	1	1

**CO-PO Mapping:** 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

# 20CE32E3 - FINITE ELEMENT ANALYSIS

Course Category	Professional Elective	Credits	3
Course Type	Theory	Lecture-Tutorial-Practical	3-0-0
Prerequisite	Structural Analysis	Sessional Evaluation	40
		External Evaluation	60
		Total Marks	100

Course	CO1 Understand the basic principles of finite element method.								
Outcomes	CO2	2 Comprehend the concepts of finite element modelling and discretization, shape functions.							
	CO3	Apply the finite element method in one dimensional elements.							
	CO4	Utilize the finite element method in analyzing plane trusses.							
	CO5	Make use of finite element formulation for beam elements and apply plane stress and plane strain concepts to plane elements.							
	CO6	Apply the knowledge of isoperimetric elements for analysis.							
Course Content	residu Advar <b>FINI</b> model	UNIT –I INTRODUCTION: Historical background - Functional approximation- weighted residual methods – Rayleigh ritz method -Basic steps in Finite element method– Advantages and disadvantages – Limitations. UNIT – II FINITE ELEMENT MODELING AND DISCRETIZATION: Finite element modeling and discretization – Interpolation and shape functions – Types of elements –Nodes and degrees of freedom- serendipity elements.							
	Beam stiffne condit <b>TWO</b> coordi	UNIT – III DIMENSIONAL FINITE ELEMENTS: Introduction – Bar element – element – Bar and beam elements of arbitrary orientation —Element ess matrices –Assembly of element stiffness matrices—Loads—Boundary tions — Applications. UNIT – IV DIMENSIONAL FINITE ELEMENTS: Plane trusses – Local and global inate systems – Direction cosines – element stiffness matrix – Assembly of nt stiffness matrices – Stress calculation - Temperature effects.							
		UNIT – V							

	FINITE ELEMENT FORMULATION: Introduction – Beam stiffness matrix– Assembly of beam stiffness matrices – Loads – Boundary conditions – temperature effects. Plane stress analysis – Plane strain analysis. UNIT – VI ISOPARAMETRIC ELEMENTS: Introduction– coordinate transformation - shape functions for isoparametric elements - Mesh generation – Mesh refinement– Numerical integration – Application to plane stress problems –Introduction to analysis software (for practice purpose only).
Text & Reference books	<ul> <li><b>TEXT BOOKS:</b> <ol> <li>C. S. Krishnamoorthy, <i>Finite Element Analysis</i>, McGraw–Hill Education, 2nd Edition, 2017.</li> <li>S. S. Bhavikatti, <i>Finite Element Analysis</i>, New age international publishers, 3rd Edition, 2015.</li> <li>Tirupathi R. Chandrupatla &amp; Ashok D. Belegundu, <i>Introduction to Finite Elements in Engineering</i>, Pearson Education, 4th Edition, 2011.</li> </ol></li></ul>
	<ul> <li><b>REFERENCE BOOKS:</b></li> <li>1. O.C. Zienkiewicz, R.L. Taylor and J.Z. Zhu, <i>The Finite Element Method:</i> <i>Its basics and Fundamentals</i>, Butterworth-Heinemann publishers, 7th Edition, 2013.</li> <li>2. Robert D. Cook, David S. Malkus, Michael E. Plesha, Robert J. Witt, <i>Concepts and Applications of Finite Element Analysis</i>, John Wiley&amp; Sons Publishers, 4th Edition, 2001.</li> <li>3. Daryl L. Logan, <i>A First Course in the Finite Element Method</i>, CL Engineering, 5th Revised Edition, 2010.</li> </ul>

<b>CO-PO</b> Mapping	: 3-High Mapping,	2-Moderate Mapping,	1-Low Mapping, -	-Not Mapping
----------------------	-------------------	---------------------	------------------	--------------

	P01	P02	P03	P04	PO5	904	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
<b>CO1</b>	2	1	-	-	-	-	-	-	-	-	-	2	1	-	-
CO2	1	1	-	-	-	-	-	-	-	-	-	2	3	3	1
CO3	3	2	-	2	1	-	-	-	-	-	-	1	2	2	1
CO4	3	2	-	1	1	-	-	-	-	-	-	1	2	2	1
CO5	3	2	-	1	1	-	-	-	-	-	-	1	2	2	1
<b>CO6</b>	2	1	1	1	2	-	-	-	-	-	-	2	3	3	-

## 20CE32E4 –ADVANCED REINFORCED CONCRETE DESIGN

Course Category	Professional Elective	Credits	3
Course Type	Theory	Lecture - Tutorial - Practical	3-0-0
Prerequisite	Elemental design of	Sessional Evaluation	40
	Reinforced Concrete Structures	Semester End Exam Evaluation	60
		Total Marks	100

Course Outcomes	CO1	Design combined rectangular footings, raft foundation and pile foundation.								
	CO2 Design cantilever and counterfort retaining walls for different loading									
	CO3	CO3 Design bunkers and silos								
	CO4	Design liquid retaining structures resting on ground								
	CO5	Design elevated liquid retaining structures.								
	CO6	Analyze pre-stressed rectangular sections for losses and stresses.								
Course Content	Design DESIC horizon BUNK Bunken DESIC stress c tank w tank w on grou	UNIT – I SN OF FOUNDATIONS: Design of combined rectangular footings– of raft foundation with continuous slab – Design of pile foundation. UNIT – II SN OF RETAINING WALLS: Design of cantilever retaining walls with httal backfill and sloping back fill – Design of counter fort retaining walls. UNIT – III ERS AND SILOS: rs–Design of square bunkers– Design of circular Bunkers– Design of silos. UNIT – IV SN OF WATER TANKS RESTING ON GROUND: Review of working lesign method – joints in water tanks– IS code method of design of circular ith flexible joint between floor and wall–Approximate design of circular ith restrained base –Approximate design of rectangular water tanks resting and. UNIT – V SN OF ELEVATED WATER TANKS: Nature of stresses in spherical								

	and conical domes – Design of RC domes – Design of Intze tanks.
	<b>UNIT – VI</b> <b>PRESTRESSED CONCRETE:</b> Principles of prestressing – Materials used – Methods and Systems of prestressing– Analysis of rectangular sections for stresses – Losses of prestress.
Textbooks and References	<ol> <li>TEXTBOOKS:         <ol> <li>Dr. B. C. Punmia, Ashok Kumar Jain &amp; Arun Kumar Jain, <i>RCC DESIGNS (Reinforced Concrete Structures)</i>, Laxmi Publications, 11th edition, 2022.</li> <li>S. Ramamrutham, <i>Design of Reinforced Concrete Structures</i>, Dhanpat Rai Publishing Company (P) Ltd., 1st edition, 2016.</li> <li>N. Krishna Raju, <i>Pre-stressed Concrete</i>, McGraw Hill Education, 6th edition, 2018.</li> </ol> </li> <li>REFERENCE BOOKS:         <ol> <li>S. R. Karve &amp; V. L. Shah., <i>Limit State Theory and Design of Reinforced Concrete</i>, Structures publications, 7th edition, 2015.</li> <li>C.K Wang, C.G. and J.A. Pincheira, <i>Reinforced Concrete Design</i>, Oxford university press, 8th edition, 2017.</li> <li>N. Subramanian, <i>Design of Reinforced Concrete Structures</i>, Oxford university press, Illustrated edition, 2013.</li> </ol> </li> </ol>

**CO-PO Mapping:** 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

	P01	P02	P03	P04	PO5	P06	P07	PO8	PO9	PO10	P011	P012	PSO1	PSO2	PSO3
<b>CO1</b>	3	1	2	-	1	1	-	1	-	-	1	2	-	1	-
CO2	3	1	2	-	1	1	-	1	-	-	1	1	-	1	-
CO3	3	1	2	-	1	1	-	1	-	-	1	1	-	1	-
CO4	3	1	2	-	2	1	-	1	-	-	1	2	-	1	-
CO5	3	1	2	-	2	2	-	1	-	-	1	2	-	1	-
<b>CO6</b>	3	1	1	-	1	1	-	1	-	-	1	3	-	1	1

## 20CE32P1 - ENVIRONMENTAL ENGINEERING LABORATORY

Course Category	Professional Core	Credits	1.5
Course Type	Practical	Lecture - Tutorial - Practical	0 - 0 - 3
Prerequisite	None	Sessional Evaluation	40
		Semester End Exam Evaluation	60
		Total Marks	100

Outcomes	CO2							
		Determine total, dissolved, suspended and settleable solids in water.						
	CO3	Determine pH, acidity and alkalinity of water.						
	CO4 Determine hardness of water and chlorides in water							
•	<ul><li>CO5 Determine BOD, COD and sulphates in water.</li><li>CO6 Determine Optimum Coagulant Dose.</li></ul>							
		LIST OF EXPERIMENTS						
Course Content								

Textbooks	TEXTBOOKS:
	<ol> <li>Dr. Kotaiah and Dr. N. Kumara Swamy, <i>Environmental Laboratory</i> <i>Manual</i>, Charotar publishing house, 1994.</li> <li>Indian standards for Analysis of water and Wastewater.</li> </ol>

**CO-PO Mapping:** 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

	P01	P02	PO3	P04	PO5	P06	707	PO8	60d	PO10	P011	P012	PS01	PSO2	PSO3
<b>CO1</b>	2	2	-	1	-	-	1	-	-	-	1	2	-	-	1
CO2	2	2	-	1	-	-	1	-	-	-	1	2	-	-	1
CO3	3	2	-	1	-	-	1	-	-	-	1	2	-	-	1
CO4	3	2	-	1	-	-	1	-	-	-	1	2	-	-	1
CO5	3	2	-	1	2	-	1	-	-	-	1	2	-	-	1
<b>CO6</b>	2	2	-	1	-	-	1	-	-	-	1	2	-	-	1

## 20CE32P2 - REMOTE SENSING & GIS LABORATORY

Course Category	Professional core	Credits	1.5
Course Type	Practical	Lecture - Tutorial - Practical	0 - 0 - 3
Prerequisite	Remote sensing & GIS	Sessional Evaluation	40
		Semester End Exam Evaluation	60
		Total Marks	100

	CO1	Interpret a satellite image						
	CO2	Perform orientation of photographs						
Course	CO3	Map earth surface features						
Outcomes	CO4	Compute geometric measurements						
	CO5	Perform spatial analysis						
	CO6	Integrate different geospatial layers						
	I	LIST OF EXPERIMENTS						
	1. Importing maps and layers from various sources							
	2. Spatial resolution of a satellite image							
	3.	3. Image enhancement						
	4.	4. Generation of map with legends						
	5.	5. Georeferensing						
Course	6.	Supervised classification of a satellite image						
Content	7.	Unsupervised classification of a satellite image						
	8.	Digitization of points, lines and polygons						
	9.	Attribute data entry						
	10.	Overlay analysis- intersection, union, erase, identity						
	11.	Buffer analysis						
	12.	Data interpolation-Inverse distance weighting method						
	13.	Generation of contour map from point data						
	14.	Generation of digital elevation model from point data						

	P01	P02	PO3	P04	P05	906	P07	P08	60d	PO10	P011	P012	PSO1	PSO2	PSO3
CO 1	-	1	-	1	3	-	-	-	2	-	-	1	3	-	2
CO 2	-	-	-	-	3	-	-	-	2	-	-	1	3	-	2
CO 3	-	-	-	-	3	-	-	-	2	1	-	1	3	-	2
<b>CO 4</b>	1	2	-	2	3	-	-	-	2	1	1	1	3	2	3
CO 5	1	2	-	2	3	-	-	-	2	1	1	1	3	2	3
CO 6	1	3	-	3	3	2	-	-	2	1	1	1	3	3	3

**CO-PO Mapping:** 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

### 20CE32P3 – STRUCTURAL ANALYSIS AND DESIGN LABORATORY

Course Category	Professional core	Credits	1.5
Course Type	Practical	Lecture – Tutorial –Practical	0-0-3
Prerequisite	Strength of Materials,	Sessional Evaluation	40
	Structural Analysis, Elemental Design of	Semester End Exam. Evaluation	60
	RC Structures	Total Marks	100

Course	CO1	Carryout analysis of simple beam and frame
Outcomes	CO2	Analyze and design of multi storey RCC building
	CO3	Carryout wind and seismic analysis of RCC buildings
	CO4	Analyze and design of footings
	CO5	Carryout analysis and design of industrial warehouse
	CO6	Carryout analysis and design of conventional center
		LIST OF EXPERIMENTS
Course	1.	Introduction to STAAD pro and STRAP
Content	2.	Analysis of simple beam and single storey frame.
	3.	Analysis and design of multi-storey frame
	4.	Analysis of multi-storey building
	5.	Design of multi-storey building
	6.	Wind load analysis on RCC building
	7.	Seismic analysis of RCC building
	8.	Analysis and design of steel truss
	9.	Analysis and design of isolated footing
	10	Analysis of industrial warehouse
	11	. Design of industrial warehouse
	12	. Analysis and design of conventional center

	P01	P02	PO3	P04	P05	PO6	707	PO8	P09	P010	P011	P012	PS01	PSO2	PSO3
CO1	3	3	3	-	3	-	-	3	2	1	-	3	3	2	2
CO2	3	3	3	-	3	-	-	3	2	1	-	3	3	2	2
CO3	3	3	3	-	3	-	-	3	2	1	-	3	3	2	2
<b>CO4</b>	3	3	3	-	3	-	-	3	2	1	-	3	3	2	2
CO5	3	3	3	-	3	-	-	3	2	1	-	3	3	2	2
CO6	3	3	3	-	3	-	-	3	2	1	-	3	3	2	2

**CO-PO Mapping:** 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

#### N.B.K.R. INSTITUTE OF SCIENCE & TECHNOLOGY:: VIDYANAGAR

#### (AUTONOMOUS)

#### CIVIL ENGINEERING SCHEME OF INSTRUCTION AND EVALUATION

### (With effect from the batch admitted in the academic year 2020-2021) IV YEAR OF FOUR YEAR B.TECH. DEGREE COURSE – I SEMESTER

				~			Evaluation Total									
S.N O	Course	Course Title THEORY		Contact Hours/ Week		Credi	Sessional Test-I				Sessional Test-II			Semester End Examination		Max. Total
	Code			Т	Р	ts	Test-I (2 hrs.)	Assign ment-I	Max. Marks	Test-II (2 hrs.)	Assign ment-II	Max. Marks		Durati on In Hours	Max Mar ks	Marks
1	20CE41EX	Professional Elective-III	3	0	0	3	34	6	40	34	6	40	0.8(Better	3	60	100
2	20CE41EX	<b>Professional Elective-IV</b>	3	0	0	3	34	6	40	34	6	40	of two	3	60	100
3	20CE41EX	<b>Professional Elective-V</b>	3	0	0	3	34	6	40	34	6	40	sessional	3	60	100
	OF EN ELECTIVE COURSE/JOB ORIENTED COURSE								tests)		-					
4	20XX4101	Open Elective Course/Job Oriented Course	3	0	0	3	34	6	40	34	6	40	+ 0.2(Other)	3	60	100
5	20XX4102	Open Elective Course/Job Oriented Course	3	0	0	3	34	6	40	34	6	40		3	60	100
		HUMANITIES & SOCIAL	SCIE	ENC	ES	ELECT	IVE									
6	20SH4101	Managerial Sciences	3	0	0	3	34	6	40	34	6	40	0.8(Better of two+ 0.2(Other)	3	60	100
		SKILL ADVANCEDCOUR	SE /	SOF	FT S	KILL C	OURSE						Day-to-day Evaluation and			
1	20CE41SC	Comp. Design Lab	0	0	4	2	-	-	-	-	-	-	a test (40 marks)	3	60	100
		INTERNSHIP														
1	20CE41IS	Industrial/Research Internship	0	0	0	3	-	-	-	-	-	-	40marks	-	60	100
		TOTAL				23										
1	20xx41xx	Honors/Minor course	4	0	0	4	The hour	rs distribut	ion can be	3-0-2 or 3	-1-0 also					

Industrial/Research: Internship (Mandatory) 2 months during summer vacation (to be evaluated during VII semester)

Professional Elective-III: 20CE41E1:Pavement Construction & Management; 20CE41E2:Solid Waste Management.; 20CE41E3:Structural Health Monitoring; 20CE41E4:Advanced Structural Design Professional Elective-IV: 20CE41E5:Prestressed Concrete; 20CE41E6:Bridge Engineering.; 20CE41E7:Railway Airport & Harbour Engineering; 20CE41E8:Integrated Watershed Management

Professional Elective-V: 20CE41E9:Repair & Rehabilitation of Structures; 20CE41EA:Construction Planning & Management; 20CE41EB:Air & Noise pollution Control ; 20CE41EC:Ground Improvement Techniques

### 20CE41E1 – PAVEMENT CONSTRUCTION AND MANAGEMENT

Course Category	Professional Elective	Credits	3
Course Type	Theory	Lecture - Tutorial - Practical	3 - 0 - 0
Prerequisite	Transportation	Sessional Evaluation	40
	Engineering	Semester End Exam Evaluation	60
		Total Marks	100

Course	CO1	Understand the construction procedure of embankment, gravel road and									
Outcomes	COI	WBM road.									
	CO2	Able to explain the construction procedure of bituminous and cement									
		concrete pavements.									
	CO3	Understand different methods of soil stabilization.									
	CO4	Acquire knowledge about utilization of various highway construction									
		machinery.									
	CO5	Understand the need and methods of maintenance of different types of									
		pavements.									
	CO6	Understand methods of evaluation of different types of existing pavements									
	000	and also different techniques to strengthen them.									
	UNIT – I										
	CONSTRUCTION OF EARTHEN ROADS AND W.B.M ROADS: Typical										
	components of highway on embankment and in cutting, steps for construction of										
	new highway on embankments and in cutting, functions and design elements of										
	embankment - construction of sub grade - materials, construction method and										
	quality	y control check. Method of compaction of soil and equipment - construction									
		of embankment – construction of gravel road and WBM road.									
	<i>6</i>										
	UNIT – II										
Course	CONSTRUCTION OF BITUMINOUS AND CEMENT CONCRETE										
Content		<b>CMENTS:</b> Construction of bituminous roads – Interface treatments, Bitumen									
		e dressing and penetration macadam – Built up spray grout – Premix methods									
	construction of cement concrete pavements - Construction of joints in cement										
	concre	ete pavements – Types of joints, arrangement of joints, joint filler and scalar.									
		UNIT – III									
	SOIL	STABILIZED PAVEMENT LAYERS: Objectives, application of soil									
	stabili	zation techniques, mechanics of stabilization and investigations for soil									
	stabili	zed roads and soil stabilization methods. Mechanical soil stabilization									
		ties of soil –Aggregate mixtures –Factors affecting mechanical stabilization									
	proper	ties of son Aggregate inivities Tactors arecting incentanear stabilization									

	– Minimum design in mechanical stabilization, construction procedur
	Stabilization using soft aggregates – Mehras's method of stabilization.
	UNIT – IV
	HIGHWAY CONSTRUCTION EQUIPMENT: Various types of equipmer
	excavation, grading and compaction - their working principle, advantages
	limitations. Paving equipment for bituminous and cement concrete paver
	Equipment for stabilized soil road construction.
	UNIT – V
	HIGHWAY MAINTENANCE: Need – Causes of pavement failure
	Classification of maintenance works maintenance management system – Failur
1	flexible pavements – Failures in sub grade – Failures in sub base or base cou
,	Typical flexible pavement failures – Failures in cement concrete paveme
,	Typical rigid pavement failures -Different types of maintenance for Bitum
5	surfaces - Special repairs in flexible pavements - Waves and corrugation
	Skidding of pavement surfaces – Maintenance of cement concrete pavements.
	UNIT – VI
]	PAVEMENT EVALUATION: Structural evaluation of pavements -need
	application of structural evaluation studies- different methods- factors affe
	pavement deflection, general principle deflection approach, principle of struc
	evaluation of flexible pavements - Evaluation of pavement surface conditi
	Strengthening of existing pavements -objectives- Flexible overlay over fle
	pavement by conventional design method - Overlay design by Benkelman l
	deflection studies- rigid overlay over rigid pavement - Flexible overlay over

	TEXTBOOKS:
	1. S.K. Khanna and C.E.GJusto &Veeraraghavulu, Highway Engineering,
Textbooks	Nemchand&bros, 10 th edition, 2018.
and	2. Dr. L.R Kadiyali, Principles and Practice of Highway Engineering,
Reference	Khanna publishers, 7 th edition, 2019.
Books	3. C.Venkatramaiah, Transportation Engineering Vol. I, Universities Press
	(India) Private Ltd, 1 st edition, 2016.
	<b>REFERENCE BOOKS:</b>
	1. Dr. L.R Kadiyali, <i>Traffic Engineering and Transport Planning</i> , Khanna publishers, 9 th edition, 2017.
	<ol> <li>AnimeshDas, Analysis of pavement structures, CRC Press, 2nd edition, 2014.</li> </ol>

	P01	P02	PO3	P04	PO5	P06	P07	PO8	604	PO10	P011	P012	PS01	PSO2	PSO 3
<b>CO1</b>	1	-	2	1	1	1	1	1	1	3	1	1	-	1	3
CO2	1	-	2	1	2	-	-	1	1	3	1	1	-	1	3
CO3	2	-	1	1	1	2	-	1	2	3	1	1	-	3	1
CO4	2	2	3	2	2	1	1	1	2	3	1	1	-	2	1
CO5	3	-	-	1	1	1	-	1	2	2	2	1	-	1	-
CO6	1	-	1	2	2	1	1	1	2	2	1	1	-	1	-

**CO-PO Mapping:** 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

## 20CE41E2 – SOLID WASTE MANAGEMENT

Course Category	Professional Elective	Credits	3
Course Type	Theory	Lecture - Tutorial - Practical	3 - 0 - 0
Prerequisite	None	Sessional Evaluation	40
		Semester End Exam	60
		Evaluation	
		Total Marks	100

Course Outcomes	CO1	Know the impacts of solid waste generation							
Outcomes	CO2	CO2 Identify different sources of solid waste.							
	CO3	Apply the onsite handling, processing techniques and transfer techniques.							
	CO4	Apply processing techniques and recovery of products from solid waste.							
	CO5	Know various disposal techniques and management options for solid waste.							
	CO6	Identifies hazardous wastes and apply the disposal techniques.							
Course Content	of solic manage solid w	UNIT – I DDUCTION: Goals and objectives of solid waste management – Impacts d waste generation in a technological society – Principle of solid waste ement – Social and economic aspects – Public awareness – Quantities of astes. UNIT –II CES AND TYPES OF MUNICIPAL SOLID WASTES: Sources and							
	types of element	OURCES AND TYPES OF MUNICIPAL SOLID WASTES: Sources and ppes of solid wastes – Factors affecting generation of solid wastes – functional lements - Characteristics - Effects of improper disposal of solid wastes – Public ealth effects.							
	UNIT – III ONSITE HANDLING – STORAGE AND PROCESSING: Onsite handling – Methods used at residential and commercial sources – Onsite storage dust bins –								
	Commu	unity containers, container locations, onsite processing methods							
		<b>ECTION AND TRANSFER:</b> Methods of Collection – Types of vehicles power requirement – Collection routes –Transfer stations – Selection of							

	location Options under Indian conditions								
	location - Options under Indian conditions.								
	<b>UNIT – IV</b> <b>PROCESSING TECHNIQUES AND EQUIPMENT:</b> Purpose of processing- sorting - shredding and incineration and types of incinerators.								
	<b>RECOVERY OF PRODUCTS AND ENERGY:</b> Material processing and recovery systems – Recovery of chemical conversion products –Recovery of biological conversion products, recovery of energy from conversion products.								
	UNIT – V DISPOSAL OF SOLID WASTES: Sanitary landfills – General considerations – Site selection – Operational management systems in land fill – Gas and leachate control – construction –Ocean disposal of solid wastes – Application of GIS in Land Fill.								
	UNIT – VI HAZARDOUS WASTES: Special wastes - Hazardous wastes – Hospital wastes – Sewage sludge – Industrial solid wastes – Methods of disposal.								
Textbooks and References	TEXTBOOKS:								
Kererences	<ol> <li>Iqbal H Khan, Naved Ahsan, <i>Textbook of Solid Wastes Management</i>, CBS publishers and distributors pvt ltd, 1st edition, 2017.</li> <li>George Tchobanoglous &amp; Hilary Theison, <i>Solid Waste: Engineering principles and management</i>, McGraw-Hill Publishers, 1993.</li> <li>Bhide, A.D. and Sundaresam B.B, <i>Solid Waste Management in developing countries</i>, Indian National Scientific Documentation Centre, 2016.</li> <li>REFERENCE BOOKS:</li> </ol>								
	<ol> <li>Datta.M Parida &amp; B S Guha B.K.and Sreekrishna. T. R, <i>Industrial Solid</i> <i>Waste Management &amp; Land Filling Practice</i>, Narosa publishing house, 2001</li> <li>K. Sasi kumar and Sanoop Gopi Krishna, <i>Solid Waste Management</i>, PHI publishers, 2013.</li> <li>Rajaram Vasudevan, Siddiqui Faisal Zia, Sanjeev Agrawal &amp; Mohmmad Imran Khan, <i>Solid And Liquid Waste Management</i>, PHI publishers.</li> </ol>								

	P01	P02	PO3	P04	P05	P06	P07	804	P09	P010	P011	P012	PS01	PSO2	PSO3
<b>CO1</b>	1	1	-	-	1	3	3	3	2	3	1	3	-	-	-
CO2	-	2	1	-	-	3	2	3	2	2	2	1	-	-	1
<b>CO3</b>	3	2	2	1	2	2	2	3	2	3	3	2	-	2	2
<b>CO4</b>	2	3	3	2	3	2	2	2	3	3	2	3	-	2	2
CO5	1	1	2	1	2	3	3	3	2	3	2	2	1	1	1
CO6	2	2	-	-	2	3	3	3	3	3	1	3	-	-	1

## 20CE41E3 - STRUCTURAL HEALTH MONITERING

Course Category	Professional Elective	Credits	3
Course Type	Theory	Lecture - Tutorial - Practical	3 - 0 - 0
Prerequisite	None	Sessional Evaluation	40
		Semester End Exam	60
		Evaluation	
		Total Marks	100

Course Objectives	<ol> <li>To understand basic concepts of structural health monitoring in civil engineering.</li> <li>To interpret structural heath failure in bridge structure.</li> <li>To overview the Non Destructive Test techniques for detecting the defects in concrete structures.</li> <li>To understand the concept of condition survey.</li> <li>Gain-in knowledge in quality control of concrete structures.</li> </ol>								
		Gain-in knowledge of Rehabilitation of concrete structures.							
Course Outcomes	CO1	Understand basic concepts of structural health monitoring and analyse between system of a man and a structure with structural health monitoring.							
	CO2	List out structural failures in bridge structure.							
	CO3	Overview the non-destructive test techniques and methods for concrete structures.							
	CO4	Perform condition survey for evaluation of concrete structures.							
	CO5	Evaluate the non-destructive test techniques of concrete structures and case studies.							
	CO6	Develop sustainable maintenance and rehabilitation of concrete structures.							
		UNIT-I							
Course	(SHM and st man a and A	<b>RODUCTION TO STRUCTURAL HEALTH MONITORING</b> <b>(</b> ):Definition & motivation for SHM – SHM – A way for smart materials tructures – SHM and Biomimetic – Analog between the nervous system of a and a structure with SHM –SHM as a part of system management – Passive Active SHM – NDE – SHM and NDECS – Basic components of SHM – trials for sensor design.							

Content

### UNIT-II

**APPLICATION OF SHM IN CIVIL ENGINEERING:** Introduction to capacitive methods – Capacitive probe for cover concrete – SHM of a bridge – Applications for external post tensioned cables – Monitoring historical buildings.

### UNIT-III

**NON DESTRUCTIVE TESTING OF CONCRETE STRUCTURES:** Introduction to NDT – Situations and contexts – where NDT is needed – Classification of NDT procedures –Visual Inspection – Half-Cell electrical potential methods – Schmidt Rebound Hammer Test – Resistivity measurement – Electromagnetic methods – Radiographic Testing – ultrasonic testing – Infrared thermography – Ground penetrating radar – Radio isotope gauges – Other methods.

### **UNIT-IV**

**CONDITION SURVEY & NDE OF CONCRETE STRUCTURE:** Definition –Objective of condition survey – Stages of condition survey (Preliminary – Planning – Inspection and Testing stages) – Possible defects in concrete structures.

### UNIT-V

**QUALITY CONTROL OF CONCRETE STRUCTURES**: Definition and need – Quality control applications in concrete structures – NDT as an option for Non-Destructive Evaluation (NDE) of Concrete structures – Case studies of a few NDT procedures on concrete structures.

### **UNIT-VI**

**REHABILITATION AND RETROFITTING OF CONCRETE STRUCTURE:** Repair rehabilitation & retrofitting of structures –Damage assessment of concrete structures – Materials and methods for repairs and rehabilitation – Modeling of repaired composite structure –Structural analysis and design – Importance of re-analysis –Execution of rehabilitation strategy – Case studies.

Textbooks	TEXTBOOKS:
and	1. Gandhi and Thompson, Smart Materials and Structures, Springer, 1992.
References	2. Fu Ko Chang, Structural Health Monitoring: Current Status and
	Perspectives, CRC Press 1st edition, 1998.
	3. Ravi shankar.K and Krishna moorthy.T.S, Structural Health Monitoring,
	Repair and Rehabilitation of Concrete Structures, Allied Publishers, 2004.
	<b>REFERENCES:</b>
	1. Shetty M.S., Concrete Technology - Theory and Practice", S.Chand and
	Company, 2008.
	2. Dov Kominetzky .M.S., Design and Construction Failures, Galgotia
	Publications Pvt. Ltd., 2001.
	3. CPWD and Indian Buildings Congress, Hand Book on Seismic Retrofit of
	Buildings, Narosa Publishers, 2008.

**CO-PO Mapping:** 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3
<b>CO1</b>	2	1	-	1	2	2	2	1	-	-	2	1	2	2	2
CO2	2	1	-	1	2	2	2	1	-	-	2	1	2	2	2
CO3	2	1	1	-	-	2	1	-	-	-	2	1	2	1	3
<b>CO4</b>	2	2	1	2	2	2	1	1	-	-	2	1	-	1	2
<b>CO5</b>	2	1	1	1	1	1	2	2	-	-	1	1	2	2	2
<b>CO6</b>	2	1	1	1	1	2	1	1	-	-	1	1	2	2	2

# 20CE41E4 – ADVANCED STRUCTURAL DESIGN

Course Category	Professional Elective	Credits	3
Course Type	Theory	Lecture - Tutorial - Practical	3-0-0
Prerequisite	Elemental Design of	Sessional Evaluation	40
	Reinforced Concrete Structures	Semester End Exam Evaluation	60
		Total Marks	100

Course Outcomes	CO1 Design slender reinforced concrete columns, concrete walls and grid flo									
	CO2	Analyze multi storey building frames for seismic forces.								
	CO3	CO3 Perform Plastic design of beams and columns.								
	CO4 Perform Plastic design of frames according to BIS code of practice									
	CO5	Design pre-stressed concrete beams by using limit state design.								
	CO6	Perform the design of prestressed concrete slabs, pressure pipes and railway sleepers.								
Course Content	UNIT – I Design of slender columns - Concrete walls under vertical loads - Grid floors.									
	on bu	<b>UNIT – II</b> ction to seismic analysis - Different methods of computing seismic forces dings –Analysis of multi-storey building frames - Ductility considerations quake resistant design of RC buildings based on IS 13920.								
	<b>UNIT – III</b> Plastic design of simply supported and continuous beams –Columns									
	UNIT – IV Plastic design of frames– Steps/process to as per the most recent BIS code practices- Deign of purlins. UNIT – V Design of Pre- stressed beams for strength in limit state in flexure and shear Limit state strength at transfer conditions – Limit state of deflection and cracking									
		<b>UNIT – VI</b> on of reinforcement in anchor zones – Design of Pre- stressed rectangular – Design of pressure pipes – Design of railway sleepers.								
Textbooks	TEXT	TBOOKS:								

and References	<ol> <li>P.C. Varghese, Advanced Reinforced Concrete Design, PHI Publisher, 2nd revised edition, 2011.</li> <li>Dr. S. Ramchandra and V. Gehlot, Design of Steel Structures Vol-2, standard publishers distributors, 9th revised and enlarged edition, 2015.</li> <li>N. Krishna Raju, Prestressed Concrete, McGraw hill education, 6th Edition, 2018.</li> </ol>
	<b>REFERENCES:</b>
	<ol> <li>G.S.Pandit &amp; S.P.Gupta, <i>Prestressed Concrete</i>, CBS Publishers, and distributors Pvt. Ltd., 1st Edition, 2019.</li> <li>N. Krishna Raju, <i>Advanced Reinforced Concrete Design</i>, CBS Publishers, and distributors Pvt. Ltd., 3rd Edition, 2016.</li> <li>Pankaj Agarwal &amp; Manish Shrikhande, <i>Earthquake Resistant Design of Structures</i>, Prentice Hall of India Pvt. Ltd, 2011.</li> </ol>

**CO-PO Mapping:** 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

	P01	P02	PO3	P04	PO5	904	P07	PO8	P09	PO10	P011	P012	IOSA	PSO2	PSO3
CO1	3	3	2	-	1	-	-	2	-	-	-	2	-	1	1
CO2	3	3	1	-	1	-	-	-	-	-	-	1	-	1	1
CO3	3	3	2	-	1	-	-	2	-	-	-	2	-	1	1
<b>CO4</b>	3	3	2	-	1	-	-	2	-	-	-	2	-	1	1
CO5	3	3	2	-	1	-	-	2	-	-	-	3	-	1	1
CO6	3	3	2	-	1	-	-	2	-	-	-	1	-	1	1

### 20CE41E5 - PRESTRESSED CONCRETE

Course Category	Professional Elective	Credits	3
Course Type	Theory	Lecture - Tutorial - Practical	3 - 0 - 0
Prerequisite	Elemental Design of	Sessional Evaluation	40
	Reinforced Concrete structures	Semester End Exam Evaluation	60
	suuctures	Total Marks	100

	CO1	Calculate the resultant stresses in rectangular prestressed concrete.							
Outcomes	CO2	Analyze the losses and design the prestressed concrete sections.							
	CO3       Design Pre-tensioned concrete members.								
	CO4	Analyze and design partially post-tensioned members.							
	CO5	Analyze and design composite prestressed concrete members.							
	CO6	Design prestressed concrete slabs.							
	INTED	UNIT – I ODUCTION: Design concerns of prostrugging Unisterioal development							
	Advan PRES and po ANAI – Anal	<b>ODUCTION:</b> Basic concepts of prestressing – Historical development – tages of prestressed concrete – High strength concrete – High tensile steel. <b>TRESSING SYSTEM:</b> Introduction –Tensioning devices – Pretensioning ost tensioning systems –Thermo-electric and chemical prestressing. <b>LYSIS OF PRESTRESSED CONCRETE SECTIONS:</b> Basic assumptions lysis of prestress –Resultant stress at a section – Pressure line – Concept of alancing –Stress in tendons and cracking moment.							
	UNIT – II								
Course Content	deform of stre	<b>ES OF PRESTRESS</b> : Nature of losses of prestress – Loss due to elastic nation of concrete – Shrinkage of concrete – Creep of concrete – Relaxation ss in steel – Friction and anchorage slip – Total losses.							
	for Fle	<b>GN OF PRESTRESSED CONCRETE SECTIONS:</b> Design of sections exure, Axial tension, Compression bending and Shear – Design of members nd and bearing.							
	for Fle for bo	exure, Axial tension, Compression bending and Shear – Design of members nd and bearing. UNIT – III							
	for Fle for bor DESI	exure, Axial tension, Compression bending and Shear – Design of members nd and bearing. UNIT – III GN OF PRE-TENSIONED MEMBERS: Dimensioning of flexural							
	for Fle for bor DESIC memb	exure, Axial tension, Compression bending and Shear – Design of members nd and bearing. UNIT – III GN OF PRE-TENSIONED MEMBERS: Dimensioning of flexural							
	for Fle for bor DESIC memb	exure, Axial tension, Compression bending and Shear – Design of members nd and bearing. UNIT – III GN OF PRE-TENSIONED MEMBERS: Dimensioning of flexural ers – Estimation of self-weight of beams – Ultimate flexure strength –							

	Cross sectional dimensions – Moment and shear forces – Minimum section modules – Permissible tendon zone – Deflection and serviceability – Design of partially prestressed members. <b>UNIT – V</b> <b>COMPOSITE CONCRETE STRUCTURES:</b> Composite structural members – Types of composite construction – Analysis of stress – Differential shrinkage – Deflection of composite members –Flexural strength of composite sections and design of composite sections.
	UNIT – VI
	PRESTRESSED CONCRETE SLABS: Types of prestressed concrete floor slabs – Design of prestressed concrete one way slabs, Two way slabs and simple flat slabs.
Textbooks	<b>TEXTBOOKS:</b>
& References	1. N. Krishna Raju, <i>Prestressed Concrete</i> , McGraw Hill Education, 6 th Edition, 2018.
	2. P. Dayaratham and P. Sarah, <i>Prestressed Concrete Structures</i> , Medtech Publishers, 7 th Edition, 2017.
	<ol> <li>S. Ramamrutham, <i>Prestressed Concrete Structures</i>, Dhanpatrai publishing company, 6th Edition, 2018.</li> </ol>
	REFERENCE BOOKS:
	1. N. C. Sinha and S. K. Roy, <i>Fundamentals of Prestressed Concrete</i> , S Chand Publishing, 3 rd Edition, 2011.
	<ol> <li>T.Y. Lin &amp; N.H. Burns, <i>Design of Prestressed Concrete Structures</i>, Wiley India Private Limited, 3rd Edition, 2010.</li> </ol>
	<ol> <li>Shrikan B.Yanakudre, Ashish A.Yoligar, <i>Prestressed Concrete</i>, Khanna Publishing, 1st edition, 2018.</li> </ol>

	P01	P02	PO3	P04	PO5	PO6	P07	PO8	PO9	PO10	P011	P012	PSO 1	PSO 2	PSO 3
CO1	3	-	-	1	-	3	-	-	-	-	-	3	-	1	1
CO2	3	-	1	1	-	2	2	1	-	-	-	3	-	1	1
CO3	3	-	1	-	2	1	-	1	-	-	1	2	-	2	1
<b>CO4</b>	3	-	1	1	1	1	-	1	-	-	1	2	-	1	1
CO5	3	-	1	1	2	2	1	1	-	-	1	1	-	1	1
CO6	3	-	1	-	2	1	1	1	-	-	1	1	-	2	2

## 20CE41E6 – BRIDGE ENGINEERING

<b>Course Category</b>	Professional Elective	Credits	3
Course Type	Theory	Lecture - Tutorial - Practical	3-0-0
Prerequisite	Elemental Design of	Sessional Evaluation	40
	Reinforced Concrete	Semester End Exam	60
	Structures and Structural	Evaluation	
	Analysis	Total Marks	100

Course Outcomes	CO1	Classify bridge loading standards and be able to recommend suitable bridge type.					
	CO2	Analyze and design box culvert and deck slab bridge.					
	CO3	Design RC T- beam bridge using Pigeaud's method.					
	CO4	Design plate girder bridge and composite bridge.					
	CO5	Analyze Piers and abutments for stability.					
	CO6	Design bridge bearings and identify the types and importance joints in bridges.					
		UNIT - I					
		<b>CODUCTION:</b> General – Classification of bridges – Site selection -					
	Importance of site investigation in bridge design - Choice of bridge type -						
	Location of piers and abutments - Subsoil exploration – Economical span- Traffic projection – Scour depth.						
	<b>IRC LOADING STANDARDS:</b> Various loads on bridges - Highway bridge						
	loading standards–Impact factor–Railway Bridge loading standards (Broad Gauge						
	Main Line Bridge).						
	UNIT – II						
	BOX CULVERT: General aspects – Design loads, Design of Box culvert						
G	5	cted to IRC class AA tracked vehicle only.					
Course Content		<b>K SLAB BRIDGE:</b> Introduction – Effective width method– Design of deck Bridge (simply supported) subjected to IRC class AA tracked vehicle only.					
	51u0 I	Sindle (simply supported) subjected to interclass first ducked vemere only.					
		UNIT - III					
	BEAN	M AND SLAB BRIDGE (T-BEAM BRIDGE): General features – Design					
		terior panel of slab – Pigeaud's method – Design of a T-beam bridge					
	subjected to IRC class AA tracked vehicle only.						
		UNIT - IV					
	PLAT	<b>TE GIRDER BRIDGE:</b> Introduction – elements of a plate girder and their					
	design gauge	n - Design of a deck type welded plate girder bridge for single line broad					

	<b>COMPOSITE BRIDGES:</b> Introduction – Advantages – Design of composite bridges consisting of RCC slabs over steel girders including shear connectors.							
	UNIT - V PIERS AND ABUTMENTS: General features – Bed block – Materials for piers							
	and abutments – Types of piers – Forces acting on piers – Stability analysis of piers – General features of abutments – Forces acting on abutments – Stability analysis of abutments - Types of wing walls – Approaches – Types of bridge foundations (excluding design).							
	UNIT - VI							
	<b>BRIDGE BEARINGS:</b> General features – Types of bearings – Design principles of steel rocker and roller bearings – Design of a steel rocker bearing – Design of elastomeric pad bearing – Joints – Expansion joints- Parapets and railings for highway bridges.							
Text	TEXT BOOKS:							
and Reference	1. N. Krishna Raju, <i>Design of Bridges</i> , Oxford & IBH Publishing Company Pvt. Ltd., 5 th Edition, 2018.							
books	<ol> <li>N. Raja Gopalan, <i>Bridge superstructure</i>, Narosa Publishing House, 2006.</li> <li>S. C. Rangwala, <i>Bridge engineering</i>, Charotar Publications, 16th Rev Edition, 2015.</li> </ol>							
	<ul> <li><b>REFERENCE BOOKS:</b></li> <li>1. D. J. Victor, <i>Essentials of bridge engineering</i>, Oxford&amp; IBH Publishing Company Pvt. Ltd., 4th Edition, 1994.</li> </ul>							
	<ol> <li>T. R. Jagadeesh and M. A. Jayaram, <i>Design of Bridge structures</i>, PHI Learning Pvt. Ltd., 2nd Edition, 2014.</li> <li>Ponnu Swamy, <i>Bridge Engineering</i>, Tata McGraw Hill Company, 3rd Edition, 2017.</li> </ol>							

**CO-PO Mapping:** 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2	PSO3
CO1	1	-	2	-	1	-	1	1	-	-	1	1	-	-	1
CO2	3	-	3	-	1	-	2	-	-	-	1	-	-	2	3
CO3	3	-	3	-	2	-	1	-	-	-	1	-	-	2	3
<b>CO4</b>	3	-	2	-	2	-	1	-	-	-	1	-	-	2	3
<b>CO5</b>	2	-	1	-	-	-	-	-	-	-	-	1	-	2	3
CO6	1	-	1	-	1	-	-	_	_	-	1	-	-	-	2

## 20CE41E7 - RAILWAY, AIRPORT & HARBOUR ENGINEERING

Course Category	Professional Elective	Credits	3
Course Type	Theory	Lecture - Tutorial - Practical	3 - 0 - 0
Prerequisite	Transportation Engineering	Sessional Evaluation	40
		Semester End Exam	60
		Evaluation	
		Total Marks	100

Course Objectives	2. T tu 3. T an 4. T 5. T	<ol> <li>To illustrate permanent way and its components.</li> <li>To demonstrate different types of stations, yards, points, crossings and turnouts.</li> <li>To outline the basic concepts of airport transportation, aircraft characteristics and airport.</li> <li>To analyze runway orientation by wind rose method.</li> <li>To relate water and water transportation for providing various facilities required in harbour.</li> <li>To elaborate facilities required in harbour with break waters and dredging.</li> </ol>							
Course	CO1	Illustrate permanent way, its components and functions in railways.							
Outcomes	CO2	Identify functions, requirements and types of stations, yards, points and crossing, turnouts.							
	CO3	Outline air transport features along with airport components.							
	CO4	Understand basic concepts of airport planning and runway orientation.							
	CO5	Summarize facilities required in harbour and port.							
	CO6	Relate importance of break waters, docks and dredging in harbour and port.							
	and h	<b>UNIT - I</b> <b>CODUCTION TO RAILWAY ENGINEERING:</b> comparison of railways ighways, milestones in Indian railways, classification of Indian railways – oute classification, railway zones.							
Course Content	of gau rail se and re proble	MANENT WAY: Requirements of ideal permanent way, gauges – selection age- uniformity of gauges, Rails - functions, requirements of rails, types of actions, rail failures, coning of wheels, Sleepers – types of sleepers, functions equirements, adzing of sleepers, spacing of sleepers and sleeper density- ems, Ballast- functions and requirements, types of ballast - (Theory only). UNIT – II							

stations, requirements, classification - operational classification and functional classification, platforms - types, loops, sidings, Station yards – types, layouts, Points and crossings – turnouts - left hand turnout, right hand turnout, types of switches, types of crossings, sleepers at points and crossings (Theory only).

#### UNIT – III

**AIR TRANSPORT:** Introduction to air transportation, characteristics of air transport, development of national organizations for civil aviation, airport zoning and zoning laws, classification of airports, different kinds of flights, Air traffic control - forecasting air traffic potential (Basic concepts only).

**AIR CRAFT AND AIR PORT:** Air craft – types, components, basic structure of air craft, aircraft characteristics, Components of airports and functions - terminal area and landing area, planning concepts for terminal building, Parking area - patterns of parking, systems of aircraft parking, Aprons - loading aprons and holding aprons, hangers - T hangers, nose hangers and grouped hangers.

#### UNIT - IV

**AIRPORT PLANNING:** Airport planning – Master plan, regional plan, factors affecting site selection for an airport, characteristics of well-planned airport layout, typical airport layout patterns, blast considerations, blast fences.

**RUNWAY ORIENTATION**: Runway - patterns, types, Orientation - wind rose analysis in runway orientation – problems on runway orientation, Length of runway – Problems.

### UNIT - V

**WATER TRANSPORTATION**: Salient features of water transportation in India - types of water transportation - inland and ocean transportation, Tides, Wind and waves – factors governing the characteristics of water waves, Currents, uses and effects of tides at harbour.

**HARBOUR AND PORT**: Classification of harbors and ports, site selection, requirements of good port, components of a harbour and port - loading and unloading facilities of harbor, quays & wharves, piers, dolphins, jetties, fenders, aprons, transit sheds, Docks – classification, shapes of docks , dry docks & wet docks, Different layouts of harbour.

### UNIT - VI

**BREAK WATERS:** Breakwaters – types of break waters, details of energy dissipation in mound break water, characteristics of mound break water, rubble mound breakwater – rubble mound breakwater strengthened by concrete blocks, rubble mound breakwater strengthened by patented blocks.

**DREDGING:** Classification of dredging, Equipment - mechanical type, hydraulic or suction type dredgers, choice of dredger, navigation facilities – need- types-

	general lights and local lights – fixed light station types only- floating navigation aids types only.
Textbooks and References	<ol> <li>TEXTBOOKS:         <ol> <li>S. C. Saxena &amp; S.P.Arora, A text book of Railway Engineering, Dhanpat Rai publications, 7th edition, 2015.</li> <li>R. Srinivasan, Docks and Harbour engineering, Charotar publishing hose Pvt. Ltd, 29th edition, 2018.</li> <li>C. Venkatramaiah, <i>Transportation Engineering II</i>", Universities press (India) Private Limited, 2ndedition, 2016.</li> </ol> </li> <li>REFERENCE BOOKS:         <ol> <li>SP Bindra, "A Course in Docks and Harbour Engineering", Dhanpat Rai Publication, 8th edition, 2016.</li> <li>S.C. Rangwala , "A text book of Railway Engineering", Charotar publishing house, 26th edition, 2016.</li> <li>K.P. Subramanian, "Highway, railway, airport and harbour engineering", SCITECH publishers, 2nd edition, 2015.</li> </ol> </li> </ol>

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
<b>CO1</b>	1	-	2	1	1	1	1	1	1	2	1	1	-	-	-
CO2	1	-	2	2	2	-	-	1	1	3	1	1	-	1	-
CO3	2	-	1	2	1	2	-	1	2	3	1	1	-	1	1
CO4	2	2	3	2	2	1	1	1	2	3	1	1	-	1	1
CO5	3	-	-	1	2	1	-	1	2	2	2	1	-	-	1
<b>CO6</b>	1	-	1	2	2	1	1	3	3	2	1	1	-	1	-

# 20CE41E8 – INTEGRATED WATERSHED MANAGEMENT

Course Category	Professional Elective	Credits	3
Course Type	Theory	Lecture - Tutorial - Practical	3 - 0- 0
Prerequisite	None	Sessional Evaluation	40
		Semester End Exam Evaluation	60
		Total Marks	100

Course	CO1	Demonstrate the basic concepts of watershed management								
Outcomes	CO2	Identify and plan for sustainable utilization of available land resources in the watershed.								
	CO3	Identify and plan for sustainable utilization of available water resources in the watershed.								
	CO4	Identify various crops patterns, soil condition and water salinity in the watershed and suggest remedial measures.								
	CO5	Identify various energy resources available in the watershed and plan for sustainable utilization.								
	CO6	Apply modern technology for effective integrated watershed management.								
	UNIT – I									
Course Content	Trends Cultiva Techni WATI physio Soils, Discip	<ul> <li>ODUCTION: Place in Environment - Global Effects, Degradation s; Semi-arid Tropics; Status in India - Forests; Soils, Water, Droughts, ation, Irrigation, Power, Food and Nutrition; Neglected Nodes -Social, ical, Environment, Cooperation, Economy.</li> <li>ERSHED CONCEPT: Watershed; Need; Characteristics. Size, Shape, ography, Slope, Climate, Drainage, Land Use, Vegetation, Geology and Hydrology, Management - Degradation Devils; Integrated Multi-linary Approach - Socioeconomics, Priorities, Tasks, Rural Technological ery Systems, Nodes, Economics.</li> </ul>								
	UNIT – II									
	UNIT – II LAND: Survey Layout; Preparation and Development, Contour Demarcation, Bush Clearance, Uprooting, Stone Picking and Packing, Levelling, Shaping and Consolidation, Fencing, Ploughing; Soil and Soil Moisture Conservation - Soil Survey; Conservation Measures. Rainwater Management - Stream Head Cutting, River Bank Management, Flow Irrigation, Waterways; Reclamation of Saline Soils. Alkaline Soils, Saline Soils, Acidic Soils, Sulfide Soils.									

#### UNIT – III

**WATER:** Investigation. Remote Sensing, Data and Analysis; Exploration, Evaluation and Exploitation; Surface Water. Utilization of Wasted Flows, Salvaging Flood Flows, National Waterway Grid, Dams and Irrigation, Rejected Recharge, Tidal Rivers, Tanks; Rainwater Harvesting. Catchment, Harvesting, Harvesting Structures; Groundwater. Exploitation of Canal Command Areas, Potential Areas, Harvesting; Desalinization of Coastal Saline Stretches, Artificial Recharge;

#### $\mathbf{UNIT} - \mathbf{IV}$

**GREENERY:** Agriculture - Crop Husbandry - Soil Enrichment, Inter, Mixed and Strip Cropping, Cropping Pattern; Sustainable Agriculture - Hybrid and Improved Seeds; Biomass Management - Crop Rotation, Legumes, Organic Fertilization, Spider Fanning; Dryland Agriculture - Runoff Agriculture, Microcatchment Fanning, Irrigation with Saline Water, Reusing Water, Conserving Water, Sprinkler irrigation, Drip Irrigation, Pot Irrigation, Other Systems, Reducing Cropland Percolation Limes, Reducing Transpiration Losses, Selection of Water Use Efficiency Crops; irrigation - Water Losses, Control of Water Levels, Salinity Problem, Water Distribution.

#### $\mathbf{UNIT} - \mathbf{V}$

**ENERGY:** Renewable resources, Water Power, Solar Energy, Wind Power; Biomass. Firewood. Synthetic Fuels, Burning of Municipal Garbage; Alternative Strategies; Conservation.

**SOCIOECONOMICS:** Awareness, Participation, Response; State and Integrated Approach. Appreciation of the Concept, Training, Transfer of Technology, Research and Development, Agro industrial Infrastructure; Sustainable society - Livestock, Small animal fanning, Pisciculture, Sericulture, Health and Hygiene, Education, Transport, Cues; Economics - Per Hectare Provision, NGOs, International Agencies, Future, Economic Viability; Sustainable Society.

#### UNIT – VI

**TECHNOLOGY**: Farm Equipment; Contour Methods; Check Dams; Water Catchment and Harvesting. Kunds, Depression Harvesting, Harvesting Below Ground Level, Harvesting Below Stream Bed Level, Groundwater Harvesting; Low-Cost Technology. Water Conservation. Utilization of Wasted Natural Resources, Novelties; Rural Technological Delivery Systems.

**IMPACT:** Model Watershed; Government Projects. National Projects; World Bank Projects; NGOs Efforts. Society for Promotion of Wasteland Development; ICRISAT.

**TEXTBOOKS:** 

Textbooks

and	1. J.V.S. Murthy, <i>Watershed Management</i> , New Age International
References	Publishers, 2 nd edition, 2004
	2. V.V.N. Murthy, and M.K. Jha Land and water management, Kalyani
	Publishers, 3 rd edition, 2015.
	3. Madan Mohan Das and M.D. Saikia, Watershed management, Prentice
	Hall of India, 2 nd edition 2013.
	<b>REFERENCE BOOKS:</b>
	1. P.E. Black, <i>Watershed Hydrology</i> , Prentice Hall Englewood Cliffs, 2 nd edition, 2001.
	2. R. Suresh, <i>Watershed Hydrology</i> , Standard Publishers and Distributors, Delhi, 2 nd edition, 2007.
	3. A. Ranga Reddy, <i>Watershed Management for Sustainable Development</i> , A Mittal Publications, 2005.

**CO-PO Mapping:** 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

	P01	P02	PO3	P04	P05	P06	P07	PO8	60d	P010	P011	P012	PS01	PSO2	PSO3
CO 1	-	-	-	-	-	1	1	-	-	-	-	1	-	-	-
<b>CO 2</b>	-	-	-	1	-	1	1	1	-	-	-	-	-	1	1
<b>CO 3</b>	-	-	-	1	-	1	1	1	-	-	-	-	-	1	1
<b>CO 4</b>	2	-	-	1	-	1	1	-	-	-	-	1	-	2	1
CO 5	1	-	-	1	2	-	2	1	-	-	-	1	-	2	1
CO 6	1	-	-	2	1	1	2	1	-	-	-	-	-	1	1

### 20CE41E9 - REPAIR AND REHABILITATION OF STRUCTURES

Course Category	Professional Elective	Credits	3
Course Type	Theory	Lecture - Tutorial - Practical	3 - 0 - 0
Prerequisite	Concrete Technology	Sessional Evaluation	40
		Semester End Exam Evaluation	60
		Total Marks	100

Course	CO1	Apply maintenance and repair strategies to evaluate damaged structures.							
Outcomes	CO2 Evaluate strength and durability characteristics of concrete.								
	CO3	CO3 Identify various materials used for repair and their applications.							
	CO4	Apply non-destructive testing techniques and protective methods to field problems.							
	CO5	Recommend repair and demolition procedures of structures.							
	CO6	Assess corrosion of embedded steel in concrete and suggest repair techniques.							
		UNIT -I							
Course Content	rehabi inspec deteri STR Streng Cause Corro MAT accele of fib	NTENANCE AND REPAIR STRATEGIES: Maintenance – Repair and ilitation – Facets of maintenance – Importance of maintenance – Various aspects of ction – Assessment procedure for evaluating a damaged structure – Causes of oration. UNIT -II ENGTH AND DURABILITY OF CONCRETE: Quality assurance for concrete – gth – Durability and thermal properties of concrete – Cracks – Different types – es – Effects due to climate – Temperature – Sustained elevated temperature – osion – Effects of cover thickness. UNIT -III ERIALS FOR REPAIR:–Expansive cement- Ferro cement - Special elements for erated strength gain-Sulphur infiltrated concrete – Fibre reinforced concrete – um concrete – Geopolymer concrete – Reactive powder concrete – Bacterial ete.							
	UNIT -IV PROTECTION METHODS: Non-Destructive Testing Techniques: Radioactive Method –Nuclear Method-Magnetic Method-Electrical Method. Epoxy Injection – Shoring – Underpinning – Corrosion Protection Techniques – Corrosion Inhibitors – Corrosion Resistant Steels – Coatings to Reinforcement – Cathodic Protection.								

	<b>UNIT- V</b> <b>REPAIR AND DEMOLITION TECHNIQUES OF STRUCTURES</b> : Strengthening of Structural Elements – Repair of structures distressed due to corrosion – fire – Leakage and earthquake – Engineered demolition methods – Case studies.
	UNIT -VI CORROSION OF EMBEDDED STEEL IN CONCRETE: Corrosion of embedded steel in concrete – Mechanism – Stages of corrosion damage – Repair of various corrosion damaged structural elements (slabs, beams, and columns).
	<b>JACKETING:</b> Jacketing – Column jacketing – Beam jacketing – Beam Column joint jacketing – Reinforced concrete jackets – Steel jacketing – FRP jacketing.
	<b>STRENGTHENING</b> : Strengthening of beam: Shear strengthening and Flexural strengthening.
Text and Reference books	<ul> <li>TEXT BOOKS:</li> <li>1. Poonam I. Modi and Chirag N. Patel, <i>Repair and Rehabilitation of Structures</i>, PHI learning Pvt. Ltd, Eastern Economy Edition, 2016.</li> <li>2. Denison Campbell, Allen and Harold Roper, <i>Concrete Structures, Materials Maintenance and Repair</i>, Longman Scientific and Technical, Illustrated edition, 1991.</li> <li>3. R.T. Allen and S.C Edwards, <i>Repair of Concrete Structures</i>, Blakie and Sons, 2nd edition, 1992.</li> <li>REFERENCES:</li> <li>1. M.S Dov Kominetzky, <i>Design and Construction Failures</i>, Galgotia Publications Pvt. Ltd., 2001.</li> <li>2. K. Ravi Shankar and T.S Krishna Moorthy, <i>Structural Health Monitoring, Repair</i></li> </ul>
	<ol> <li>K. Kavi Shaikar and T.S. Krishna Woordry, Structural Treatm Montoring, Repair and Rehabilitation of Concrete Structures, Allied Publishers, 2004.</li> <li>M. L. Gambhir., Concrete Technology, McGraw Hill Publication, 5th edition 2013.</li> </ol>

	P01	P02	P03	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	2	1	-	1	2	1	2	1	-	-	2	1	-	1	1
CO2	2	1	-	1	2	1	2	1	-	1	2	1	-	1	-
CO3	1	1	-	-	-	-	1	-	-	-	1	1	-	1	1
<b>CO4</b>	2	2	1	2	2	2	1	1	1	1	2	1	-	2	2
CO5	2	1	1	1	1	2	2	2	1	1	1	1	-	3	2
CO6	2	1	1	1	1	2	1	1	1	1	1	1	-	3	2

### 20CE41EA - CONSTRUCTION PLANNING & MANAGEMENT

Course Category	Professional Elective	Credits	3
Course Type	Theory	Lecture - Tutorial - Practical	3 - 0 - 0
Prerequisite	Building materials	Sessional Evaluation	40
	and construction	Semester End Exam Evaluation	60
		Total Marks	100

Course	CO1	Demonstrate the basics of construction management.								
Outcomes	CO2	Schedule various components of project and utilize CPM and PERT techniques.								
	CO3	Classify the working of various equipment in construction industry.								
	CO4	Perform inspection for quality control, ethical audit and prepare audit statement.								
	CO5	Illustrate the importance of safety and risk in construction and organizational structures and roles.								
	CO6	Illustrate the importance of trade unions connected with the construction industry in India.								
		UNIT - I								
Course Content	function constr	<b>INTRODUCTION:</b> Significance of construction management– Objectives and functions of construction management– Types of construction– Resources for construction industry–Stages of construction–Construction team– Engineering drawings.								
		UNIT - II								
		STRUCTION PLANNING: Stage of planning– Scheduling– Preparation of ial– Equipment– Labour and finance schedules– Bar charts– Milestone								
	NETV	WORK TECHNIQUES IN CONSTRUCTION MANAGEMENT:								
		al Path Method (CPM) – Program Evaluation and Review Technique (PERT)								
		work techniques breakdown structures– Classification of activities–Rules for								
		developing networks– Network development–Network analysis– Critical activities and critical path – Cost optimization.								
		UNIT - III								
	requir scrape	<b>STRUCTION EQUIPMENT AND MANAGEMENT:</b> Equipment ement in construction industry– Heavy earth moving equipment: Bulldozer, ers, loaders, excavator, shovels, and cranes– Compaction equipment– ng equipment– Aggregate production equipment– Asphalt mixing plant–								

	Asphalt laying equipment– Hauling equipment– Concrete mixing equipment– Material handling devices– Pneumatic equipment–Bridge construction equipment– Drilling and blasting equipment– Pumping and dewatering equipment. <b>UNIT – IV</b> <b>INSPECTION:</b> Need for inspection and quality control– Principles of inspection–Enforcement of specifications –Stages of inspection and quality control. <b>QUALITY CONTROL:</b> Ethical Audit: Introduction – Aspects of project
	realization – Ethical audit procedures – The decision makers – Variety of interests – Formulation of briefs –The audit statement– The audit reviews.
	UNIT – V
	<b>SAFETY AND RISK:</b> Introduction – Safety and risk – Concept and importance of safety – Types of risk – Safety and engineers – Safety measures in construction works – Design for safety – Risk benefit analysis – Accidents.
	<b>ORGANISING CONSTRUCTION:</b> Principles of organization– Communication – Leadership and human relations– Types of organization– Organization for a construction firm– Temporary services– Job layout.
	UNIT – VI
	<b>CONSTRUCTION LABOUR</b> : Status of construction labour - Wages of construction workers – Trade unions connected with construction industry – Trade unions act, 1926 – Labour welfare fund act, 1965 – Payment of wages act – Minimum wages act, 1948 – Workmen's compensation act, 1923 – Contract labour act, 1970.
	TEXTBOOKS:
Textbooks	1. P.S. Gahlot and B.M. Dhir, Construction Planning and Management, New
and References	<ul> <li>age International Publishers, 2nd edition, 2018.</li> <li>2. S.C. Sharma, <i>Construction Equipment and Management</i>, Khanna publishers, 3rd Edition, 2019.</li> <li>2. D.L. Control of Antic Control for the Management and Management and Management.</li> </ul>
	3. B.L Gupta and Amit Gupta, <i>Construction Management and Machinery</i> , Standard Publishers Distributors, 2 nd Edition, 2005.
	<ul> <li><b>REFERENCE BOOKS:</b></li> <li>1. S. Seetharaman, <i>Construction Engineering and Management</i>, Umesh publications, 4th edition, 2008.</li> <li>2. Haripal Singh, <i>Construction Management and Accounts</i>, Tata McGraw-Hill</li> </ul>

Put	blishing Company Limited, 5 th edition, 2016.
3. Dr.	B. C. Punmia, K. K. Khandelwal, Project Planning and control with Pert
and	<i>CPM</i> , Laxmi Publications, 4 th Edition, 2012.

**CO-PO Mapping:** 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

	P01	P02	PO3	P04	P05	P06	P07	PO8	P09	P010	P011	P012	PS01	PSO2	PSO3
CO1	3	-	-	-	1	-	-	-	-	-	1	-	-	1	1
CO2	3	3	2	3	2	-	-	-	-	-	1	2	-	2	-
CO3	2	-	-	-	1	-	-	-	-	-	-	1	2	1	-
CO4	2	-	-	-	-	-	-	-	-	-	1	-	-	2	2
CO5	3	-	-	-	-	-	-	-	-	-	-	-	-	2	1
CO6	2	-	2	-	-	2	1	-	-	-	1	-	-	1	2

### 20CE41EB - AIR AND NOISE POLLUTION CONTROL

Course Category	Professional Elective	Credits:	3
Course Type	Theory	Lecture - Tutorial - Practical	3 - 0 - 0
Prerequisite	None	Sessional Evaluation	40
		Semester End Exam	60
		Evaluation	
		Total Marks	100

Course	CO1	Discuss the concepts of air pollution and assess the sources.												
Outcomes	CO2	Estimate the effects of air pollutants on human beings, materials and vegetation.												
	CO3													
	CO4	Develop the control technologies for particulate pollutants and to R the fundamental concept of air quality management.												
	CO5	Discuss the concepts of sound, noise and characteristics of noise.												
	CO6	Measure the noise and to develop control measures of noise pollution												
Course Content	Sourc	<b>POLLUTION:</b> Definition of Air Pollution - Sources & Classification, e inventory of Air Pollutants - Air Quality and Emission standards - ling of Pollutants in ambient air - Stack sampling.												
	mater Samp	UNIT II ECTS OF AIR POLLUTANTS: Effects of air pollution on human beings, ials, vegetation, animals – global warming – ozone layer depletion – ling and Analysis – Basic Principles of Sampling – Source and ambient ling – Analysis of pollutants – Principles.												
	influe	UNIT III EOROLOGY AND AIR POLLUTION: Elements of atmosphere- Factors noting air pollution, Wind rose, Mixing Depths, Lapse rates and dispersion - spheric stability, Plume rise and dispersion.												
	Contro of set	UNIT IV TROL OF PARTICULATE POLLUTANTS: Particle size distribution - ol mechanism - Dust removal equipment –working principle and operation tling chambers, cyclones, wet dust scrubbers, fabric filters and Electro Static pitator.												
		<b>QUALITY MANAGEMENT:</b> Air quality standards – Air quality storing – Preventive measures – Zoning – Town planning regulation of new												

	industries – Legislation and enforcement.
	<b>UNIT V</b> <b>NOISE POLLUTION:</b> Basics of acoustics and specification of sound; sound power, sound intensity and sound pressure levels; Sources of Noise, typical range of noise levels, types of noise pollution, Characteristics of noise, Effects of noise on the human health, Reactions to noise, psychological effects.
	<b>UNIT VI</b> <b>MEASUREMENT OF NOISE:</b> Assessment and Evaluation, Frequency sensitivity and equal loudness characteristics, Vibration – Measurement - Measuring Noise at workplace and community levels.
	<b>NOISE CONTROL AND ABATEMENT MEASURES:</b> Noise control at the source, Source-Path-Receiver Concept, Control of Noise Source by Design and Redress, Noise control in the transmission path, Acoustical Separation, Physical Barriers, Isolators and Silencers, Protecting the receiver, Equipment and Shelters
Textbooks and References	<ul> <li><b>TEXT BOOKS:</b> <ol> <li>D. Anjaneyulu, <i>Air Pollution and Control Technologies</i>, Allied Publishers, 2nd edition, reprint in 2020.</li> <li>M.N. Rao, and H. V. N. Rao, <i>Air Pollution Control</i>, Tata-McGraw-Hill Publication, 1st edition, 2017.</li> <li>S.C. Bhatia, <i>Noise Pollution and its control</i>, Atlantic Publication, 2007.</li> </ol> </li> <li><b>REFERENCES</b> <ol> <li>W. L. Heumann, <i>Industrial Air Pollution Control Systems</i>, McGraw-Hill, 1997.</li> <li>S. P Mahajan, <i>Pollution Control in Process Industries</i>, Tata McGraw-Hill Publishing Company, 1991.</li> <li>S.W Peavy, D.R. Rowe and G. Tchobanoglous, <i>Environmental Engineering</i>, McGraw Hill, 1985.</li> </ol> </li> </ul>

	P01	P02	P03	P04	PO5	P06	P07	PO8	PO9	PO10	P011	P012	PS01	PSO2	PSO3
CO1	1	-	-	1	-	3	-	-	-	-	-	-	-	1	-
CO2	2	1	-	1	1	3	-	1	2	-	-	1	-	2	1
CO3	3	3	-	1	1	-	-	-	-	-	1	1	-	1	-
CO4	2	2	3	3	3	1	2	-	-	-	2	1	-	2	1
CO5	1	1	-	-	-	1	-	-	-	-	-	1	-	1	1
CO6	2	2	3	3	2	2	1	-	-	-	1	2	-	2	1

#### 20CE41EC – GROUND IMPROVEMENT TECHNIQUES

Course Category	Professional Elective	Credits	3
Course Type	Theory	Lecture - Tutorial - Practical	3 - 0 - 0
Prerequisite	Geo Technical	Sessional Evaluation	40
	Engineering- II	Semester End Exam	60
		Evaluation	
		Total Marks	100

Course	CO1	Outline the problematic soils and suitability of ground improvement techniques								
Outcomes	CO2Comprehend various mechanical densification methods of soils.									
	CO3	Understand dewatering methods and Evaluate the preloading technique along with construction of different types of vertical drains for accelerating consolidation.								
	CO4									
	CO5									
	CO6	Assess the application geotextiles in various fields and understand the soil confinement systems.								
	proble ground impro	<b>ODUCTION:</b> Need for Ground Improvement – Different types of ematic soils – Emerging trends in ground Improvement – classification of d improvement techniques – factors affecting the selection of ground vement techniques – Suitability, feasibility and durability of ground vement techniques								
	stabili	<b>UNIT – II</b> <b>HODS OF STABILIZATION:</b> introduction – requirements of soil zation – mechanical stabilization – Portland cement stabilization – inous stabilization – chemical stabilization – construction methods.								
Course Content	water wellpo dewat open o and o applic	UNIT – III RAULIC MODIFICATION: Introduction – filter requirements – ground and seepage control – methods of dewatering – open sumps and ditches, bint systems , deep-well drainage, vacuum dewatering systems and ering by Electro-osmosis – Design steps for dewatering systems – Drains – drains and closed drains – general principle, design of vertical drains, types construction of vertical drains – efficiency of vertical drains and ations. UNIT – IV UTING AND INJECTION: Introduction – aspects of grouting – Different tes of grout materials - grouting procedure – Grouting under difficult tions.								

<b>UNIT – V</b> <b>REINFORCED EARTH:</b> Introduction – mechanism of reinforced soil - components – advantages of reinforced earth structures and other applications of soil reinforcement – procedure for the design of reinforced earth wall
UNIT – VI GEOTEXTILES: Introduction – advantages of geotextiles – functions of geotextiles – use of geotextiles in earth dam construction, road works, railway works, erosion control and bearing capacity improvement – storage, handling and placement of geotextiles. SOIL CONFINEMENT SYSTEMS: Concept of confinement, Gabion walls - function, application, advantage - Crib walls, Sand bags, Evergreen systems and fabric form work
TEXTBOOKS:
1. Dr. P. Purushothama raj, Ground improvement techniques, Laxmi
Publications, 2 nd edition, 2016.
2. Koerner, R. M, Designing with Geo-synthetics, Prentice Hall Inc. 2005.
3. G L Sivakumar Babu, An introduction to soil reinforcement and
geosynthetics, Universities press, 1 st edition, 2019.
<b>REFERENCE BOOKS:</b>
1. Manfred R. Haussmann, Engineering principles of ground modification,
Pearson Education Inc. New Delhi, 2008.
2. B.C. Punmia, A. K. Jain & A. K. Jain, Soil Mechanics and Foundation
Engineering, Laksmi publications, 17 th edition, 2017.
3. B. M. Das, <i>Principles of Geotechnical Engineering</i> , Cengage learning, 9 th edition, 2017.

	P01	P02	P03	P04	P05	P06	P07	P08	60d	PO10	P011	P012	PS01	PSO2	PSO3
CO 1	1	-	1	2	1	-	2	-	-	-	-	1	-	2	2
CO 2	1	2	1	-	1	-	1	-	-	-	-	-	-	2	2
CO 3	2	2	2	1	1	-	1	-	-	-	-	2	-	2	2
<b>CO 4</b>	2	-	-	1	2	-	1	-	-	-	-	-	-	2	2
CO 5	2	2	2	2	1	-	1	-	-	-	-	1	-	2	2
CO 6	2	1	1	1	1	-	2	-	-	-	-	1	-	2	2

# 20CE41SC - COMPREHENSIVE DESIGN LABORATORY

Course Category	Skill Oriented	Credits	2
Course Type	Practical	Lecture – Tutorial –Practical	0-0-4
Prerequisite	Strength of Materials,	Sessional Evaluation	40
	EDRCS, STAAD Lab	Semester End Exam. Evaluation	60
		Total Marks	100

### (Civil Engineering)

Course	CO1	Carryout analysis and design of Bunker
Outcomes	CO2	Analyze and design silos
	CO3	Carryout analysis and design of overhead water tank
	CO4	Analyze and design of intz tank
	CO5	Carryout analyze and design of transmission tower
	CO6	Analysis and design of telecommunication tower
	1.	Analysis and design of Bunker (Square/ Rectangular/Circular).
	2.	Analysis and design of silos.
Course	3.	Analysis and design of overhead water tank.
Content	4.	Analysis and design of intz tank.
	5.	Analysis and design of transmission tower.
	6.	Analysis and design of telecommunication tower.

	P01	P02	PO3	P04	PO5	P06	P07	PO8	P09	PO10	P011	P012	PSO1	PSO2	PSO3
CO1	3	3	3	-	3	-	-	3	2	1	-	3	3	2	3
CO2	3	3	3	-	3	-	-	3	2	1	-	3	3	2	3
CO3	3	3	3	-	3	-	-	3	2	1	-	3	3	2	3
<b>CO4</b>	3	3	3	-	3	-	-	3	2	1	-	3	3	2	3
CO5	3	3	3	-	3	-	-	3	2	1	-	3	3	2	3
CO6	3	3	3	-	3	-	-	3	2	1	-	3	3	2	3

#### N.B.K.R. INSTITUTE OF SCIENCE &TECHNOLOGY :: VIDYANAGAR (AUTONOMOUS)

### CIVIL ENGINEERING SCHEME OF INSTRUCTION AND EVALUATION

(With effect from the batch admitted in the academic year 2020-2021)

#### IV YEAR OF FOUR YEAR B.TECH. DEGREE COURSE – II SEMESTER

											Eva	luation				
S.NO. Course Code		Course Title		Contact Hours/ Week		Credits	Sessional Test-I			Sessional Test-II			Total Sessional	Semester End Examination		Max. Total
	Code	THEORY	L	Т	Р		Test-I (2 hrs.)	Assign ment-I	Max. Marks	Test-II (2 hrs.)	Assign ment-II	Max Marks	- Marks (Max. 80)	Durati on In Hours	Max Mar ks	Mark s
		MAJOR PROJEC	Т													
1	20CE42PR	Project Work and Internship	0	0	3	12	-	-	-	-	-	-	Continuous assessment and seminar (40 marks)	-	60	100
		TOTAL				12					•	•		•		

List of Open electives to be offered by CED:

S.No	<b>Course Code</b>	Course Name	S.No	<b>Course Code</b>	Course Name
1.	20CEXXO1	Remote Sensing	5.	20CEXXO5	Basics of Transportation Engineering
2.	20CEXXO2	Building Technology	6.	20CEXXO6	Water Resources Management
3.	20CEXXO3	Environmental Impact and Management	7.	20CEXXO7	Cost Effective Housing Techniques
4.	20CEXXO4	Disaster Management	8.	20CEXXO8	Environmental Pollution and Control

# <u> 19CE42PJ - PROJECT</u>

Course Category	Program Core	Credits	2
Course Type	Project	Lecture - Tutorial - Practical	0 - 0 - 0
Prerequisite	-	Sessional Evaluation	40
		Semester End Exam	60
		Evaluation	
		Total Marks	100

Course Outcomes	CO1	Identify problem and demonstrate sound technical knowledge in selected problem.
	CO2	Formulate clear objectives and appropriate solution methodology.
	CO3	Identify various tools and techniques which have impact on the solution.
	CO4	Interpret data and meaningful conclusions and recommendations.
	CO5	Prepare technical report and presentation
	CO6	Demonstrate ability to work as an individual and in a team at every stage to produce a project work that exhibits a strong orientation for lifelong learning.

	P01	P02	P03	P04	P05	P06	P07	P08	60d	P010	P011	P012	PSO 1	PSO 2	PSO 3
CO1	3	3	1	2	2	1	1	-	2	2	1	-	-	1	-
CO2	3	3	3	2	2	1	1	1	2	2	2	1	-	1	1
<b>CO3</b>	3	3	3	2	3	1	2	2	3	2	3	2	2	1	2
<b>CO4</b>	3	2	2	2	2	3	2	1	2	1	-	1	1	1	-
CO5	2	1	1	1	2	2	2	3	3	3	1	-	1	1	-
CO6	-	1	2	3	1	-	-	1	3	1	2	3	-	-	3

### N.B.K.R INSTITUTE OF SCIENCE & TECHNOLOGY: VIDYANAGAR

(Autonomous)

### **Department of Civil Engineering**

(With effect from the batch admitted in the academic year 2020-2021)

&

B.Tech (Lateral entry scheme) (For the batches admitted from the academic year 2021-22)

List of Open electives for 2019-20 admitted batch to be offered by CED:

S.No	Course Code	Course Name
1	20CEXXO1	Remote Sensing
2	20CEXXO2	Building Technology
3	20CEXXO3	Environmental Impact and Management
4	20CEXXO4	Disaster Management
5.	20CEXXO5	Basics of Transportation Engineering
6.	20CEXXO6	Water Resources Management
7.	20CEXXO7	Cost Effective Housing Techniques
8.	20CEXXO8	Environmental Pollution and Control

## 20CEXXO1 –REMOTE SENSING

Course Category	Open Elective	Credits	3
Course Type	Theory	Lecture - Tutorial - Practical	3 - 0 - 0
Prerequisite	None	Sessional Evaluation	40
		Semester End Exam	60
		Evaluation	
		Total Marks	100

Course	CO1 Understand remote sensing terms and concepts of the physical														
	U 1 1 1 1														
Outcomes	applications of such a system.														
	CO2 Understand the different technical aspects of a remote sensing network														
	with special emphasis on India remote sensing technology.														
	CO3 Compare different types of data obtained from a remote sensing network														
	with tools specifically designed for the purpose.														
	CO4 Understand about various methods of corrections applied to data to														
	ensure maximum credibility and accountability to the data collected.														
	CO5 Apply remote sensing in agriculture and forest resources management.														
	CO6 Apply remote sensing in Land use/Land cover and coastal zone														
	management.														
	UNIT – I BASIC CONCEPTS OF REMOTE SENSING: Definition of Remote Sensing; History of Remote Sensing and Indian Space Program; Remote														
	Sensing Process; Source of energy – Concept of energy, Electromagnetic radiation, Electromagnetic Spectrum; Interaction of electromagnetic radiation														
	with atmosphere, Vegetation, soil and water – Absorption, Scattering,														
	Refraction, Reflection; Spectral Reflectance Curve; Atmospheric windows;														
	Advantages and Limitations of Remote Sensing.														
	Advantages and Limitations of Remote Sensing.														
	UNIT – II														
	<b>REMOTE SENSING SYSTEM:</b> Introduction; Types of Remote Sensing -														
	Classification Based on Platform, Energy Source, Imaging Media, Regions of														
	Electromagnetic Spectrum, Number of Bands; Characteristics of Images;														
Course	Orbital Characteristics of Satellite; Remote Sensing Satellites; Definitions –														
Content	Swath, Nadir, path, row, Orbital calendar.														
	CENCODE CILADA CEEDICIEICE, Concer Deselutions, Contint Deselution														
	SENSORS CHARACTERISITICS: Sensor Resolutions- Spatial Resolution,														
	Spectral Resolution, Radiometric Resolution, Temporal Resolution														
	UNIT – III														
	Extraction by Human and Computer; Remote Sensing Data Products; Image														
	Interpretation; Elements of Visual Image Interpretation -Location, Size, Shape,														
	Shadow, Tone, Colour, Texture, Pattern, Height and Depth, Site, Situation, and														
	Association; Interpretation Keys														
	UNIT – IV														
	DIGITAL IMAGE PROCESSING: Introduction; Categorization of Image														
	Processing; Image Processing Systems; Data Formats of Digital Image; Pre-														

	processing - Radiometric Correction of Remotely Sensed Data, Geometric Correction of Remotely Sensed Data, Miscellaneous Pre-processing; Image Enhancement - Image Reduction, Image Magnification, Colour Compositing, Transect Extraction, Contrast Enhancement; Filtering;
	UNIT – V APPLICATIONS OF REMOTE SENSING FOR EARTH RESOURCES MANAGEMENT – I : Agriculture – crop production forecasting, agricultural drought assessment, precision farming; Forestry – Type and density mapping, forest cover change, forest status in India;
	UNIT – VI
	APPLICATIONS OF REMOTE SENSING FOR EARTH RESOURCES
	MANAGEMENT – II:
	Land cover/Land use mapping – Wastelands, Urban sprawl; Water Resources;
	Coastal Zone Management – Coastal zone ecosystem, Coastal regulation zone,
	integrated coastal zone management.
	TEXTBOOKS:
Textbooks	1. Bhatta B, <i>Remote sensing and GIS</i> , Oxford University Press, 3 rd edition,
and	2021.
References	2. George Joseph, C Jeganathan, <i>Fundamentals of remote sensing</i> , Universities Press, 3 nd Edition, 2018.
	3. TsurgCharg, Introduction to Geographic information system, Tata
	McGraw Hill Education Private Limited. 2 nd edition, 2014.
	<b>REFERENCES:</b>
	1. John R.Jensen, <i>Remote sensing of the environment – An earth resources perspective</i> , Pearson Education, 2 nd edition, 2014.
	2. Peter A Burragh and Rachael McDonnnell, <i>Principals of Geo physical</i>
	Information system, Oxford Publications 2 nd edition, 2004.
	3. A. Kumar, <i>Basics of remote sensing &amp; GIS</i> , Laxmi publications, 3 rd edition, 2009.

	P01	PO2	P03	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	1	-	-	2	-	-	-	-	-	-	-	1	-	-	-
CO2	-	2	2	-	-	-	1	-	-	2		2	1	1	1
CO3	2	-	1	-	1	-	1	-	-	-	-	-	2	1	1
<b>CO4</b>	-	1	-	1	-	-	-	-	-	1	-	-	2	1	1
CO5	2	-	1	-	1	-	-	-	-	-	-	1	2	1	1
<b>CO6</b>	2	1	-	2	-	-	2	-	-	2	-	1	2	1	1

## 20CEXXO2-BUILDING TECHNOLOGY

Course	Open Elective	Credits:	3
Category:			
Course Type:	Theory	Lecture - Tutorial -	3 - 0 - 0
		Practical:	
Prerequisite:	None	Sessional Evaluation :	40
		Univ. Exam Evaluation:	60
		Total Marks:	100

Course Outcomes	CO1 Identify the factors to be considered in planning and construction of buildings and Plan a building following the bye-laws								
	CO2 Understand various types of stones and methods of manufacturing of bricks and tiles.								
	O3 Identify the importance of ingredients of lime, cement and concrete.								
	CO4 Provide scope of smart construction materials alternative for cement and also be able to understand various types of masonry construction.								
	CO5 Evaluate various building components and their various types.								
	CO6 Understand the techniques and importance of damp proofing and finishing works of the building.								
	UNIT – I								
	<b>Fundamentals requirements of buildings:</b> Terms used in building drawing								
	as per National Building Code (N.B.C) – Factors affecting in selection of								
	site – Functional requirements of a residential building – Minimum size								
	requirements as per N.B.C Standard sizes of Door - Windows and								
	ventilators.								
	Basic building elements, Principles of planning. Relevant building by-laws								
	(N.B.C) & Municipal, orientation of buildings - Provision of rainwater								
	harvesting – provision for physically handicapped facilities.								
	UNIT – II								
	Stones: Properties of building stones – Relation to their structural								
Course	requirements – Classification of stones.								
Content	Bricks: Composition of good brick earth, various types of bricks.								
	Tile: Characteristics of good tile and types of tiles.								
	UNIT – III								
	Lime: Various ingredients of lime –Constituents of lime stone –								
	Classification of lime.								
	<b>Cement:</b> Portland cement – Chemical Composition – Hydration, setting and								
	fineness of cement – Various types of cement and their properties – Various								
	field and laboratory tests for Cement - Various ingredients of cement								
	concrete and their importance – Various tests for concrete.								
	UNIT – IV								

	<ul> <li>Wood: Introduction– Classification of timber (I.S.: 399) – Characteristics of good timber– Defects in timber – Types and Uses of Ply-wood and Engineered wood. –Uses of materials like Aluminium, Gypsum, Glass and Bituminous materials.</li> <li>Masonry: Types of masonry – English and Flemish bonds – Cavity, partition and shear walls.</li> <li>Smart Construction Materials: Overview and use of Fly ash, Silica fume, Carbon fibers, Self-healing materials and Fiber reinforced plastics – Benefits of Nano-technology in construction industry.</li> </ul>
	UNIT – V Building Components: Lintels – Arches – Vaults – Stair cases. Floors: Different types of floors – Concrete – Mosaic and Terrazzo floors. Roofs: Pitched roofs – Lean to roof – Coupled Roofs – Trussed roofs – King and Queen post Trusses – Flat roofs – R.C.C Roofs – Doors and windows.
	UNIT – VI Building Finishes: Damp Proofing and water proofing materials and uses. Plastering – Pointing – White washing and distempering. Paints: Constituents of paint – Types of paints –Painting of new/old wood – Varnish.
Textbooks and References	<ul> <li><b>TEXTBOOKS:</b> <ol> <li>S.C. Rangwala, <i>Engineering Materials</i>, Charotar publishing house, 43rd Edition, 2019.</li> <li>B.C. Punmia, Arun K Jain, Ashok K Jain, <i>Building Construction</i>, Laxmi Publications, 11th Edition, 2016.</li> <li>Dr. N. Kumara Swamy &amp; A. KameswaraRao, <i>Building Planning and Drawing</i>, Charotar publishing house, 9th Edition, 2019.</li> </ol></li></ul>
	<ul> <li>REFERENCE BOOKS:</li> <li>1. S.K. Duggal, <i>Building Materials</i>, New age international, 4th Edition, 2012.</li> <li>2. Sushil Kumar, <i>Building Construction</i>, Standard Publisher, 19th Edition 2020.</li> <li>3. S. Mahaboob Basha, <i>Building Materials, Construction and Planning</i>, Anuradha Publications, 2011.</li> </ul>

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
<b>CO1</b>	1	-	1	1	-	1	1	-	-	-	1	1	-	-	-
CO2	1	1	2	1	1	-	-	-	-	-	-	1	-	-	-
<b>CO3</b>	1	1	2	-	2	-	-	-	-	-	-	1	-	-	-
<b>CO4</b>	2	-	2	-	1	1	1	-	-	-	1	2	-	-	-
CO5	2	-	2	-	2	1	-	-	-	-	1	1	-	-	-
<b>CO6</b>	1	2	1	-	2	2	-	2	-	2	-	-	1	1	1

**CO-PO Mapping:** 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

## <u>20CEXXO3 – ENVIRONMENTAL IMPACT AND MANAGEMENT</u>

Course Category	Open Elective	Credits	3
<b>Course Type</b>	Theory	Lecture - Tutorial - Practical	3 - 0 - 0
Prerequisite	None	Sessional Evaluation	40
		Semester End Exam Evaluation	60
		Total Marks	100

Course Outcomes	CO1	Carry out scoping and screening of developmental projects for environmental and social assessments.							
	CO2	Explain different methodologies for environmental impact prediction and assessment.							
	CO3 Explain impact of development activities and land use.								
	CO4	CO4 Plan Environmental impact assessments and environmental management plans.							
	CO5	Evaluate mitigation and impacts							
	CO6	Know the problems related to environment due to industries.							
Course Content	Engine of EIA EIA metho metho IMPA Introd deline soil qu MET ATTE Metho develo defore MITI	UNIT – I ODUCTION TO EIA: Environmental ethics – Need of EIA for eering projects – Classification of environmental parameters – Purposes A – Goals of EIA. UNIT – II METHODOLOGIES: Introduction – Criteria for the selection of EIA dology – Categorization of methodologies – Matrix methods – Network d – Environmental Media quality index method – Cost / benefit analysis. UNIT – III ACT OF DEVELOPMENTAL ACTIVITIES AND LAND USE: uction and methodology for the assessment of soil and ground water – ation of study area – identification of activities – Procurement of relevant iality – Impact prediction – Assessment of impacts. UNIT – IV HODOLOGY FOR THE ASSESMENT OF IMPACTS OF SOME RIBUTES: Surface water – Air and biological environment – dology and generalized approach for the assessment of impact of station and incorporation of mitigation measures. UNIT – V GATION AND IMPACT ASSESMENT: EIA process and mitigation, nts of mitigation, approaches to mitigation, typical mitigation measures.							

	<b>UNIT – VI</b> <b>CASE STUDIES:</b> Environmental impact of large scale water resources projects – environmental impact of thermal and nuclear power plants and on oil refineries.
Textbooks and Reference s	<ol> <li>TEXTBOOKS:         <ol> <li>Anji reddy Maredy, Environmental Impact Assessment, Butterworth- Heinemann, 2017.</li> <li>R.R. Barthwal, Environmental Impact Assessment New Age International Private Limited; 2nd edition, 2012.</li> <li>Shukla, S.K. and Srivastava, P.R., Concepts in Environmental Impact Analysis, Commonwealth Publishers, 1992.</li> </ol> </li> <li>REFERENCES:         <ol> <li>Dr. N.S. Raman, Dr. Y.R.M Rao, Environmental Impact Assessment, Laxmi Publications Pvt. Ltd., 2017.</li> <li>R.L Canter, Environmental Impact Assessment, McGraw Hill Inc., 1977.</li> <li>John G. Rau and David C Hooten, Environmental Impact Analysis Handbook, McGraw Hill higher education, 1980.</li> </ol> </li> </ol>

	PO1	P02	P03	P04	P05	P06	P07	PO8	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	2	2	-	-	1	-	2	-	1	-	-	1	-	-	-
CO2	2	1	-	-	-	2	1	1	1	-	-	-	-	-	-
CO3	1	1	-	-	-	2	2	1	-	2	-	-	-	-	-
<b>CO4</b>	2	1	2	1	2	1	-	2	-	-	-	-	-	-	-
CO5	1	-	-	-	-	-	2	1	2	-	1	1	-	-	-
<b>CO6</b>	2	2	-	1	-	-	2	-	2	-	1	2	-	-	-

## 20CEXXO4 – DISASTER MANAGEMENT

<b>Course Category:</b>	Open Elective	Credits	3
Course Type	Theory	Lecture - Tutorial - Practical	3 - 0 - 0
Prerequisite	None	Sessional Evaluation	40
		Semester End Exam	60
		Evaluation	
		Total Marks	100

Course Outcomes	CO1 Hazards and disasters and different approaches to disaster and their mitigation.								
	CO2	CO2 Types of disasters, exogenous disasters and their effects.							
	CO3	3 Endogenous disasters and their effects.							
	CO4	Man induced disasters and their effects.							
	CO5	Disaster management through engineering applications.							
	CO6	Case study on disasters in national and international level.							
Course Content	Environ Concep human approace <b>TYPES</b> hazards Hazard Planeta Endoge Volcan Disaste of volc Earthqu earthqu <b>EXOG</b> Cumula Lightni <b>CYCL</b> cyclone	UNIT-I ONMENTAL HAZARDS & DISASTERS: Meaning of mental hazards – Environmental Disasters Environmental stress – t of Environmental Hazards – Different approaches and relation with Ecology - Landscape Approach –Ecosystem Approach – Perception h – Human ecology & its application in geographical researches. UNIT –II S OF ENVIRONMENTAL HAZARDS & DISASTERS: Natural a and Disasters – Man induced hazards & Disasters – Natural a and Disasters – Man induced hazards & Disasters – Natural a end Disasters – Endogenous Hazards – Exogenous Hazards ry Hazards – Endogenous Hazards – Exogenous Hazards ic Eruption – Earthquakes – Landslides – Volcanic Hazards/ rs. Causes and distribution of Volcanoes – Environmental impacts canic eruptions – Earthquake Hazards/ Disasters – Causes of takes – Distribution of earthquakes – Hazardous effects of akes – Human adjustment – Perception & mitigation of earthquake. UNIT –III ENOUS HAZARDS AND DISASTERS: Infrequent events – ative atmospheric hazards/ disasters Infrequent events – Cyclones – mg – Hailstorms. ONES: Tropical cyclones & Local storms – Destruction by tropical es & local storms – Causes – Distribution human adjustment – ion & mitigation)Cumulative atmospheric hazards and disasters – – Droughts – Cold waves – Heat waves. Floods: – Causes of floods –							

Flood control measures (Human adjustment - Perception & mitigation) -Droughts: - Impacts of droughts - Drought control measures - Extra Planetary Hazards/ Disasters. UNIT-IV **SOIL EROSION**: Mechanics & forms of Soil Erosion – Factors and causes of Soil Erosion - Conservation measures of Soil Erosion. Chemical hazards/ disasters - Release of toxic chemicals - nuclear explosion - Sedimentation processes. Sedimentation processes: - Global Sedimentation problems -Regional Sedimentation problems - Sedimentation and Environmental problems - Corrective measures of Erosion and Sedimentation. Biological hazards/ disasters: - Population Explosion. UNIT-V **EMERGING APPROACHES IN DISASTER MANAGEMENT:** Three Stages 1. Pre- disaster stage (preparedness). 2. Emergency Stage. 3. Post Disaster stage-Rehabilitation. UNIT – VI CASE STUDIES: 1. Bhuj Earthquake – Gujarat 2001. 2. Indian Ocean earthquake and Tsunami, 2004. 3. Chernobyl disaster, Ukraine 1986. 4. Bhopal Gas tragedy, 1984.

5. Kerala Floods, 2018.

Textbooks and References	<ol> <li>TEXTBOOKS:         <ol> <li>Tushar Bhattacharya, <i>Disaster Science and Management</i>, McGraw hill Publications, 1st Edition, 2017.</li> <li>Donald Hyndman and David Hyndman, <i>Natural Hazards and Disasters</i>, Brooks/Cole, 5th Edition, 2016.</li> <li>Rajib Shah, RR Krishna Murthy, <i>Disaster Management: Global Problems and Local Solutions</i>, CRC Press, 1st Edition, 2009.</li> </ol> </li> </ol>
	<ul> <li><b>REFERENCES:</b></li> <li>1. R B Singh, <i>Natural Hazards and Disaster Management:</i> <i>Vulnerability and Mitigation</i>, Rawat Publications, Reprint edition, 2006.</li> <li>2. Pardeep and Sahni, <i>Disaster Mitigation: Experiences and</i> <i>Reflections</i>, Prentice Hall India Learning Private Limited, New title edition, 2001.</li> <li>3. H.K. Gupta, <i>Disaster Management</i>, Universities Press, India, 2003.</li> </ul>

Т

	P01	P02	PO3	PO4	PO5	PO6	PO7	PO8	909	PO10	P011	P012	PSO1	PSO2	PSO3
CO1	2	-	-	-	-	-	2	-	1	-	-	1	-	-	-
CO2	1	-	-	I	-	2	1	1	1	-	I	-	1	-	-
CO3	-	-	-	-	-	2	2	1	-	2	-	-	1	1	-
CO4	1	-	-	-	-	1	-	2	-	-	-	-	-	1	-
CO5	1	1	-	-	-	-	2	1	2	-	1	1	-	1	-
<b>CO6</b>	-	-	-	-	-	-	2	-	2	-	1	2	-	1	-

CO-PO Mapping: 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

## 20CEXXO5- BASICS OF TRANSPORTATION ENGINEERING

Course Category	Open Elective	Credits	3
Course Type	Theory	Lecture - Tutorial - Practical	3 - 0 - 0
Prerequisite	None	Sessional Evaluation	40
		Semester End Exam	60
		Evaluation	
		Total Marks	100

Course	CO1	Understand various types of roads and road patterns.							
Outcomes	CO2 Understand concepts of highway geometric design.								
	CO3 Understand traffic signs and markings.								
	CO4	Understand basics permanent way and its components.							
	CO5	Understand basics of air transportation.							
	CO6	Understand components of airport.							
Course Content	charac patter maste HIGH cross- paven stoppi distan effect extra <b>TRAI</b> of trat signs- identi	UNIT – I DRTANCE OF TRANSPORTATION modes of transportation, cteristics of road transport, methods of classification of roads, road ns. Requirements of ideal alignment, factors controlling alignment, r plan and its phasing. Problems on saturating system concept. UNIT II HWAY GEOMETRIC DESIGN: design controls and criteria, highway section elements- pavement surface characteristics, camber, width of nent, kerbs, road margins, right of way, formation width, site distance- ing sight distance, PIEV theory, analysis of SSD, over taking sight ce and its analysis. Design of a horizontal alignment- horizontal curves- of centrifugal force at horizontal curve, derivation of super elevation, widening FFIC SIGNS: Importance-Need for international standardization-Types ffic signs-Warning signs-Prohibitory signs-Mandatory signs-Informatory Indication signs-Direction signs, advance direction signs and place fication signs-Location height and maintenance of traffic signs D MARKINGS: Eunction-Types of road markings material and color							
		fication signs-Location height and maintenance of traffic signs <b>D MARKINGS</b> : Function-Types of road markings, material and color,							

	centre lines, traffic lane lines, pedestrian crossings.
	UNIT IV
	<b>BASICS OF RAILWAY ENGINEERING:</b> Permanent way and its components, gauges, types of rails, functions of rails, types of sleepers, functions of sleepers, ballast, types of ballast, List of classification of stations, yards- types only.
	UNIT V BASICS OF AIRPORT ENGINEERING: Introduction to air transportation, characteristics of air transport, components of airports and functions- terminal area and landing area, parts of aircraft, classification of airports, different kinds of flights, factors affecting site selection for an airport, Airport terminal building, patterns of parking, aprons, hangers.
	UNIT VI
	<b>BASICS OF HARBOUR ENGINEERING:</b> Water transportation- Importance, types-inland and ocean transportation, Tides, Wind and waves – Currents, uses and effects of tides at harbor, Classification of harbour's and ports, Site selection, requirements of good port, Loading and unloading facilities of harbour-Quays-wharves- piers- dolphins- Jetties – Fenders – Aprons, Transit sheds - Ware houses, Breakwaters(List of break waters only).
Textbooks and References	<ul> <li>TEXTBOOKS: <ol> <li>Khanna, S.K. Justo C.E.G &amp; veeraraghavulu, "Highway Engineering" Nem chand&amp;bros, 10th edition, 2018.</li> <li>S.C.Saxena &amp; S.P.Arora, "A Text Book of Railway Engineering" Dhanpat Rai publications, 7th edition, 2015.</li> <li>S.K.Khanna, M.G.Arora &amp; S.S.Jain, "Airport Planning and Design" Nem chad brothers, 2nd edition., 1999.</li> <li>R. Srinivasan, "Docks and Harbour Engineering" Charotar publishing hose Pvt. Ltd, 29th edition, 2018.</li> </ol> REFERENCE BOOKS: <ol> <li>C.Venkatramaiah "Transportation Engineering Vol I &amp; II" Universities Press (India) Private Ltd, 1st edition, 2016.</li> <li>Dr. L.R.Kadiyali, "Principles and Practice of Highway Engineering" Khanna publishers, 7th edition, 2019.</li> </ol></li></ul>
	3. S.C.Rangwala, A Text Book of Railway Engineering, Chartor

L

publishing house, 26th edition, 2016.

	P01	P02	P03	P04	P05	P06	P07	PO8	604	P010	P011	P012	PSO1	PSO2	PSO3
<b>CO1</b>	2	1	1	1	2	3	1	-	1	2	1	-	-	-	-
CO2	3	2	2	3	2	-	1	-	2	2	1	1	1	1	1
CO3	1	3	-	1	1	-	-	-	1	2	1	2	-	1	1
CO4	1	-	2	2	3	-	1	-	1	1	2	1	-	-	-
CO5	2	3	2	1	2	-	1	2	-	3	2	1	-	-	-
<b>CO6</b>	1	-	2	1	1	1	1	1	1	2	1	1	-	-	-

**CO-PO Mapping:** 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

## 20CEXXO6 -WATER RESOURCES MANAGEMENT

Course Category	Open Elective	Credits	3
Course Type	Theory	Lecture - Tutorial - Practical	3 - 0- 0
Prerequisite	None	Sessional Evaluation	40
		Semester End Exam Evaluation	60
		Total Marks	100

Course	CO1	Understand the nature of groundwater and its role in the water cycle.								
Outcomes										
	CO2	Apply the concept of Darcy's law for estimating discharge an understand their characteristics and classifications.								
	CO3	Familiar with the technology of water wells and groundwater monitoring.								
	CO4	Familiar with the technology to investigation the surface and subsurface water.								
	CO5	Understand the importance of artificial recharge and employ the artificial ground water recharge techniques.								
	CO6	Identify the saline water intrusion locations.								
		UNIT – I								
		<b>ODUCTION:</b> Ground water utilization and historical background – d water in hydrologic cycle. Ground water budget and ground water								
		luctuations and environmental influence.								
		UNIT – II OCCURRENCE AND MOVEMENT OF GROUND WATER: Origin &								
	age of ground water – Rock properties affecting groundwater – Groundwater									
	column, zones of aeration & saturation, aquifers and their characteristics and									
		ication –Groundwater basins & springs – Darcy's Law – Permeability letermination –Dupuit's assumptions.								
		UNIT – III								
Course		ADVANCED WELL HYDRAULICS: Steady and unsteady uniform radial								
Content		o a well in a confined, unconfined and leaky aquifer – Well flow near r boundaries for special conditions, partially penetrating.								
	UNIT – IV									
	SURFACE SUB-SURFACE INVESTIGATION OF GROUND WATER:									
		Geological – Geophysical Exploration – Remote Sensing – Electric Resistivity –Seismic refraction based methods for surface investigation of								
		d water – Test drilling & ground water level measurement – Sub-surface								
	ground	d water investigation through geophysical – Resistivity.								
		$\mathbf{UNIT} - \mathbf{V}$								
		FICIAL GROUND WATER RECHARGE: Concept and methods of								
		al ground water recharge – Recharge mounds and induced recharge – water recharge for reuse – Water spreading.								
	1									

	UNIT – VI SALINE WATER INTRUSION IN AQUIFERS: Ghyben-Herzberg relation between fresh & saline waters – Shape & structure of the fresh and saline water interface – Upcoming of saline water – Fresh-saline water relations on oceanic islands – Seawater intrusion in karst terrains – Saline water intrusion control.
Textbooks and References	<ol> <li>TEXTBOOKS:</li> <li>David K. Todd, Larry W. Mays, <i>Groundwater hydrology</i>, Wiley India Pvt Ltd., 3rd edition, 2011.</li> <li>H. M. Raghunath, <i>Ground Water</i>, Newage publishers, 3rd edition, 2007.</li> <li>R. N. Saxena and D.C. Gupta, <i>Elements of Hydrology and Groundwater</i>, PHI Learning, 3rd edition, 2017.</li> <li>REFERENCE BOOKS:</li> <li>K.Subramanya, <i>Engineering Hydrology</i>, Tata McGraw Hill Publishing Company, 4th edition, 2019.</li> <li>K. Karanth, Ground Water Assessment, Development and Management, McGraw Hill Education, 2nd edition, 2017.</li> <li>Bhagu R. Chahar, <i>Groundwater Hydrology</i>, McGraw Hill Education, 1st edition, 2017.</li> </ol>

**CO-PO Mapping:** 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	1	-	1	2	-	-	2	-	-	-	-	1	-	-	-
CO2	-	3	-	-	-	-	-	-	-	1	-	-	-	-	-
CO3	-	-	2	-	-	-	1	-	-	2	-	2	-	1	-
CO4	2	-	-	-	1	-	-	-	-	-	-	-	-	1	-
CO5	-	-	-	-	-	-	-	-	-	-	-	2	-	1	-
CO6	-	2	-	-	1	-	2	-	-	2	-	1	-	1	-

## <u>20CEXXO7 – COST EFFECTIVE HOUSING TECHNIQUES</u>

Course Category	Open elective	Credits	3
Course Type	Theory	Lecture-Tutorial-Practical	3-0-0
Prerequisite	None	Sessional Evaluation	40
		External Evaluation	60
		Total Marks	100

Course Outcomes	CO1	Acquire basic knowledge in housing.							
	CO2	Acquire basic knowledge in housing programmes.							
	CO3 Able to design, evaluation, construction and financing of hou projects.								
	CO4	Familiar with the innovative construction materials.							
	CO5	Be in position to adopt the suitable techniques in rural areas.							
	CO6	Be in position to adopt the suitable techniques in disaster prone areas							
		by using locally available materials.							
Course Content	Home Build slum	UNIT – I RODUCTION TO HOUSING: Definition of Basic Terms: House – e – Household – Apartments – Multi storied Buildings – Special ings – Objectives and strategies of national housing policies including housing policy – Principle of sustainable housing – Integrated approach riving holding capacity and density norms – All basic infrastructure deration – Institutions for housing at national – State and Local levels.							
	housin develo comm housin Use o agenc Role o	UNIT – II SING PROGRAMMES: Basic Concepts – Contents and standards for ng programmes – Sites and services – Neighborhoods – Plotted land opment programs – Open development plots – Apartments – Gated nunities – Townships – Rental housing – Co-operative housing – Slum ng programmes – Slum improvement – Slum redevelopment relocation. of GIS and MIS in Slum Housing Projects – Role of public housing ies –Private sector in supply – Quality – Infrastructure and pricing – of Non-Government Organizations in slum housing. UNIT – III ELOPMENT AND ADOPTION OF LOWCOST							
		SINGTECHNOLOGY: Introduction – Adoption of innovative cost							

	effective construction techniques – Adoption of precast elements – Adopting of total prefabrication of mass housing in India – General remarks on pre-cast rooting/flooring systems – Economical wall system – Single brick thick loading bearing wall – 19cm thick load bearing masonry walls – Half brick thick load bearing wall – Fly ash gypsum thick for masonry – Stone block masonry – Adoption of precast R.C. plank and join system for roof/floor in the building.
	UNIT – IV ALTERNATIVE BUILDING MATERIALS FOR LOW COST HOUSING AND INFRASTRUCTURE SERVICES: Introduction – Substitute for scarce materials – Ferrocement – Gypsum boards – Timber substitutions – Industrial wastes – Agricultural wastes – Low cost infrastructure services: Introduce – Present status – Technological options – Low cost sanitation – Domestic wall – Water supply – Energy.
	UNIT – V RURAL HOUSING: Introduction traditional practice of rural housing continuous – Mud housing technology – Mud Roofs – Characteristics of mud – Fire treatment for thatch roof – Soil stabilization – Rural housing programs.
	UNIT – VI HOUSING IN DISASTER PRONE AREAS: Introduction – Earthquake – Damages to houses – Traditional prone areas – Type of damages and railways of Non-engineered buildings – Repair and restore action of earthquake damaged non -engineered buildings recommendations for future constructions – Requirements of structural safety of thin pre-cost roofing units against earthquake forces – Status of R& D in earthquake strengthening measures – Floods – Cyclone – Future safety.
Textbooks & References	<ul> <li><b>TEXTBOOKS:</b></li> <li>3. G. C. Mathur, Low <i>Cost Housing in Developing Countries</i>, Oxford &amp; IBH Publishing Co. Pvt. Ltd., 1993.</li> <li>4. A. K. Lal, <i>Hand Book of Low Cost Housing</i>, New Age International Publishers, 1995.</li> <li>5. Kiado- Rudhai. G, <i>Light weight concrete</i>, Publishing home of Hungarian Academy of Sciences, 1963.</li> <li><b>REFERENCES:</b></li> </ul>
	<ol> <li>A.G. Madhava Rao, D.S. Rama Chandra Murthy &amp; G. Annamalai, Modern Trends In Housing In Developing Countries, 1984.</li> <li>Neville A.M. Pitman, Properties of Concrete, Publishing home of</li> </ol>

Hungarian Academy of Sciences, 1963.

## CO-PO Mapping: 3-High Mapping, 2-Moderate Mapping, 1-Low Mapping, - -Not Mapping

	P01	P02	PO3	P04	P05	P06	707	PO8	909	P010	P011	P012	PS01	PSO2	PSO3
CO1	2	1	1	-	2	2	1	2	1	2	2	2	-	-	1
CO2	-	2	1	1	2	2	1	3	-	2	2	3	-	-	1
CO3	1	2	2	1	2	2	2	2	-	2	2	2	1	1	1
CO4	1	2	1	1	2	2	1	3	-	2	2	2	-	1	2
CO5	-	3	2	2	2	3	2	2	-	2	2	2	-	1	-
CO6	-	2	1	1	2	3	2	2	1	2	2	3	-	1	-

## 20CEXXO8 - ENVIRONMENTAL POLLUTION AND CONTROL

Course Category	Open Elective	Credits	3
Course Type	Theory	Lecture - Tutorial – Practical	3-0-0
Prerequisite	None	Sessional Evaluation	40
		Semester End Exam Evaluation	60
		Total Marks	100

Course	CO1	Understand the nature, significance and effects of pollution.									
Outcomes	CO2	Understand the effects of air pollution and various controlling parameters.									
	CO3	Understand the effects of water pollution and various controlling parameters.									
	CO4	Understand the various methods for solid and hazardous waste disposal.									
	CO5	Understand the environmental legislation acts for industrial pollution control.									
	CO6	Understanding the characteristics and effects of noise pollution.									
		UNIT – I									
Course Content	<b>THE NATURE OF POLLUTION:</b> Air pollution and its effects on living and non-living things. Water pollution and its effects on living and non-living things, solid wastes and land pollution. <b>UNIT – II</b>										
	Influe collec sacks. separa	AIR POLLUTION CONTROL: Influence of metereological parameters, physical principles, dry systems, fabric collectors, wet scrubbers, electrostatic precipitations, fume incineration tall sacks. Physical separation systems gravity setting chambers, inertial separators, cyclones, fabric collectors, wet scrubbers, electrostatic precipitators, fume incineration.									
	UNIT – III										
	Routin metho proces	WATER POLLUTION CONTROL: Routine methods for removal of suspended and dissolved impurities, advance methods like chemical oxidation, membrane separation process, and biological process for removal of phosphorous and nitrogen. Land treatment, eutrophication control.									
		UNIT – IV									
	SOLI	D WASTE MANAGEMENT:									

	Quantities and characterizations of municipal solid wastes, recovery of materials and energy, sanitary land filling. Disposal of hazardous wastes.										
	UNIT – V										
	<b>ENVIRONMENTAL LEGISLATION AND INDUSTRIAL POLLUTION CONTROL:</b> Legislation conserving water pollution air pollution and hazards wastes. Caste studies of pollution control in cement industries, paper, & pulp industries, brewing.										
	UNIT – VI										
	<b>NOISE POLLUTION CONTROL:</b> Basics of acoustics and specification of sound; sound power, sound intensity and sound pressure levels; Sources of Noise, typical range of noise levels, types of noise pollution, Characteristics of noise, Effects of noise on the human health, Reactions to noise, psychological effects.										
Textbooks and Reference books	<ul> <li>TEXT BOOKS:</li> <li>1. CS Rao, <i>Environmental Pollution Control Engineering</i>, New Age International Private Limited; 4th edition, October 2021.</li> <li>2. P. R. Trivedi, <i>Environmental Pollution and Control</i>, APH Publishing Corporation, December 2004.</li> <li>3. J. Jeffrey Peirce, P Aarne Vesilind, Ruth Weiner, <i>Environmental Pollution and Control</i>, Butterworth-Heinemann publishers, 4th edition , January 1998.</li> <li>REFERENCE BOOKS:</li> </ul>										
	<ol> <li>Howard Peavy, Donald Rowe, George Tchobanoglous, <i>Environmental Engineering</i>, McGraw Hill Education publishers, First edition, July 2017</li> <li>S.C. Bhatia, <i>Noise Pollution and its control</i>, Atlantic Publication, 2007.</li> <li>P.A Vesilind, J.J. Peirce, <i>Environmental pollution and control</i>,</li> </ol>										
	Butterworth-Heinemann publishers, 4 th edition, November 1997.										

<b>CO-PO Mapping:</b>	3-High Mapping	, 2-Moderate Mapping,	1-Low Mapping.	Not Mapping
	- 0	,		

	P01	P02	P03	P04	504	90d	707	PO8	60d	P010	P011	P012	PS01	PSO2	PSO3
CO1	-	1	-	-	-	2	1	-	-	-	-	1	-	1	-
CO2	2	2	1	1	1	2	1	-	-	-	-	2	-	2	1
<b>CO3</b>	2	2	1	1	2	2	1	-	-	-	-	2	-	2	1
CO4	1	2	1	1	2	2	1	-	-	-	-	2	-	2	1
CO5	2	2	1	1	2	2	1	-	-	-	-	2	-	2	1
<b>CO6</b>	-	1	-	-	1	2	1	-	-	-	-	2	-	2	1

# List of MOOC'S Platforms

- 1. <u>http://nptel.ac.in</u>
- 2. https://swayam.gov.in/